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ABSTRACT

Detection, Synchronization, Channel Estimation and Capacity in UWB Sensor
Networks using Compressed Sensing

by

Shao-Yuan Chen

Chair: Wayne E. Stark

Conventional receivers in ultrawideband (UWB) communication system usually re-

quire high sampling rate and thus consume much power. With compressed sensing

(CS), the sampling rate can potentially be reduced. In this thesis, the performance of

CS used in a UWB receiver is evaluated. Using a compressed sensing approach, the

receiver consists of a number of analog correlators that process the received signal by

projecting the received signal using random (or pseudo random) vectors. Considering

the practical implementation in the receiver, the orthogonal Hadamard vectors in

the correlators are adopted. After projection, the matching pursuit or basis pursuit

is used to obtain the channel estimate. The recovered channel templates are then

correlated with received signal to detect the transmitted information bits.

The bit error rate (BER) performance of systems with different number of pilots,

projection vectors, and fingers in a rake receiver is also evaluated. Moreover, the

performance of different receivers and the effect of the finite bit resolution on channel

estimation is investigated. It is shown that the sampling rate can be reduced signif-

icantly with only a slight degradation in performance when a compressed projection

x



matrix is used compared to when a conventional Nyquist sampling rate is applied.

A second aspect of UWB investigated is channel measurement and corresponding

channel capacity. The measurement data of a channel between the UWB antennas

under the bridge across Telegraph Road in Michigan is used to calculate the channel

capacity. The channel capacity calculated in this specific environment provides the

knowledge of the fundamental limit of rate of transmission in this particular scenario.

A third aspect of UWB communication considered involves the synchronization

and detection of signal presence. An m-sequence is used to synchronize the signal.

The corresponding BER performance is evaluated. It is observed that the BER per-

formance of the proposed synchronization method is comparable to that of a system

assumed to have perfect synchronization. Finally, the autocorrelation characteristic

of the signal is exploited to detect the existence of the signal. The advantage of

the method proposed is that the threshold to determine the existence of signals is

independent of signal-to-noise ratio.
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CHAPTER I

Introduction

1.1 Motivation

Ultra-wideband (UWB) communication has drawn considerable attention recently

for various applications including high data rate, short distance and low data rate,

long distance communication scenarios. It is suitable for a system that requires high-

bandwidth, low power, and shared spectrum such as sensor data collection, high pre-

cision location, and navigation [20]. One traditional form of UWB communication is

known as impulse radio (IR), in which ultra-short pulses that are nanoseconds in du-

ration are used to transmit data. The benefits of transmitting data using ultra-short

pulses are as follows. First, a simple transmitter can be used because no upconver-

sion is used. Second, the transmitted signal power is distributed over an ultra-wide

bandwidth with small power density, which creates little interference to other com-

munication systems within the same bandwidth. Third, it is possible to increase the

resolution of delay and thus generate a rich multipath structure, allowing diversity.

As mentioned above, although UWB transmitters are simple, receivers encounter

the following challenges: timing synchronization and channel estimation. Channel es-

timation is a critical issue in UWB because the transmitted signal is split into many

small amplitude multipath components by the channel. The multipath components

need to be properly combined by UWB receivers so that sufficient energy is collected

1



for each bit to be accurately detected by the receivers. One challenge in this process

is to estimate the strength of a path, which is especially difficult for small amplitude

paths. Several papers in the field proposed several solution to address the problem of

channel estimation. According to [19], to obtain accurate UWB channel estimation,

it may be necessary to have 25 samples for one pulse (also called monocycle) with

a duration on the order of a nanosecond, that is up to 25 GHz. To operate at this

speed, a interleaved flash ADC [2] or a set of polyphase ADCs [26] may be needed.

However, the former often has low bit resolution, high power consumption and cost,

and large circuit area; the latter is built with high circuit complexity resulting from

precise timing control. To address these issues, there is a need for UWB receiver

designs that can reduce the sampling rate. One such design is the transmitted ref-

erence (TR) approach in [15], which reduces the sampling rate, but results in poor

channel estimation at low signal-to-noise ratios (SNR). The BER performance with

TR method in [15] is shown to be Pb = Q

((
TbW + Er

2N0

)−1/2
Er

4N0

)
, where W is one-

sided bandwidth, Tb is bit duration, Er is the total received energy, and the noise

power is 2N0W . Another is the minimum mean-squre-error (MMSE) rake receiver in

[17], which also reduces the sampling rate at each output of the matched filter to one

sample per frame instead of one sample per pulse to collect channel parameters. This

approach has the drawback of requiring a large amount of processing after the ADC.

Unlike the previous approaches, receiver structures using a noisy template (NT) pro-

posed in [31] are more robust on handling mistiming than the rake receiver. However,

they suffer from the bit error rate (BER) performance degradation at low SNR.

In this thesis, I address the following problems: 1) Channel estimation using CS,

2) Channel measurement and channel capacity, and 3) Synchronization and detection

of UWB signals in multipath fading channels.

2



1.2 Channel Estimation

To solve the problem of extremely high sampling rate necessary for channel es-

timation, compressed sensing (CS) [11] has been proposed. In [27], CS and with a

simple repetition code with a noisy template and rake receivers was considered. The

results in [27] indicated that the performance was better than the performance of a

system using binary phase shift keying (BPSK) on an additive white Gaussian noise

(AWGN) channel. These results could not be duplicated because the BER perfor-

mance of an ideal system using BPSK is a lower bound. In this thesis, the result that

is consistent with the ideal system using BPSK is presented. Different parameters for

receiver designs is also illustrated and compared.

1.3 Channel Measurement and Channel Capacity

In order to investigate the channel capacity, it is necessary to have the channel

characteristic. In IEEE 802.15.4a standard [24], several channel models for different

scenarios are provided. However, no specific channel model for the environment at

the girders under the bridge where the sensors in our project are deployed. Hence,

the measurement data of the channel between the antennas of the sensors was col-

lected in a UWB system which are deployed on the bridge crossing over Telegraph

road, Michigan. Using these measured data, the channel capacity in this scenario is

calculated.

The measurement data is first processed using the CLEAN algorithm to estimate

the channel impulse response [16]. With the estimated channel impulse, the result

in [14] is applied to calculate the channel capacity corresponding to the measured

channel impulse response. The minimum Eb/N0 required for different scenarios is

also evaluated by the theorem in [30]. The value of the required minimum Eb/N0

depends on whether the transmitter has the knowledge of channel information or not.
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1.4 Signal Detection and Synchronization

The performance of channel estimation described above assumed perfect synchro-

nization. To be practical, the assumption of perfect synchronization needs to be

relaxed. Moreover, even before the synchronization is accomplished, it is necessary to

determine whether the signal of interest is present or not. After detecting the pres-

ence of the signals, then signal synchronization can be initiated. To detect the signal

presence, Duarte et. al [13] use matching pursuit to extract the largest component

in the received signal and compared with some threshold to determine if the signal

is present. However, they can only propose that the threshold is chosen to minimize

detection error based on Monte Carlo simulation. This algorithm seems to require

a long time and is inefficient to implement. Liu et. al [18] addressed this issue and

use location information between signal of interest and the signal obtained by prior

information. The threshold in their method is dependent of SNR, which is often hard

to acquire in advance.

