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Abstract

In this paper we study the tradeoff between energy and delay in a multiple access channel (MAC).

Messages arrive at the queues of the individual users and users decide whether to service them. Trans-

mission of a message consumes energy and is successful only if one user transmits at a time. Users do

not communicate but can observe a broadcasted feedback message from the base station indicating the

success or not of the previous transmission. Delays are captured by considering the queue lengths of

each user.

We formulate this problem as a decentralized stochastic control problem, the two controllers being

the two users who, in the presence of limited information about each other, decide whether to transmit

at each time slot. The decentralized aspect of this control problem makes it fundamentally different from

the corresponding single-user counterparts and multi-user counterparts assuming a centralized controller.

As a result, the tools from Markov decision processes (MDPs) and partially observed MDPs (POMDPs)

cannot be directly applied.

Our contribution is twofold. First, we identify structural properties of the optimal transmission

strategies for the two users so that the domain of the optimal strategies is not increasing with time.

Second, based on the above structural properties, we identify the optimal strategies as the solution of a

fixed point equation.

I. INTRODUCTION

Information theory has been extremely successful in characterizing the maximum information rate

possible in point-to-point single-user channels. It has also been quite successful in characterizing the

set of information rates that are simultaneously possible in multi-user networks, through the concept
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of capacity regions. This success can, to a large extend, be attributed to the very way the information

theoretic problems are formulated: the quantities of interest are the exponential growth rates of number of

messages (i.e., the code rates). As the codeword length grows to infinity, a concentration of measure occurs

and a typical behavior emerges. In this framework, there is only a tradeoff between energy and rates:

the higher the energy available for transmission, the higher the possible rates. However, the transmission

delays are infinite.

A refinement of the capacity results is offered by the concept of error exponents that provide the

rate of exponential decay of the error probability with respect to the codeword lengths as functions of

the transmission rates. Although the best error exponent (reliability function) is not even known for a

point-to-point channel for all rates, significant progress has been made in the direction of bounding the

reliability function of single- and multi-user channels (see for instance [1]–[6] for the state of the art and

recent advances relating to error exponents for the multiple access channel (MAC)). In this refined setup,

the tradeoff between energy and delay can be thought of equivalently as the tradeoff between energy and

error exponent(s) for a given set of rates. The disadvantage of this formulation is that it is still inherently

asymptotic (error exponents are negative exponential growth rates of the error probabilities) and thus not

well suited for real-time communication scenaria. In addition, the above approach assumes that users

always have a message to transmit and cannot account for the dynamics introduced by random message

arrivals and queueing.

In this paper we study the tradeoff between energy and delay in a MAC. Messages arrive at the queues

of the individual users according to independent arrival processes. A simple model is used to capture the

multiple access aspect of the channel: transmission is successful only if one user transmits; otherwise

a catastrophic collision occurs. Every transmission incurs a cost that can be thought of as the energy

consumed for the transmitted packet. Users do not communicate but can observe a broadcasted feedback

message from the base station indicating the success or not of the previous transmission. Delays are

captured by considering the queue lengths of each user. Clearly an energy-delay tradeoff exists since if a

user chooses not to transmit, the corresponding queue length will increase; alternatively, if a user chooses

to transmit it will consume energy and in addition it will run the risk of colliding with the other user’s

transmission.

We formulate this problem as a decentralized stochastic control problem, the two controllers being the

two users that, in the presence of limited information about each other, decide whether to transmit at

each time slot. Although the two users have limited information about each-other’s queues, they have a

common objective, i.e., to minimize the average of some linear combination of their queue lengths and
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consumed energy. In this respect the problem can be classified as a dynamic team problem with non-

classical information structure. The decentralized aspect of this control problem makes it fundamentally

different from the corresponding single-user counterparts (see for instance [7] for a study of the energy-

delay tradeoff in point-to-point links) and multi-user counterparts assuming a centralized controller [8].

As a result, the problem under consideration cannot be solved applying directly the tools from Markov

decision processes (MDPs) and partially observed MDPs (POMDPs). Decentralized stochastic control

problems with non-classical information structure similar to the one considered here have been studied

in [9], [10] and recently in [11]–[15]. Our contribution is twofold. First, we identify structural properties

of the optimal transmission strategies for the two users so that the domain of the optimal strategies is

not increasing with time. In general, at time t, each user can base its decision on everything that he

has seen and done, i.e., on the history of his queue lengths, previous decisions and received feedback.

