The equivalence between the one-class and paired support vector machines for nonseparable data

Clayton Scott

September 18, 2012

In their original paper on the one-class support vector machine (SVM), Schölkopf et al. (2001) establish that for separable data, the one-class SVM applied to patterns $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ is equivalent to the corresponding "paired SVM", that is, the standard (twoclass) SVM applied to the paired data $\left(\mathrm{x}_{1}, 1\right), \ldots,\left(\mathrm{x}_{n}, 1\right),\left(-\mathrm{x}_{1},-1\right), \ldots,\left(-\mathrm{x}_{n},-1\right)$. In this context, $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ are said to be separable if the paired data are linearly separable. The authors also state, without proof, that the equivalence holds in the nonseparable case provided some hard-to-classify data points are removed. This note establishes a general equivalence for nonseparable data that does not require modification of the data.

1 The One-Class SVM

The one-class SVM, as introduced by Schölkopf et al. (2001), takes as input unlabeled data $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ and a parameter $0 \leq \nu \leq 1$, and returns parameters (\mathbf{w}, ρ) solving

$$
\begin{align*}
\min _{\mathbf{w}, \boldsymbol{\xi}, \rho>0} & \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{1}{\nu n} \sum_{i=1}^{n} \xi_{i}-\rho \tag{1}\\
\text { s.t. } & \left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle \geq \rho-\xi_{i}, \quad \xi_{i} \geq 0 \quad \text { for } i=1,2, \ldots, n
\end{align*}
$$

The resulting classifier is given by $\mathbf{x} \mapsto \operatorname{sgn}\{\langle\mathbf{w}, \mathbf{x}\rangle-\rho\}$. Here $\langle\cdot, \cdot\rangle$ denotes the standard dot product. For the purpose of comparison with the two-class and paired SVMs, it is convenient to express the one-class SVM as the solution of an alternative quadratic program, namely,

$$
\begin{align*}
\min _{\mathbf{w}, \boldsymbol{\xi}} & \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i} \tag{2}\\
\text { s.t. } & \left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle \geq 1-\xi_{i}, \quad \xi_{i} \geq 0 \quad \text { for } i=1,2, \ldots, n
\end{align*}
$$

The corresponding classifier is $\mathbf{x} \mapsto \operatorname{sgn}\{\langle\mathbf{w}, \mathbf{x}\rangle-1 / C\}$. The equivalence between (1) and (2) is given by the following result, which was established by Lee and Scott (2007).

Proposition 1. If (1) results in $\rho>0$, then (2) with $C=\frac{1}{\nu n \rho}$ leads to the same classifier.

2 The Paired SVM

The paired SVM is a special case of the standard (two-class) SVM. The standard SVM takes as input a parameter $C>0$ and labeled training data $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)$, where \mathbf{x}_{i} are feature vectors and $y_{i}= \pm 1$ are labels, and returns (\mathbf{w}, b) solving

$$
\begin{align*}
\min _{\mathbf{w}, b, \boldsymbol{\xi}} & \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i} \tag{3}\\
\text { s.t. } & y_{i}\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right) \geq 1-\xi_{i}, \quad \xi_{i} \geq 0 \quad \text { for } i=1,2, \ldots, n
\end{align*}
$$

These parameters define the linear classifier $\mathbf{x} \mapsto \operatorname{sgn}\{\langle\mathbf{w}, \mathbf{x}\rangle+b\}$.
In the paired SVM, there are unlabeled feature vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$. These are used to form labeled data $\left(\mathrm{x}_{1}, 1\right), \ldots,\left(\mathrm{x}_{n}, 1\right),\left(-\mathrm{x}_{1},-1\right), \ldots,\left(-\mathrm{x}_{n},-1\right)$, which are then given to the standard SVM as input. By substitution, the paired SVM hyperplane solves

$$
\begin{align*}
\min _{\mathbf{w}, b, \boldsymbol{\xi}} & \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n}\left(\xi_{i}+\xi_{i+n}\right) \tag{4}\\
\text { s.t. } & \left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b \geq 1-\xi_{i}, \quad \text { for } i=1,2, \ldots, n \tag{5}\\
& \left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle-b \geq 1-\xi_{i+n}, \quad \text { for } i=1,2, \ldots, n \tag{6}\\
& \xi_{i} \geq 0, \quad \xi_{i+n} \geq 0, \quad \text { for } i=1,2, \ldots, n
\end{align*}
$$

Because of symmetry, the above quadratic program can be simplified somewhat. There is always a solution of (4) with $b=0$.