After determining the existence of the signal, the synchronization is needed. Car-

bonelli et.al [8] [7] applied a least square (LS) method to solve the synchronization

and channel estimation problem in a UWB system. However, this required a high

sampling rate as high as the frequency of the inverse of a pulse duration. Rabbachin

and Oppermann [28] exploited an energy collection receiver to achieve low-complexity

but the method is not able to acquire the channel estimation at the same time.

1.5 Contribution of Thesis

In this thesis, the performance of a receiver using CS is analyzed. In addition,

the analysis is extended to include various receiver architectures as well as error

control coding techniques. The BER performance with different numbers of pilot bits,

different numbers of projections and different numbers of fingers in a rake receiver is

4



evaluated. The impact of finite bit resolution used in the system is also studied. The

perfomance analysis shows that the sampling rate can be reduced by a factor about

100 with a loss in the BER performance of about 2dB.

The channel capacity based on channel measurements with and without channel

knowledge at transmitters is determined. The minimum Eb/N0 and the corresponding

channel capacity are determined with channel measurement data collected at different

locations under the I-275 bridge across the Telegraph Road in Michigan. When

capacity is larger than 1 bit per channel use, one can observe a 5 dB gap between the

case that the transmitter has channel information and the case that the transmitter

has no channel information. On the other hand, the gap increases at low rates.

The algorithms for detection of signal presence and signal synchronization using

compressed sensing is developed. The proposed method utilizes the autocorrelation

of repeated signals to detect existence of signals in such a way that the threshold can

be predetermined and is independent of SNR. Using maximum length sequences, the

frame offsets of received signals can be determined and then compensated. The BER

performance of receivers adopting the proposed synchronization algorithm is shown to

be close to the receivers with perfection synchronization. In addition, the sampling

rate with CS is reduced to be the same as the frame rate because of compressed

sensing and the channel estimation is performed at the same time.

1.6 Outline of Thesis

The rest of this thesis is organized as follows. in Chapter II, a review of CS

and matching pursuit (MP) is introduced. The system model and different receiver

structures, coding schemes are descirbed. Simulation results with respect to different

parameters and receiver structures and the effect of quantization are shown in Chapter

III. The channel capacity calculated from the channel measurement data collected

under the bridge is investigated in Chapter IV. The algorithm to detect the existence

5



of signals and the signal synchronization is described in Chapter V . Conclusions and

suggestions for future research are discussed in Chapter VI.
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CHAPTER II

Background of Compressed Sensing

2.1 Compressed Sensing

The compressed sensing (CS) theorem shows that one can sample the signal of

interest with much fewer samples than that with Nyquist rate and recover it with

high probability as long as some criteria is satisfied. The main two criteria are that

signal is “sparse” and the vectors in sensing basis is “incoherence” with the vectors in

the presentation basis. To realize this theory, one need to know these two important

principles of CS: sparsity and incoherence. They are introduced in the following

subsections.

2.1.1 Sparsity

Sparsity quantifies the notion that “information” of a continuous-time signal can be

much less than that implied by its bandwidth-time product or in the discrete-time

signal case, the number of major components of the signal is significantly smaller than

its length. In other words, CS use the fact that many signals of interest are sparse

and can be further compressed by some appropriate basis. Many signals of interest

have sparse representation when decomposed in a proper basis. Consider a signal

vector f ∈ <n in discrete time domain which can be expanded in an orthonormal

7



basis Ψ = [ψ1 ψ2 · · ·ψn] as follows:

f =
n∑

i=1

xiψi (2.1)

where xi is the coefficient sequence of f and xi = 〈f, ψi〉. One can write f = Ψx,

where Ψ is the n× n matrix with the column vectors ψ1, ψ2, . . . , ψn. If one can drop

the negligible coefficients without noticeable loss, it is defined that the signal is sparse.

Define fS := ΨxS, where xS represent the vector of coefficients (xi) with the smalles

n−S components set to zero. This vector is called S-sparse because it has S nonzero

entries. Since Ψ is an orthonormal basis, ‖f − fS‖2 = ‖x − xS‖2, and if the sorted

amplitude of xi’s decay substantially, then xS approximates x well and thus, the error

‖f − fS‖2 is small.

2.1.2 Incoherence

Consider a pair (Φ,Ψ) of orthonormal basis of <n. The first basis Φ, called sensing

basis, is used to correlate with the signal of interest f : yk = 〈f, φk〉, k = 0, . . . ,m−1.

The second basis Ψ is called the presentation basis.

Definition II.1. The coherence between the sensing basis Φ and the representation

basis Ψ is

µ(Φ,Ψ) =
√
n max

0≤k,j≤n−1
|〈φk, ψj〉| (2.2)

By this definition in [6], the coherence is the largest correlation between any two

vectors in the bases Ψ and Φ.

The value of coherence µ(Φ,Ψ) can range from 1 to
√
n [12]. To apply compressed

sensing efficiently, low coherence pairs of the two bases Φ and Ψ are essential because

low coherence guarentee the possibility of ideal atomic decomposition.[12]

In [6], it is also stated that the random matrices with identically independent

distributed (i.i.d.) entries such as Gaussian or ±1 binary elements also possess a very

8



low coherence with any basis Ψ. These two kinds of matrices is used in the simulation

discussed later.

2.1.3 Undersampling and Sparse Signal Recovery

In the ideal case, it is desired to measure all the n elements of f , but it may be

the case that only a set of M measurements is accessible:

yk = 〈f, φk〉, k ∈M, (2.3)

where M ⊂ {1, . . . , n} is a subset of cardinality m < n. Using `1-norm1 minimization

to recover the signal can be accomplished with these measurements from yk, k ∈M .

The reconstruction f̃ is given by f̃ = Ψx̃, where x̃ is the solution to the convex

optimization problem:

min
x̂∈<n
‖x̂‖1 subject to yk = 〈φk,Ψx̂〉, ∀k ∈M (2.4)

In other words, among all the possible signals consistent with the measurement

data satisfying f̂ = Ψx̂, f̃ is chosen to reconstruct such that the coefficient xi’s has

minimal `1 norm. The `1 norm minimization can be achieved by basis pursuit (BP)

[9] but it is not the only method to recover the signal and some other approaches

such as a well-known suboptimal greedy algorithm called matching pursuit (MP) can

be used. The MP algorithm will be discussed in Section 2.2.