Obviously such an increasing domain is not practical for implementation and it also generates conceptual

difficulties for the infinite-horizon. Second, based on the above structural properties, we identify the

optimal strategies as the solution of a fixed point equation. This solution is obtained by considering the

problem from the viewpoint of a fictitious agent that observes the common information to both users.

The remaining of this paper is structured as follows. The model of the studied communication system is

presented in Section II. Section III summarizes the results of an idealized system whereby an omniscient

controller has perfect information about the queues of both users. The performance of this system can

serve as an upper bound to the decentralized case. Structural properties of the optimal strategies and the

optimal solution are developed in Section IV, and Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a multiple access (uplink) communication system consisting of two users and one base

station. Each user is equipped with an infinite length queue. The queue length of user i at time t is

denoted by xi
t. Packets arrive at the queues of each user according to independent Bernoulli arrival

processes (ai
t)
∞
t=1 (ai

t ∈ {1, 0}, with ai
t = 1 denoting an arrival at the the i-th user’s queue at time t)

with identical probability mass functions (pmfs) Pa(·), with Pa(1) = Pr(ai
t = 1) = p.

At each time t ≥ 1 each user decides whether to transmit a packet from its queue. This decision is

denoted by ui
t ∈ {0, 1}, with ui

t = 1 denoting transmission of user i at time t. Transmission of a packet

incurs a cost b which can be though of as the energy spent for the transmission. If only one of the two

users transmit at time t, the transmission is successful. If both users transmit at the same time, the two

transmissions are assumed to create a collision in which case, none of the transmissions is successful.
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This is summarized in the following update equations for t ≥ 1

x1
t+1 = |x1

t − u1
t (1− u2

t )|+ + a1
t (1a)

x2
t+1 = |x2

t − u2
t (1− u1

t )|+ + a2
t , (1b)

where |x|+ def= max(x, 0). It is also assumed that P (x1
1, x

2
1) = Q(x1

1)Q(x2
1), for some given initial

distribution Q(·).
The base station uses a feedback channel to inform the transmitters about the state of their transmission

by broadcasting at time t ≥ 2 the signal yt ∈ Y def= {0, NACK,ACK1, ACK2}. In particular, yt = 0

indicates that none of the two users attempted a transmission in the previous time slot; yt = NACK

indicates that both users attempted a transmission in the previous time slot and thus they collided;

yt = ACKi indicates that only user i attempted a transmission in the previous time slot and thus

succeeded.

yt =





0 u1
t−1 = u2

t−1 = 0

NACK u1
t−1 = u2

t−1 = 1

ACK1 u1
t−1 = 1 and u2

t−1 = 0

ACK2 u1
t−1 = 0 and u2

t−1 = 1.

(2)

Observe that yt is in one-to-one correspondence with the pair (u1
t−1, u

2
t−1).

We assume that each user’s decision on whether to transmit at time t depends on its own queue-length

history xi,t and the common observation yt, i.e., ui
t = f i

t (x
i,t, yt) (at t = 1 we have ui

1 = f i
1(x

i
1)). At

each time t, the instantaneous cost incurred at the system level is

c(x1
t , x

2
t , u

1
t , u

2
t ) = x1

t + x2
t + bu1

t + bu2
t . (3)

This instantaneous cost penalizes long queues (and thus packet delay), and also accounts for the (energy)

cost of a transmission. We are interested in finding strategies f1, f2, where f i def= (f i
t )
∞
t=1 that minimize

the average discounted cost, i.e.,

J∗ = min
f1,f2

E{
∞∑

t=1

λt−1c(x1
t , x

2
t , u

1
t , u

2
t )}, (4)

where λ ∈ (0, 1) is the discount factor.