Proposition 2. If (\mathbf{w}, b) is a solution of (4), then so is $(\mathbf{w}, 0)$.
Proof. Suppose (\mathbf{w}, b, ξ) is optimal and $b \neq 0$. Without loss of generality, assume $b>0$. Since $b>0$, it must be true that $\xi_{i} \leq \xi_{i+n}$ for all i. Consider the following cases at the given optimum for each i : (I) (5) and (6) are both strict inequalities; (II) (5) and (6) are both equalities; (III) (5) is a strict inequality and (6) is an equality; (IV) (6) is a strict inequality and (5) is an equality.

For i satisfying (I), by the KKT conditions, $\xi_{i}=\xi_{i+n}=0$ and therefore $\left.\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle\right\rangle$ $1+b>1$. Hence, for all $b^{\prime} \in[0, b),\left(\mathbf{w}, b^{\prime}, \xi\right)$ still satisfies the constraints for \mathbf{x}_{i}. The conclusion follows by taking $b^{\prime}=0$. For i satisfying (II), we have $\xi_{i+n}=\xi_{i}+2 b$, from which we deduce $\xi_{i+n}>\xi_{i}$ and $\xi_{i+n} \geq 2 b$. Replacing b, ξ_{i}, and ξ_{i+n} by $b^{\prime}, \xi_{i}+b-b^{\prime}$, and $\xi_{i+n}-b+b^{\prime}$, for any $b^{\prime} \in[0, b)$, the constraints on \mathbf{x}_{i} are still satisfied, and the corresponding term in the objective function remains unchanged. The conclusion follows by taking $b^{\prime}=0$.

For case (III), we consider two sub-cases: (IIIa) $\xi_{i+n}=0$, (IIIb) $\xi_{i+n}>0$. For i satisfying case (IIIa), $\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle=1+b>1$, and therefore (5) and (6) remain valid if we replace b by any $b^{\prime} \in[0, b)$. The conclusion follows by taking $b^{\prime}=0$. Case (IIIb) cannot occur. To see this, suppose it does occur for some i. Assume for the moment that (IIIb) occurs for only one i. By the KKT conditions, $\xi_{i}=0$. Also, subtracting (6) from (5) we obtain $\xi_{i+n}<2 b$. We can obtain a feasible point with a smaller objective function value by replacing b with any $b^{\prime} \in\left(\max \left\{0,1-\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle, b-\xi_{i+n}\right\}, b\right)$ and ξ_{i+n} with $\xi_{i+n}^{\prime}=\xi_{i+n}-b+b^{\prime}$. By the previous cases, changing b in this manner
does not affect the validity of the other constraints. If (IIIb) holds for more that one i, the above argument still applies, where now the lower bound on b^{\prime} is maximized over these indicies.

Case (IV) cannot occur. To see this, suppose it does occur. The KKT conditions applied to (6) imply $\xi_{i+n}=0$ and $\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle>1+b$. Then (5) implies $1+2 b<$ $\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b=1-\xi_{i} \leq 1$, contradicting $b>0$.

By this result, it suffices to consider the following quadratic program:

$$
\begin{align*}
\min _{\mathbf{w}, \boldsymbol{\xi}} & \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n}\left(\xi_{i}+\xi_{i+n}\right) \tag{7}\\
\text { s.t. } & \left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle \geq 1-\xi_{i}, \quad \xi_{i} \geq 0 \quad \text { for } i=1,2, \ldots, n \\
& \left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle \geq 1-\xi_{i+n}, \quad \xi_{i+n} \geq 0 \quad \text { for } i=1,2, \ldots, n
\end{align*}
$$

This amounts to the so-called SVM without offset, applied to the paired data.

3 The Connection

The equivalence between the one-class SVM and the paired SVM is now evident.
Proposition 3. \mathbf{w} is optimal for (2) with parameter C if and only if \mathbf{w} is optimal for (7) with parameter $C / 2$.

Proof. The proof follows easily from the observation that, at the optimum of (7), the slack variables ξ_{i} and ξ_{i+n} must be equal.

References

G. Lee and C. Scott. The one class support vector machine solution path. In Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing - ICASSP 2007, volume 2, pages II-521-II-524, Honolulu, USA, 2007.
B. Schölkopf, J. Platt, J. Shawe-Taylor, A. Smola, and R. Williamson. Estimating the support of a high-dimensional distribution. Neural Computation, 13(7):1443-1472, 2001.