The following theorem shows that when f is sufficiently sparse, the recovered

signal by `1 normalization is perfectly reconstructed.

Theorem II.2. [3] Fix f ∈ <n and suppose that the coefficient sequence x of f in the

basis Ψ is S-sparse. Select m measurements in the measurement domain Φ uniformly

1`1-norm: ‖x̂‖1 =
∑n−1

i=0 |xi|.
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at random. Then if

m ≥ Cµ2(Φ,Ψ)S log(n) (2.5)

for some positive constant C, the solution x̃ to (2.4) can be recovered with overwhelm-

ing probability.

I would like to point out the following comments. First, the importance of low

coherence is obvious. With smaller coherence, the fewer samples are needed. This

result explain why compressed sensing is efficient with low coherence discussed previ-

ously. First, measuring only a set of m coefficients with m much less than the length

of signal n does not result in recovery loss. In particular, if µ(Φ,Ψ) is equal or close to

one, then it suffices to recover the signal with on the order of S log n samples instead

n. Second, the signal of interest f can be exactly recovered from m measurements by

solving the convex optimization problem in (2.4) without knowledge about the num-

ber of nonzero entries in x, the position of these nonzero entries, or their amplitudes

in advance.

2.1.4 Robustness of Compressed Sensing

In practice, since the signal of interest may not be exactly S-sparse and is often

corrupted by noise, CS needs to handle these kinds of scenario to be considered helpful

and powerful. Consider the problem of recovering a vector x ∈ <n from measurements

y = Ax+ u (2.6)

where A is an m×n “sensing matrix” or “measurement matrix” providing information

about x and u is a stochastic or deterministic error term. The formulation in the

previous subsection is in the same form if the term u is omitted. Combining the

equation f = Ψx and y = RΦf , where R is the m × n matrix collecting the sample

components in the subset M . It can be written as y = RΦΨx = Ax so A = RΦΨ.
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One need to remember that x in (2.6) can be the coefficient of the signal in a proper

basis.

To study the robustness, it is needed to introduce the well-known notion restricted

isometry property (RIP):

Definition II.3. [5] For each integer S = 1, 2, . . . , define the isometry constant δS of

a matrix A as the smallest number such that

(1− δS)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δS)‖x‖2
2 (2.7)

holds for all S-sparse vectors x.

If δS is small, the matrix A has the RIP property. It also implies that the matrix

A preserves the Euclidean length of S-sparse signals and thus the vector x cannot be

in the null space of A. An interpretation of RIP is that all the subsets of S columns

extracted by A (A = RΦΨ) are nearly orthogonal to one another. In fact, the columns

of A cannot be exactly orthogonal because the number of columns is more than the

number of rows. To observe the relation between CS and RIP, assume a S-sparse

signal x is obtained with compressed measurement data y = Ax. Suppose that δ2S is

much less than one so that all pairwise distances between S-spare signals are preserved

in the measurement space. In other words, the equation (1 − δ2S)‖x1 − x2‖2
2 ≤

‖Ax1 − Ax2‖2
2 ≤ (1 + δ2s)‖x1 − x2‖2

2 is satisfied and holds for all S-sparse vectors

x1, x2. The following result guarantees that by the compressed measurement data y,

there exists an efficient and robust algorithm for determining S-sparse signals x.

If the RIP is satisfied, then an exact reconstruction of x is given by the following

linear program:

min
x̂∈<n
‖x̂‖1 subject to Ax̂ = y (2.8)
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Theorem II.4. [4] Assume that δ2S <
√

2− 1. The the solution x̃ to (2.8) satisfies

‖x̂− x‖2 ≤ C0‖x− xS‖1/
√
S and

‖x̂− x‖1 ≤ C0‖x− xS‖1 (2.9)

for some constant C0, where xS is the vector x with all but the largest S components

set to 0.

Now, consider noisy data and use `1 norm minimization with weaker constraints

for reconstruction:

min
x̂∈<n
‖x̂‖1 subject to ‖Ax̂− y‖2 ≤ ε, (2.10)

where ε bounds the amount of noise in the data.

Theorem II.5. [4] Assume that δ2S <
√

2−1. Then the solution x̃ to (2.10) satisfies

‖x̂− x‖2 ≤ C0‖x− xS‖1/
√
S + C1ε (2.11)

for some constant C0 and C1.

According the theorem II.5, the reconstruction error is bounded by the sum of

two terms. The first term comes from the error which is possible to occur when

the data is noiseless. The second term is proportion to the noise level ε. Theorem

II.5 also shows that CS is robust to deal with signal that are not sparse and noisy

data. To have RIP, one wants to have a sensing matrix with the property that

column vectors taken from arbitrary subsets are nearly orthogonal. To obtain such

matrices, consider the following random sensing matrices: 1) construct A by sampling

n column vectors uniformly at random on a unit sphere of <m; 2) construct A by

sampling i.i.d. entries from the normal distribution with mean 0 and variance 1/m;
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3) construct A by sampling a random projection P and normalize A =
√
n/m;

4) construct A by sampling i.i.d. entries from a symmetric Bernoulli distribution

P (Ai,j = ±1/
√
m) = 1/2 or other sub-gaussian distribution. One can prove that

these matrices satisfies the RIP with very high probability given that

m ≥ CS log(n/S) (2.12)

where C is some constant depending on each case [1][23]. When (2.12) holds, the

probability that randomly constructed matrices do NOT satisfy RIP decays expo-

nentially with m. On the contrary, if (2.12) is not satisfied, no measurement matrix

of any kind and no algorithm could produce the result of Theorem II.4. If Ψ is fixed

and Φ is constructed as in the previous four listed methods, the matrix A = ΦΨ

satisfies the RIP with probability approaching one provided that (2.12) holds, where

C is some constant depend on each case. These random measurement matrices Φ

formed as in 1)-4) are universal. The presentation basis Ψ, which is sparse is not

needed to be know when designing the measurement matrix.

2.2 Matching Pursuit

In the previous section, it is indicated that `1 norm minimization (or so-called

basis pursuit (BP)[9]) is just one of ways to recover the signals. BP, however, has high

complexity and is not suitable for real-time application. There exist faster and more

efficient algorithms exploiting the iterative greedy algorithm with more measurements

required to recover the signal, called matching pursuit (MP)[21].

Matching pusuit is a iterative greedy algorithm with simple computation and

manages to recover the signal as follows. Matching pursuit first correlates the signal

of interest with elements of a basis and chooses the maximal components among them,

then removes those components from the signal, and searches again for the vector that
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has the strongest correlation with the residual signal. This repetitive procedure stops

when only an insignificant signal remains. The signal then can be reconstructed by

linear combination of all the vectors selected during the process.