We note that the above problem is neither an MDP nor a POMDP problem. This problem can be

classified as a decentralized dynamic team problem with non-classical information structure. This infor-

mation structure has some similarities to the delayed sharing pattern of [9], [10] with the difference being



5

that the common information between the two users yt only involves the delayed actions (u1
t−1, u

2
t−1)

and not delayed information about the queue lengths. On the other hand, the information structure of the

studied problem can be thought of as a special case of model A in [15]. Although this problem does

not fall under the class of MDP or POMDP problems, it is instructive to look at two simplified versions

of this problem that are MDP problems: the first one is the problem of controlling the transmission of

a single user in a point-to-point link; the second one is the same as the problem at hand with the only

caveat that there is a centralized controller that observes both users’ queue lengths xi
t. In the following

section we summarize the solutions of these two simplified problems.

III. SUMMARY OF CENTRALIZED CONTROL RESULTS

A. Summary of single-user results

For b ≤ λ
1−λ , the optimal policy is to transmit when the queue is non-empty. The average discounted

cost-to-go when the initial queue length is x is given by

V (x) =
b(1− λ)− λ(1− p)

(1− λ)2
+

1
1− λ

x +
λ(1− p)− b(1− λ)(1− λp)

(1− λ)2

[
λ− λp

1− λp

]x

, x ≥ 0. (5)

The resulting Markov chain representing the user’s queue length has a steady-state distribution with

p(i) =





1− p i = 0

p i = 1

0 i ≥ 2.

(6)

For b ≥ λ
1−λ , the optimal policy is to not transmit at all. The average discounted cost-to-go when the

initial queue length is x is given by

V (x) =
λp

(1− λ)2
+

1
1− λ

x. (7)

The resulting Markov chain does not have a steady-state distribution (it drifts towards a longer and longer

queue).

We are interested mainly in situations where λ is arbitrarily close to 1, and thus only the first scenario

is of interest.

B. Summary of multi-user results with centralized controller

For b ≤ λ
1−λ , the optimal policy is to service an arbitrary non-empty queue (we can always to choose

to service the longest queue so that the strategy is more robust when implemented in practice). As it
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turns out, the average discounted cost-to-go V (x, y) assuming queue lengths x, y, is only a function of

x + y and thus, we can study the reduced one-dimensional problem. The resulting (reduced) Markov

chain has a steady-state distribution (assuming p < 1/2) with

q(i) =





1− 2p i = 0

(1− 2p)p(2−p)
(1−p)2 i = 1

(1− 2p) p2i−2

(1−p)2i i ≥ 2.

(8)

As in the case of one queue, for b ≥ λ
1−λ , the optimal policy is to not transmit at all. The resulting

Markov chain does not have a steady-state distribution (it drifts towards longer and longer total queue

size).

IV. THE TWO-USER DECENTRALIZED CONTROL PROBLEM

We now return to the original problem where the two users do not communicate and thus they do not

have full information about each-others queue lengths. We solve this problem in several steps. First we

will show that the users strategies f i
t (x

i,t, yt) can be restricted without loosing optimality. Then we will

look at the problem from the viewpoint of a designer and provide a sequential decomposition and thus a

solution in the form of a fixed-point equation. Finally, we will study the properties of this solution and

try to simplify it to arrive at either a closed form solution or one that can be obtained numerically.

In the following we make use of the notation σt = (σ1
t , σ

2
t ), where σi

t can be any of the variables

defined earlier for user i at time t. We also denote by ∆(S) the space of probability mass functions over

the discrete (possibly countably infinite) set S. The set of non-negative integers is denoted by N.

One of the difficulties with the general strategies ui
t = f i

t (x
i,t, yt) is that their domain increases with

time. This complicates the solution of the problem in the infinite horizon and also requires essentially

infinite memory at the transmitters if the optimal solution is to be implemented. In the following we

show that we can restrict ourselves to strategies with finite domains without loss of optimality.

Assume user 2 employs a fixed strategy f2∗ = (f2∗
t )∞t=1. Define the process (zt)∞t=1 with z1 = x1

1, and

zt
def= (x1

t , y
t) for t ≥ 2. The following is true.

Lemma 1. (zt)∞t=1 is a Markov process conditioned on u1
t , i.e.,

P (zt+1|zt, u1,t) = P (zt+1|zt, u
1
t ). (9)
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Furthermore, the average instantaneous cost can be expressed as

E{c(x1
t , x

2
t , u

1
t , u

2
t )} = E{ĉ(zt, u

1
t )}, (10)

for some function ĉ(·).