The detailed processes of MP are ordered as follows. First, define the holographic

basis V = ΦΨ = [v1, v2, . . . , vND
], where ND is the number of vectors in the basis V:

1. Initialization:

• Set the residual error e0 = y

• The approximated coefficients Θ̂ = 0, Θ̂ ∈ <ND

• Set iteration counter t = 1

2. Select the vector in the holographic basis that matches the residual error best

in the following sense:

`t = arg max
i=1,2,...,ND

|〈et−1, vi〉|
‖vi‖

(2.13)

3. Update the residual error and the estimate of the coefficient for the selected

vector:

et = et−1 −
〈et−1, v`t〉
‖v`t‖2

v`t (2.14)

θ̂`t = θ̂`t +
〈et−1, v`t〉
‖v`t‖2

(2.15)

4. Check for convergence.

If t < T0 and ‖et‖2 > ε0‖y‖2, where ε0 is the target residual error, then set

t = t+ 1 and go to step 2; otherwise, go to step 5.

5. Reconstruct the signal estimate as: f̂ = ΨΘ̂.
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2.3 Variations of Matching Pursuit

There are some variations of matching pursuit. These variations result from chang-

ing the property of the basis, different number of largest components collected, and

termination criteria. One variation is called orthogonal matching pursuit (OMP) [29].

The main difference between MP and OMP is the method to update the signal resid-

ual. In initialization, the additional index set Λ0 = ∅ in OMP. Other initialization

is the same as MP. After finding the index `t such that the vector v`t maximize the

inner product |〈et−1, vi〉|, that is, `t = arg maxi=1,2,...,ND
|〈et−1, vi〉| similar to (2.13)

in the second step of MP. The third step for OMP is to update the set Λt and the

following steps are shown below [29]:

3. Set Λt = Λt−1 ∪ {`t}.

4. Form the orthogonal projector Pt on to span{v` : ` ∈ Λt}.

5. Calculate the new approximation and residual:

at = Pt y

et = y − at

6. Set t = t+ 1, and return to step 2 if t < S, the sparsity level of the signal.

7. The signal estimate f̂ has nonzero components at the indices listed in ΛS. The

values of the estimate in these components appear in the linear combination:

aS =
∑

`∈ΛS

f̂`v` (2.16)

The OMP is possible to converge faster than the MP since OMP does not revisit the

same index to update residual signal due to the orthogonal projection. However, the
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rich multipath channel diversity in UWB may be lost in the orthogonal property in the

OMP. Another variation is named compressive sampling matching pursuit (CoSaMP)

[25], which is based on the OMP. Consider an S-sparse signal x, a sampling matrix

Φ, and compressed samples y = Φx. Define the restriction ΦΛ of the sampling

matrix Φ as the column submatrix whose columns are listed in the set Λ. Moreover,

define the pseudoinverse of the matrix ΦΛ, by Φ†Λ = (Φ∗ΛΦΛ)−1Φ∗Λ. Denote xr for the

signal that is formed by restricting x to its r largest components. In addition, define

supp(x) = {j : xj 6= 0} and define the restriction of the signal to the set Λ as

x|Λ =





xi, i ∈ Λ

0, otherwise.
(2.17)

The CoSaMP can be described as follows

1. Initialization:

• Set the approximated signal a0 = 0

• Set the residual signal e = y

• Set the counter t = 0

2. Set t = t+ 1

3. • Form signal proxy x̂ = Φ∗e

• Identify large components: Υ = supp(x̂2S)

• Merge supports: Λ = Υ ∪ supp(at−1)

4. • Signal estimation by least-squares: c|Λ = Φ†Λy

• Prune to obtain next approximation: c|Λc = 0

5. Update residual samples:
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• at = cs

• e = y − Φat

6. Check termination criterion

In the CoSaMP, some operation is dependent on the sparsity S but it is hard to

know know the exact sparsity of the channel impulse response since the number of

delay paths is random. Hence, the MP is used in the simulation shown in Chapter

III.
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CHAPTER III

Channel Estimation and System Analysis

3.1 System Model

3.1.1 UWB Transmitted Signal and Coding Scheme

Consider a simple communication system that uses ultra-short pulses p(t). When

sending Nf pulses p(t), the kth binary information bit is transmitted with bit duration

Tb. Define b(k) ∈ {−1, 1} as the binary information bit that is transmitted in the

interval [kTb, (k + 1)Tb] and modulates the amplitude of the pulses, and p(t) is the

pulse with duration Tp � Tf . The frame duration Tf = Tb/Nf is the time interval

between the starting time of two consecutive pulses. Therefore, Nf nonoverlapped

pulses are transmitted for each Tb. The transmitted signal can be written as

s(t) =
∑

k

b(k)

Nf−1∑

j=0

p(t− jTf − kTb) (3.1)

Figure 3.1 shows the signal described above.

The Nf identical pulses are a repetition code. Consider an orthogonal code using a

Hadamard matrix coding scheme as an alternative. Hadamard matrices are matrices

of 1’s and -1’s whose columns are orthogonal and the conventional size is a power of
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Tf

1 1
b(k) = 1, b(k + 1) = -1, Nf = 5, Tb = NfTf

Tp

b(k)
· · ·1 1 1

Tf

-1

Tp

b(k + 1)

-1 -1 -1 -1
Tb

Tb

Figure 3.1: Transmitted signals

2. For example, the size 4 Hadamard matrix is as follows:

H4 =




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1



.

The advantages of using Hadamard matrix are easy implementation and coding gain

relative to the repetition code.

In a Hadamard matrix coding scheme, information bits are divided into blocks

of m bits and a sequence of m bits is mapped into 2m frames of pulses. Since there

are 2m possible different code words for each block, generate a 2m-by-2m Hadamard

matrix and use different row vectors to represent different code words. For example,

if m = 2, the two information bits are mapped into 4 frames of transmitting pulses.

Denote the block duration as TB = 2mTf , representing m bits with 2m frames,

H
b(k)
2m (j) is the notation for the jth element in the b(k)-th row of the Hadamard

matrix and b(k) is the kth block of m transmitted bits. The transmitted signals using
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a Hadamard code can then be written as:

sH(t) =
∑

k

Nf−1∑

j=0

H
b(k)
2m (j)p(t− jTf − kTB) (3.2)

For example, for m = 2, if b(k) = [00] (in binary), then the first row of the Hadamard

matrix is selected, that is, H
b(k)
4 = [+1,+1,+1,+1] and H

b(k)
4 (j) = 1 for j = 1, 2, 3, 4.