Proof: The first part of the proof is very similar to the one in [14, Th. 1]. Using the fact that yt is

in one-to-one correspondence with the pair (u1
t−1, u

2
t−1), we can write

P (zt+1|zt, u1,t) = P (x1
t+1, y

t+1|x1,t, yt, u1,t) (11a)

= P (x1
t+1|x1,t, yt+1, u1,t)P (yt+1|x1,t, yt, u1,t) (11b)

= P (x1
t+1|x1,t, u1,t, u2,t)P (u1,t, u2,t|x1,t, u1,t, u2,t−1). (11c)

Due to (1), and the fact that the quantities x1,t, u1,t, u2,t do not depend on a1
t , the first factor becomes

P (x1
t+1|x1,t, u1,t, u2,t) = P (x1

t+1|x1
t , u

1
t , u

2
t ) (12)

Similarly, recognizing that u2
t = f2∗

t (x2,t, yt) = f2∗
t (x2,t, u1,t−1, u2,t−1) = f2∗

t (x2,t, ut−1); the fact

that x2,t is only a function of ut−1 and the primitive random variables x2
1, a2,t−1; the fact that x1,t

is only a function of ut−1 and the primitive random variables x1
1, a1,t−1; and the fact that u1

t =

f1
t (x1,t, u1,t−1, u2,t−1) = f1

t (x1,t, ut−1), we can deduce that the second factor in (11c) can be written as

P (u1,t, u2,t|x1,t, u1,t, u2,t−1) = P (u1,t, u2,t|u1,t, u2,t−1). (13)

This part of the proof is completed by repeating the same derivations for P (zt+1|zt, u
1
t ), and noticing

that the two quantities are equal.

Regarding the average instantaneous cost we have

E{c(x1
t , x

2
t , u

1
t , u

2
t )} = E{E{c(x1

t , x
2
t , u

1
t , u

2
t )|zt, u

1
t }}. (14)
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We now consider the inner expectation

E{c(x1
t , x

2
t , u

1
t , u

2
t )|zt, u

1
t } = E{c(x1

t , x
2
t , u

1
t , f

2∗
t (x2,t, ut−1)|x1

t , u
t−1, u1

t } (15a)

=
∑

x2,t

c(x1
t , x

2
t , u

1
t , f

2∗
t (x2,t, ut−1))P (x2,t|x1

t , u
t−1, u1

t ) (15b)

=
∑

x2,t

c(x1
t , x

2
t , u

1
t , f

2∗
t (x2,t, ut−1))P (x2,t|ut−1) (15c)

= ĉ(x1
t , u

t−1, u1
t ), (15d)

where (15c) is derived observing that x2,t is only a function of the primitive random variables x2
1 and

a2,t−1 when conditioned on ut−1.

The implication of the above Lemma is that for a fixed strategy of user 2 (and thus for user 2’s

optimal strategy), the problem faced by user 1 is an appropriate MDP, thus he can restrict his strategies

to u1
t = f1

t (x1,t, yt) = f1
t (x1

t , y
t) without loss of optimality. The argument can be repeated for user 2,

and thus in the following we restrict ourselves to strategies of the form ui
t = f i

t (x
i
t, y

t). Although these

strategies do not require storage of the entire sequence of the queue lengths, they do depend on the entire

sequence of the feedback signals yt. In addition, identifying this problem as an appropriate MDP from

the viewpoint of user 1 is not helpful in deriving globally optimal strategies (recall that the cost function

ĉ(·) as well as the evolution of zt depends implicitly on f2∗).

To address this problem we now consider the evolution of the system from the perspective of an agent

who has access to the common information yt of the two users [14]–[17]. In particular, we consider a

fictitious agent observing yt at time t. Each user’s action ui
t = f i

t (x
i
t, y

t) can be though of as the result of

the common agent first determining pre-encoding functions wi
t = gi

t(y
t) from yt, where wi

t : N → {0, 1},

and then each user evaluating its corresponding function at xi
t, i.e., ui

t = wi
t(xt) = gi

t(y
t)(xt). We will now

show that from the viewpoint of the fictitious agent, the original problem can be viewed as an appropriately

defined POMDP problem. Define the process (rt)∞t=1 with r1 = x1 and rt = (xt, yt) = (xt, ut−1) for

t ≥ 2, where xt
def= (x1

t , x
2
t ).

Lemma 2. (rt)∞t=1 is a Markov process conditioned on wt
def= (w1

t , w
2
t ), i.e.,

P (rt+1|rt, wt) = P (rt+1|rt, wt). (16)

Furthermore, the instantaneous cost c(·) is only a function of xt and wt.
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Proof: We have

P (rt+1|rt, wt) = P (xt+1, yt+1|xt, yt, wt) (17a)

= P (xt+1, ut|xt, ut−1, wt) (17b)

= P (xt+1|xt, ut, wt)P (ut|xt, ut−1, wt) (17c)

= P (xt+1|xt, ut)P (ut|xt, wt) (17d)

= P (xt+1|xt, ut)δ(u1
t − w1

t (x
1
t ))δ(u

2
t − w2

t (x
2
t )) (17e)

= P (rt+1|rt, wt), (17f)

where the first factor in (17d) is due to (1), and the fact that the quantities xt, ut, wt do not depend on

ai
t, and the second factor is due to that fact that given wt and xt, both outputs are determined.

Furthermore, the instantaneous cost can be written as

c(x1
t , x

2
t , u

1
t , u

2
t ) = x1

t + x2
t + bu1

t + bu2
t (18a)

= x1
t + x2

t + bw1
t (x

1
t ) + bw2

t (x
2
t ) (18b)

= c̃(xt, wt) (18c)

Based on the above Lemma, from the point of view of the fictitious agent the original problem is

a POMDP with state rt = (xt, ut−1), observation yt = ut−1, actions wt and instantaneous cost c̃(·).
This problem can be solved using standard techniques in POMDPs. In particular, one can define the

information state πt ∈ ∆(N× N), where

πt(xt)
def= P (xt|ut−1, wt−1), (19)

and solve the following fixed-point equation for w∗(π)

V (π) = inf
w
{
∑

x

c̃(x,w)π(x) + λ
∑

u

V (T (w, u)π)}, (20)

where T (w, u) is a linear operator on ∆(N× N) determined by the problem primitives.

In the following we show that due to the special structure of the problem, a solution can be obtained

based on the fixed point of an equation over ∆(N)×∆(N), resulting in significant computational savings

compared to (20). Towards this goal, we define the sequences (ξi
t)
∞
t=1 for i = 1, 2, with ξi

t ∈ ∆(N), where
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ξi
1(x

i
1)

def= P (xi
1) = Q(xi

1) and ξi
t(x

i
t)

def= P (xi
t|ut−1, wt−1). The following lemma shows that ξt

def= (ξ1
t , ξ2

t )

can be considered an information state for the problem under consideration.

Lemma 3. There exist functions Φi(·), C(·) such that ξi
t+1 = Φi(ξi

t, w
i
t, ut) and E{c(xt, ut)|ut−1, wt} =

C(ξ1
t , w1

t ) + C(ξ2
t , w2

t ) for all t ≥ 1. Furthermore, Φ1(ξ1
t , w1

t , u
1
t , u

2
t ) = Φ2(ξ1

t , w1
t , u

2
t , u

1
t ).

Proof: Consider ξ1
t+1.

ξ1
t+1(x

1
t+1) = P (x1

t+1|ut, wt) (21a)

=
∑

x1
t ,x2

t

P (x1
t+1|x1

t , x
2
t , u

t, wt)P (x1
t , x

2
t |ut, wt) (21b)

=
∑

x1
t ,x2

t

P (x1
t+1|x1

t , x
2
t , wt)P (x1

t , x
2
t |ut, wt), (21c)

since conditioned on wt = (w1
t , w

2
t ) and x1

t , x
2
t , the value of ut = (u1

t , u
2
t ) is exactly determined, and

making use of (1). The second factor can be written as

P (x1
t , x

2
t |ut, wt) =

P (x1
t , x

2
t , ut|ut−1, wt)

P (ut|ut−1, wt)
(22a)

=
P (ut|x1

t , x
2
t , u

t−1, wt)P (x1
t , x

2
t |ut−1, wt)