3.1.2 Channel Model

The multipath channel considered can be described by the following impulse re-

sponse:

h(t) =
L−1∑

`=0

α`δ(t− τ`) (3.3)

where δ(·) is the dirac delta function, τ` and α` are the delay and the gain associated

with the `-th propagation path of the UWB channel and L is the number of prop-

agation paths. The channel h(t) is assumed to be static during the transmission of

Ns consecutive bits and assume Tf ≥ τL−1 + Tp, where τL−1 is the maximum delay

spread of the multipath channel h(t), so no interpulse interference occurs.

Henceforth, the repetition code scheme is considered to derive the equations for

received signals. In this scenario, the received signal of the first frame of the kth

transmitted information bit without noise can be written as

rf,k(t) = b(k) ·
L−1∑

`=0

α`p(t− kTb − τ`). (3.4)

Here, rf,k(t) is the sum of scaled and delayed versions of the transmitted pulse p(t).

Under the assumption that Tf ≥ τL−1 + Tp, the received signal for the kth bit can be

expressed by periodically repeating the term rf,k(t) every Tf seconds. The received
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signal corresponding to the k-th transmitted bit is then

rk(t) =

Nf−1∑

j=0

rf,k(t− jTf ) + w(t) (3.5)

where w(t) is a zero-mean additive white Gaussian noise (AWGN) process which

represents the thermal noise and multiuser interference. Two receiver designs can take

advantage of multipath diversity of the UWB channel. One is the rake receiver [19]

and the other is the correlator based detector [20], both of which require estimation

of the channel and assume that the receivers has an estimate of the path delays and

path gains of the UWB channel. The process of these two kinds of receivers will be

discussed in detail later. One common estimation involves a data-aided framework.

I use Np known pilot bits to estimate the channel impulse response in each packet of

Ns bits. The remaining (Ns − Np) information bits are decoded using the obtained

channel estimates. For time 0 < t ≤ Tw, where Tw = NwTf and Nw = NpNf , the

received signals correspond to pilot bits and for Tw < t ≤ NsNfTf , the received signals

contain information bits. The received signal over the periods jTf ≤ t < (j + 1)Tf

for j = 0, 1, . . . , Nw − 1 is

rjf (t) = b(b j
Nf

c)
L∑

`=1

αlp(t− jTf − τl) + w(t). j = 0, 1, . . . , Nw − 1 (3.6)

If the transmitters and receivers are asynchronous, an additional time offset term is

needed in the above equation but this complication will be investigated in Chapter

V.

3.1.3 Channel Estimation

In this subsections, the channel estimation and two detection approaches men-

tioned above are described. To explain the process of the channel estimation, consider

the received pilot waveform in (3.6) for j = 0, 1, 2, . . . , Nw−1, where α` and τ` are the
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channel parameters that need to be estimated. In order to use compressed sensing, a

sparse representation of signals in a certain basis is desired. One way to achieve this

goal is to generate a set of vectors obtained by shifting the pulse function p(t) by in-

teger multiples of a minimum step ∆t: dj(t) = p(t−j∆t), j = 0, 1, 2, . . . , ND−1. The

functions dj(t), j = 0, 1, 2, . . . , ND − 1 in the generated basis (or so-called dictionary)

D = {d0(t), d1(t), d2(t), . . . , dND−1(t)} are projected with i.i.d. Gaussian random pro-

jection φi(t), i = 1, 2, . . . , K to obtain the projected vectors vj =
∫

Φ(t)dj(t)dt, j =

0, 1, 2, . . . , ND−1. Denote Φ(t) = [φ1(t) φ2(t) · · · φK(t)]T . The CS channel estimator

projects the frame-long received signals rjf (t) onto the vectors [φ1(t) . . . φK(t)]T to ob-

tain yjf =
∫ Tf

0
Φ(t)rjf (t)dt = [yjf [1], yjf [2], . . . , yjf [K]]T , j = 1, 2, . . . , Nw. Then, an av-

erage over all the Nw frames of received signals is used to obtain y = 1/Nw

∑Nw−1
j=0 yjf .

The matching pursuit (MP) algorithm is used to recover the estimate of the multi-

path channel as shown in Figure 3.2. Notice that the random projection in the analog

domain is performed by a set of K synchronized high speed analog mixers that are

sampled at the frame rate instead of the pulse rate. The reason to average over all the

received signals before processing by the MP algorithm is to reduce the computation

cost and noise impact [27]. The MP algorithm chooses one vector which achieves the

maximum correlation with y among all the projected vectors vj. In other words, in

each iteration, MP selects v` such that

v` = arg max
vj

|〈y,vj〉|
‖vj‖

(3.7)

and updates the inner product computed above and the index ` as follows:

θ̂` = θ̂` +
〈y,v`〉
‖v`‖2

(3.8)

The detailed procedures after the MP algorithm is as follows. Suppose after T0 itera-

tions, Θ̂ = [θ̂1, θ̂2, . . . , θ̂ND
]T is a sparse vector obtained from the MP algorithm. Then,
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gcs(t) =
∑ND

i=1 θ̂idi−1(t) is the estimate of h(t). Let θ̂(i) for i = 1, 2, . . . , ND be the

sorted elements of the set {|θ̂1|, |θ̂2|, . . . , |θ̂ND
|} and define: θ̂(1) = max{|θ̂1|, . . . , |θ̂ND

|},

θ̂(ND) = min{|θ̂1|, . . . , |θ̂ND
|}, and θ̂(i1) ≥ θ̂(i2) for i1 ≤ i2. Moreover, define `(i) as the

index in the sparse vector of the ith sorted element, that is θ̂(i) = |θ̂`(i)|. The estimated

path gain and path delay for the ith propagation path are

α̂i = θ̂`(i)

τ̂i = (`(i) − 1)∆t (3.9)

for i = 1, 2, . . . , Lc, where Lc is the number of the paths that are considered and

∆t is the same parameter for the minimum time shifting of the transmitted pulse

dj(t) = p(t− j∆t), j = 0, 1, 2, . . . , ND − 1.