P (ut|ut−1, wt)
(22b)

=
P (ut|x1

t , x
2
t , wt)P (x1

t , x
2
t |ut−1, wt)

P (ut|ut−1, wt)
(22c)

=
δ(u1

t − w1
t (x

1
t ))δ(u

2
t − w2

t (x
2
t ))P (x1

t |ut−1, wt−1)P (x2
t |ut−1, wt−1)

P (ut|ut−1, wt)
(22d)

=
δ(u1

t − w1
t (x

1
t ))δ(u

2
t − w2

t (x
2
t ))ξ

1
t (x1

t )ξ
2
t (x2

t )∑
x1

t ,x2
t
δ(u1

t − w1
t (x1

t ))δ(u2
t − w2

t (x2
t ))ξ1

t (x1
t )ξ2

t (x2
t )

, (22e)

where the δ(·) function appears for the reason mentioned above; x1
t and x2

t are independent conditioned on

ut−1 by making recursive use of (1); and wt is eliminated from the conditioning since it is a deterministic

function of ut−1.
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Combining the above equations we get

ξ1
t+1(x

1
t+1) =

∑

x1
t ,x2

t

P (x1
t+1|x1

t , x
2
t , wt)

δ(u1
t − w1

t (x
1
t ))δ(u

2
t − w2

t (x
2
t ))ξ

1
t (x1

t )ξ
2
t (x2

t )∑
x1

t ,x2
t
δ(u1

t − w1
t (x1

t ))δ(u2
t − w2

t (x2
t ))ξ1

t (x1
t )ξ2

t (x2
t )

(23a)

=
∑

x1
t ,x2

t

P (x1
t+1|x1

t , ut)
δ(u1

t − w1
t (x

1
t ))δ(u

2
t − w2

t (x
2
t ))ξ

1
t (x1

t )ξ
2
t (x2

t )∑
x1

t ,x2
t
δ(u1

t − w1
t (x

1
t ))δ(u

2
t − w2

t (x
2
t ))ξ

1
t (x1

t )ξ
2
t (x2

t )
(23b)

=
∑

x1
t

P (x1
t+1|x1

t , ut)
δ(u1

t − w1
t (x

1
t ))ξ

1
t (x1

t )
∑

x2
t
δ(u2

t − w2
t (x

2
t ))ξ

2
t (x2

t )∑
x1

t ,x2
t
δ(u1

t − w1
t (x

1
t ))δ(u

2
t − w2

t (x
2
t ))ξ

1
t (x1

t )ξ
2
t (x2

t )
(23c)

=
∑

x1
t

P (x1
t+1|x1

t , ut)
δ(u1

t − w1
t (x

1
t ))ξ

1
t (x1

t )∑
x1

t
δ(u1

t − w1
t (x

1
t ))ξ

1
t (x1

t )
, (23d)

where (23b) is due to (1) and the presence of the δ(·) functions. Observe that Φ1(ξ1
t , w1

t , u
1
t , u

2
t ) =

Φ2(ξ1
t , w1

t , u
2
t , u

1
t ), since P (x1

t+1|x1
t , u

1
t , u

2
t ) = P (x2

t+1|x2
t , u

2
t , u

1
t ) while the rest of the terms in (23d)

are completely symmetric with respect to the users. Thus ξ1
t+1 = Φ1(ξ1

t , w1
t , ut).

For the second part we observe that

E{c(xt, ut)|ut−1, wt} =
∑
xt

[x1
t + x2

t + bw1
t (x

1
t ) + bw2

t (x
2
t )]P (xt|ut−1, wt) (24a)

=
∑
xt

[x1
t + x2

t + bw1
t (x

1
t ) + bw2

t (x
2
t )]P (x1

t |ut−1, wt−1)P (x2
t |ut−1, wt−1) (24b)

=
∑

x1
t

[x1
t + bw1

t (x
1
t )]ξ

1
t (x1

t ) +
∑

x2
t

[x2
t + bw2

t (x
2
t )]ξ

2
t (x2

t ) (24c)

= C(ξ1
t , w1

t ) + C(ξ2
t , w2

t ), (24d)

where we have used similar arguments as above.