3.1.4 CS Rake Receiver

For the CS rake receiver, the received signal r(t) is correlated with a bank of

correlators with the shifted pulses p(t− τ̂i) for i = 1, 2, . . . , Lc. The outputs of these

correlators are combined by maximum ratio combining (MRC) with corresponding α̂i

to form a sufficient statistic to detect the kth transmitted bit in the jth frame. The

result is

zR(k, j) =
Lc∑

`=1

α̂`

kTb+jTf+τ̂`+Tp∫

kTb+jTf+τ̂`

r(t)p(t− kTb − jTf − τ̂`)dt. (3.10)

Observe that the energy of the received signal is identified by correlating the received

signal with Lc shifted versions of the transmitted pulses and a frame rate sampling

frequency is required to perform correlation and weighted combination. Since one bit

of information is transmitted by Nf frames, the detection of the kth transmitted bit

is expressed as follows:

b̂(k) = sgn



Nf−1∑

j=0

zR(k, j)


 . (3.11)

23



Note that in the previous discussion, it is assumed that the number of “fingers” in
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Figure 3.2: Scheme Ia: CS rake receiver

the bank of correlators is equal to the number of strongest paths Lc. In a practi-

cal scenario, the choice of the number of fingers is a tradeoff between performance

and complexity. Furthermore, the number of the MP iterations T0 should be greater

than the number of fingers so that in the process of the MP, the path selected in

the previous iterations of the MP can be updated. The complexity of the channel

estimation is mainly determined by the MP algorithm, whose complexity is approx-

imately O(CLcT0), where C is a constant depending on the size of the dictionary.

The whole structure of CS rake-based detector is shown in Figure 3.2. Beside MP

algorithm, the spectral projected-gradient (SPGL1) recovery algorithms is used to

obtain the channel template in the simulation. The SPGL1 algorithm is one kind

of basis pursuit (BP) algorithm, which is optimized in the `1-norm sense instead of

`2-norm sense in the MP algorithm.

3.1.5 CS Correlator-Based Detector

As in the CS rake receiver, the correlator-based detector in Figure 3.3 uses MP to

recover a noisy template of the multipath channel as expressed in (3.3) by considering

a frame-long period of the signal and randomly projecting the signal with the random
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projection operator Φ(t). The difference is that it is not needed to sort Θ̂, but simply

use gcs(t) as the channel template to correlate with the received information signal to

perform demodulation with frame rate sampling. The detection statistics for the kth

...
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Figure 3.3: Scheme IIa: CS correlator receiver

bit is composed of Nf correlator output samples related to the transmitted symbol:

z(k) =

Nf−1∑

j=0

(j+1)Tf+kTb∫

jTf+kTb

r(t)gcs(t− jTf − kTb)dt (3.12)

One can also extend this frame rate sampling detector to a symbol rate detector by

repeating the template gcs(t) Nf times every Tf seconds, correlating this symbol-long

template with received signals, and sampling the correlator output at the symbol-rate

to detect the transmitted signal.

3.1.6 Alternative Receiver Structures

Improving upon the correlator and rake receiver structures introduced in [27] and

in the above subsection, other receiver structures are presented in this section. First,

the diagrams of the projection processes in Figure 3.2 and 3.3 are simplified into one

block in Figure 3.4 since the focus is on the whole structure. The CS rake receiver

is categorized as scheme I and CS correlator receiver is scheme II and the original

structure is further classified as Type a. Following this, the above rake receiver is
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Figure 3.4: Scheme Ib: CS rake receiver with random projection on pilot and info
signals

called as scheme Ia and the correlator receiver in Figure 3.3 is labeled as scheme IIa.

Scheme Ib shown in Figure 3.4 is a modification of the receiver scheme Ia. Notice

that, in scheme Ib, both the received pilot and information signals are processed by a

projection matrix. Under this new structure, the dimension of the received signal is

reduced and the possible requirement of a high sampling rate is avoided in detection.

Note that the received projected information signal is correlated with the projected

vectors vj =
∫

Φ(t)dj(t)dt, j = 1, 2, . . . , ND as stated in section 3.1.3. The correlating

process in each finger of the rake receiver in the compressed projected dimension is

called smashed filtering whereas the correlating process in that of the rake receiver

in original signal space as in scheme Ia is called matched filtering.

Another structure that can be obtained by simply substituting the random pro-

jection matrix with a Hadamard matrix is called scheme Ic and is shown in Figure 3.5.

In this way, the complexity of implementation of doing a projection with a Gaussian

vector is reduced. Similarly, these two new structures can also be adopted in a CS

correlator and are called scheme IIb and IIc, as shown in Figure 3.6 and Figure 3.7.

In the both figures, ŝφ =
∑ND

i=1 θ̂ivi−1, which is the estimated template in the reduced

domain.
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Figure 3.5: Scheme Ic: Rake receiver with Hadamard projection on pilot and info
signals
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Figure 3.6: Scheme IIb: Correlator receiver with random projection on pilot and info
signals
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Figure 3.7: Scheme IIc: Correlator receiver with Hadamard projection on pilot and
info signals
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To compare the performance of the CS-correlator and the CS-Rake, the conven-

tional correlator-based detector is constructed by averaging all the received wave-

g(t)

Averagingr(t)

Correlator
z(k)

> 0 : b̂(k) = 1 b̂(k)
< 0 : b̂(k) = −1

∑Nf
j=1

Pilots

Data

A/D
t = n

A/D

Figure 3.8: Scheme IIIa: Conventional correlator receiver

forms: g(t) =
∑Nw−1

j=0 rjf (t)/Nw, where rjf (t) is given by (3.6). Figure 3.8 shows this

structure. The above structure is further modified by processing the received signals

with a random projection matrix to reduce the dimension of the signal and imple-

mentation complexity. The resulting structure is shown in Figure 3.9. Moreover,

RP

y

Averagingr(t)

Correlator
z(k)

> 0 : b̂(k) = 1 b̂(k)
< 0 : b̂(k) = −1

A/D
t = nTf

∑Nf
j=1

Pilots

Data

Figure 3.9: Scheme IIIb: Conventional correlator receiver with random projection on
pilot and info signals

the random projection matrix with the Hadamard matrix is substituted to further

simplify implementation and label this as scheme IIIc as demonstrated in Figure 3.10.

Table 3.1 shows the different receiver structures categorized in different schemes and

types.
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Figure 3.10: Scheme IIIc: Conventional correlator receiver with Hadamard projection
on pilot and info signals

Scheme I Scheme II Scheme III

Type a
CS Rake CS Correlator Conventional Correlator

matched filter matched filter matched filter

Type b
CS Rake CS Correlator Conventional Correlator

smashed filter,RP smashed filter,RP smashed filter,RP

Type c
CS Rake CS Correlator Conventional Correlator

smashed filter,HP smashed filter,HP smashed filter,HP

Table 3.1: Different receiver structures

3.2 Simulation Results

3.2.1 No Quantization

The standard IEEE 802.15.4a [24] is chosen as the multipath channel model in

the simulation. In the standard, the power delay profile is described in the similar

form as in (3.3). The τ` in (3.3) is a poisson process and E(|α`|2) is exponential.