We are now ready to state the basic result of the paper. Consider the process (ξt)∞t=1 = (ξ1
t , ξ2

t )∞t=1.

The following theorem shows that from the viewpoint of a designer that designs the optimal policy for

the fictitious agent, ξt is a sufficient statistic for control of the original problem.

Proposition 1. The process (ξt)∞t=1 is a MDP with actions wt. Furthermore, the average instantaneous

cost of the original problem can be written as E{c(xt, ut)} = E{C(ξ1
t , w1

t ) + C(ξ2
t , w2

t )}. The optimal

policies for the original problem can be found by solving the fixed-point equation

V (ξ1, ξ2) = inf
w1,w2

{C(ξ1, w1) + C(ξ2, w2) + λ
∑

u1,u2

V (T (w1, u1, u2)ξ1, T (w2, u2, u1)ξ2)}, (25)

where ξi ∈ ∆(N), wi : N → {0, 1}, and T (·) is a linear operator on ∆(N) defined as a scaled version
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of the function Φ1(·), i.e.,

T (w1, u1, u2)(x′, x) = P (x1
t+1 = x′|x1

t = x, ut = (u1, u2))δ(u1 − w1(x)). (26a)

Proof: The first part of the proposition follows from Lemma 3 and the fact that conditioned on

ut−1, x1,t and x2,t are independent. Once this is established, the rest follows from well known facts

about MDPs (see for instance [18]). The details are omitted due to space limitations.

Several comments are in order. First, suppose the above fixed point equation has been solved and

the optimal solutions are denoted by wi∗ = wi∗(ξ1, ξ2), i = 1, 2. The exact on-line implementation

of the optimal policy by each user is as follows. Each user follows the evolution of the states (ξ1
t , ξ2

t )

using (Q,Q) as the initial state; wi∗ = wi∗(ξ1, ξ2) to evaluate the optimal pre-encoding functions;

ui
t = wi∗(ξ1

t , ξ2
t )(xi

t) to decide whether to transmit or not; and after receiving the feedback yt+1 = ut,

Lemma 3 to evaluate the next state (ξ1
t+1, ξ

2
t+1) from ξi

t+1 = Φi(ξi
t, w

i∗
t , ut). Observe that the above

updates will evolve differently for the two users, due to the presence of xi
t in the evaluation of ui

t.

Second, due to the time homogeneity of the problem in Proposition 1, the optimal solution will be

of the form wi∗ = wi∗(ξ1, ξ2), i = 1, 2. This however does not mean that the optimal policies is time

invariant. To see that consider the evolution of the information state for user 1.

(ξ1
1 , ξ

2
1) = (Q, Q)

w1
1=w1∗(ξ1

1 ,ξ2
1), w2

1=w2∗(ξ1
1 ,ξ2

1)−→ (ξ1
2 , ξ

2
2)

w1
2=w1∗(ξ1

2 ,ξ2
2), w2

2=w2∗(ξ1
2 ,ξ2

2)−→ (ξ1
3 , ξ

2
3) −→ · · · (27)

Third, even with the above simplifications, the solution is given by a functional optimization problem

(recall that wi are functions N → {0, 1}). Motivated by this observation and by the solution of the

centralized version of the problem, one would like to show that the optimal policy is a threshold policy,

ı.e., wi∗(ξ1, ξ2) is such that wi∗(ξ1, ξ2)(x) = 0 for all x < xth(ξ1, ξ2) and w∗(ξ1, ξ2)(x) = 1 for all

x ≥ xth(ξ1, ξ2), for some threshold xth(ξ1, ξ2). If a property like this holds, then the above fixed point

equation reduces from a functional optimization problem to a parameter optimization over the parameter

xth.

V. CONCLUSIONS

The problem of optimal tradeoff between energy and delay in MAC channels have been studied as

a decentralized stochastic control problem. We have shown that the optimal policies do not have an

increasing domain and can be obtained as the solution of a fixed-point equation. The complexity of

solving such an equation is still high (functional optimization); however our experience and relevant

literature indicates that this difficulty is inherent in all decentralized stochastic control problems. One
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fruitful direction towards reducing the computational burden both for the off-line design and the on-line

operation, is to show that the optimal policies for each user are threshold policies with respect to their

queue lengths.
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