The performance criterion is the bit error rate (BER) as the function of signal-to-

noise ratio (SNR), which is defined as Eb/N0, where Eb is the received energy per bit

(Eb =
∫
t

(∫
τ
h(t− τ)p(τ)dτ

)2
dt) and N0/2 is defined as the power spectral density

of AWGN. The first derivative of the Gaussian pulse is the transmitted pulse p(t),

which is normalized to unit energy and has duration 0.65ns. The frame duration Tf

is set to be 100ns and the number of frames Nf in one bit is 25. Moreover, PAM

is used in the simulations and b(k) is independent and having equal probability of

being +1 and -1 . The sampling frequency before projection is set at 20GHz and
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∆t is set equal to one sampling period, 50ps. The sampling frequency 20GHz is

considered as the time resolution of the simulation and only used for simulation but

not in actual implementation. For example, considering one frame of the kth bit

received signal rf,k(t) as defined in (3.4), it is sampled to obtain the discrete-time

vector rf = [r(0) r(T ) · · · r((N − 1)T )]T , where T is 50ps. Moreover, define y = Φrf

as the random projected received signal where Φ is a K × N measurement matrix

with each element φi,j ∼ N (0, 1), where N = 2000. Then the MP [21] algorithm is

applied on the random projected received signal y to estimate the multipath channel.

Moreover, the negligible tail of the multipath impulse response is cut off to set the

maximum delay spread equal to 99.35ns, which plus a pulse duration, 0.65ns, is equal

to 100ns, the same as Tf so that there is no intersymbol interference. The remaining

energy of the channel impulse response is normalized to one. The BER performance

is evaluated over the same “random” generated channel but with different noise and

estimate this channel 50 times to generate a smooth curve. For each estimation

of the channel, Ns =10000 bits are transmitted, Np of these bits are used as pilot

bits to estimate the channel and reconstruct the template for detecting the following

10000-Np information bits. The BER is calculated by averaging the BER obtained

for each channel estimation. Hence, for each channel realization, 50× (Ns −Np) bits

of information are transmitted.

The parameters used in matching pursuit algorithm are set in the following de-

scription. The number of iterations T0 is 400 and the target residual error is ε0 = 10−4.

There are Lc=50 fingers in the rake receiver used to correlate with the received signal.

In Figure 3.11, the BER performance of the 3 detection schemes, Scheme Ia, IIa, and

IIIa for the different number of pilot bits Np is shown. In the simulation, the number

of measurements K is 720. As shown in Figure 3.11 and 3.12, increasing number of

pilot bits improves the channel estimation and thus has better performance for all the

3 detection schemes. At the expense of a slight loss in transmitted energy to estimate
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Figure 3.11: BER performance for different number of pilot bits Np=1, 2, 4, 16, with
K =720
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Figure 3.12: BER performance for different number of pilot bits Np=64, 128, 256,
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the channel, the BER performance improves significantly. If the number of pilot bits

is increased up to 512 as shown in the Figure 3.12, the BER performance approaches

the case where a perfect channel template is used and is roughly with BER = 10−5 at

SNR=9.6(dB). The energy in pilots is not take into account while plotting the BER

v.s. Eb/N0 figure.
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Figure 3.13: BER performance for different number of projection K=32, 64, 128, 256,
512, 720, 960, and perfect channel estimations with Np=128

In Figure 3.13, the BER performance of the Scheme Ia, IIa, and IIIa for different

number of projections is demonstrated. It is interesting to note that the performance

of CS-rake becomes better than that of CS-correlator when K > 256, which can

be explained as follows. As number of projection K increases, the reconstruction

of the channel template is more accurate so even if there are only Lc=50 fingers

in my detector, these first 50 largest components already capture the main energy

of the whole signal. On the other hand, although CS-Correlator use more than 50

elements in the dictionary to form the estimated channel template, it may contain
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more incorrectly identified elements to represent the channel estimation and result

in the worse performance. Figure 3.14 shows the BER performance when the
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Figure 3.14: BER performance for using Hadamard matrix K=64, 256, 720, with
Np=128

random projection matrix is replaced with the Hadamard matrix. The performance

is comparable to that while using random projection matrix, especially in the case

with higher K. In this case, CS-correlator outperforms CS-rake at lower K. At

K=720, the performance of these two receivers are almost the same and are both

better than the conventional correlator-based receiver.

In Figure 3.15, the BER performance is compared among different schemes with a

repetition code. The performance of the receivers with Hadamard matrices (Type c)

is superior to that with random matrices (Type b). The conventional correlator-based

receiver (Type a) represented by the black line have 2dB gain in Eb/N0 but requires

much higher sampling rate as pointed out previously.

The BER performance among different schemes with Hadamard coding is shown

in Figure 3.16. It can be observed that the performance is better than those with
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Figure 3.15: BER performance compared among different schemes, Nf=25, repetition
code, K=720, Np=128
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repetition code by the coding gain. The performance of the receivers with Hadamard

matrices (Type c) still outperforms those with random matrices (Type b). With the

same type, the performances of the receivers with different schemes are almost equal.

The conventional correlator-based receivers (Type a) shows 3dB gain but requires

more than one hundred times the sampling rate, increasing from 1/Tf = 1/100(ns) =

10 MHz to 1/Tp = 1/0.65(ns) ≈ 1.54 GHz.

3.2.2 Impact of Finite Bit Quantization

In the previous sections, the signal values are assumed to be processed with very

high resolution in our system model. In this section, I investigate the effect of the bit

quantization on channel estimation by comparing the BER performance of the receiver

without quantization and the ones with different numbers of bits in quantization

resolutions. Some simulation parameters are changed as follows to accommodate the

circuit design specification. The simulation sampling time resolution is 0.625ns. The

number of samples in one frame denoted by N is changed to 64 so the frame duration

Tf is 39.375ns (0.625× (64−1)) and the square pulse shape is used with values 0 and

1 and the duration Tp=1.3ns is used.

3.2.2.1 Perfect Channel Estimation

To generate the waterfall curves, assuming an ideal channel with AWGN noise,

two different receiver architectures were considered, both based on matched filtering

as shown in Fig. 3.17. In the first architecture, compressed samples are taken in

the Hadamard domain and the time domain sparse signal is recovered using spectral

projected-gradient (SPGL1) which is then correlated with an ideal template to make

bit decisions. In the second architecture, the difference is that matched filtering is

done directly in the Hadamard domain using sub-Nyquist samples (also known as

smashed filtering in the CS literature) rather than in the time domain after recon-
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Figure 3.17: Receiver architectures for waterfall curves

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10
-4

10
-3

10
-2

10
-1

10
0

Eb/N0(dB)

P
e

Smashed Filtering Comparision, Res = Infinite

 

 

-1

spgl1 K=16
spgl1 K=32
spgl1 K=48
spgl1 K=64

Ideal BPSK
Smashed Filter K=16
Smashed Filter K=32
Smashed Filter K=48
Smashed Filter K=64

Figure 3.18: BER curves for infinite resolution

Figure 3.18 shows the BER curves for both receiver architectures for infinite reso-

lution of the sub-Nyquist ADC and compares it with an ideal BPSK curve for different

values of K. It is found that the smashed filter has better performance compared to

the matched filter in the time domain. One explanation for this is that the recovery

algorithm attempts to find a sparse solution in the time domain to a given set of

compressed measurements K. However, a signal with low SNR cannot be considered

sparse, because noise produces many non-zero values. The recovery algorithm in the

CS framework assumes a sparse solution to the given set of compressed measure-
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Figure 3.19: BER curves for Res=5bit

ments. As a result, the algorithm attempts to reconstruct the noise with the sparse

solution. This affects the performance of the matched filter and results in an increased

probability of error (Pe) at a given signal-to-noise ratio (Eb/N0) for K < N .

Figure 3.19 shows the BER curves for 5 bit resolution of the sub-Nyquist ADC

quantizing Hadamard coefficients. In this case the BER curve for K = N = 64 does

not overlap the ideal BPSK curve due to the quantization noise.

3.2.2.2 Multipath Channel Estimation

In this subsection, the IEEE 802.14.4a standard channel model is also used in the

simulation on the multipath channel estimation. It should be pointed out that the

BER performance of the receivers in Figures 3.20, 3.21, 3.22, 3.23, 3.24, and 3.25 are

for smashed filtering and in Figures 3.26 and 3.27 are for matched filtering. Figure

3.20 to 3.23 discussed below are with a fixed number of fingers Lc=50 in the CS rake

receiver and a fixed number of pilot bits Np=128. The following simulation figures are

focused on smashed filtering since with perfect channel estimation it is found to be

better than matched filtering. The BER performance is shown in Figure 3.20, where
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Figure 3.20: BER Performance for different number of projected measurement K=16,
24, 32, 48, 64, no quantization, smashed filter, SPGL1. The BER curves
for CS rake and correlator are nearly identical to that of CS correlator

the receiver without quantization for different values of K is evaluated when using

the smashed filter to correlate the received signal with a noisy estimated channel

template. The waterfall curves show that the BER performance is improved when K

is increased, as expected.

Figure 3.21 shows the BER performance of the smashed filter for different quan-

tization resolutions with a fixed K=24. It is observed that there is 2 dB gap between

1-bit and 3-bit quantization resolution but beyond 5-bit resolution, the improvement

is insignificant. This 2 dB gap conforms to the common knowledge that the perfor-

mance of a hard decision detector is often 2 ∼ 3 dB worse than that of a soft decision

detector. The receiver with 1-bit quantization resolution is essentially a hard decision

detector and the receiver with 5-bit quantization is very close to an ideal soft deci-
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Figure 3.21: BER performance for the smashed filter with different number of bit
resolution: 1,3,5,∞, with K=24, SPGL1. The BER curves for CS rake
and correlator are nearly identical to that of CS correlator

sion detector. Therefore, in Figure 3.22, the quantization resolution is fixed at 5 bits

and the value of K is varied. It shows again that the BER performance is improved

through increasing the number of K, as expected.

Next, instead of using the SPGL1 algorithm to estimiate the channel, the MP

algorithm is applied to recover the multipath channel template in the receiver. The

comparison between the receivers with SPGL1 and MP algorithm is shown in Figure

3.23. The performance of MP is similar to the previous case using the SPGL1 algo-

rithm. The larger the K is used in the receiver, the better the performance shows.

Figure 3.23 shows the excess Eb/N0 needed to achieve Pe = 10−3 versus K/N of 4

different receivers with quantization resolution of 5-bits or without quantization and

using the MP or SPGL1 algorithm. It is interesting to notice the significant drop of
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Figure 3.22: BER Performance for different number of projected measurement K=16,
24, 32, 48, 64, with quantization resolution=5 bits, smashed filter,
SPGL1. The BER curves for CS rake and correlator are nearly iden-
tical to that of CS correlator

excess Eb/N0 as K/N varies from 25% (K = 16) to K/N = 37.5% (K = 24). It is

also observed that the 4 curves are nearly identical.

Figure 3.24 shows the BER waterfall curves with different values of Np and fixed

Lc=50. It is observed that the 3 different receiver structures (CS correlator, CS

rake, and correlator) have almost the same performance for each value of Np. For

simplicity, 3 different structures are shown only for Np = 1 and only the curves for

the CS correlator are shown for Np > 1. On the other hand, Figure 3.25 shows a

different phenomenon that by increasing the number of fingers Lc in the rake receiver,

the performance improves for the rake receiver while the performance of the other

two receivers remains the same, as expected. The curves for the CS correlator are
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Figure 3.23: Excess Eb/N0 Required for Different K in Different Receiver Schemes

also omitted for simplicity.

Considering a receiver with a matched filter, Figures 3.26 and 3.27 show the BER

performance with different values of Np while Lc=50 is fixed and various values of Lc

while Np=128 is fixed. Notice that the performance of Lc=2 is quite close to that of

Lc=50, when Np=128 is fixed. On the other hand, when Lc is fixed at 50, increasing

the number of pilot bits gradually improves the performance without any large jumps.

3.3 Conclusion

In this chapter, the channel estimation in UWB system using compressed sensing

is introduced. The procedure using MP algorithm to estimate a multipath channel is

described and the estimated channel template is exploited to detect transmitted in-

formation bits. The different receiver structure and coding scheme are also presented

to reduced the complexity of computation in the system and obtain coding gain in
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Figure 3.24: BER Performance for different number of pilot bits Np=1,2,4,16,128,
with K=24, Lc=50, smashed filter, SPGL1. The BER curves for CS
rake and correlator are nearly identical to that of CS correlator.

BER performance. In simulation, the BER performance without quantization is first

illustrated with different numbers of projection K, different number of pilot bits Np,

and different receiver schemes and types. The impact of finite bit resolution is then

investigated with different numbers of projection, pilot bits, and different numbers of

fingers used in the rake receiver.

To sum up, one can observe that the BER performance with 3-bit resolution is

comparable to that with infinite bit resolution. The number of projection K=24 out

of N=64 also yield the performance close to that with K=64. The number of pilot

Np=16 produces similar performance to Np=128. The smashed filtering loses 3 dB

in SNR at the same BER compared to the matched filters. These results provide a

guideline for choosing related system design parameters.
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Figure 3.25: BER Performance for different number of fingers in rake receiver Lc=1, 2,
5, 10, 50, Np=128, with K=24,quantization resolution=5 bits, smashed
filter, SPGL1. The BER curves for correlator are nearly identical to that
of CS correlator.
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Figure 3.26: BER Performance for different number of pilot bits Np = 1, 4, 16, 128,
with Lc=50, K=24, quantization resolution=5 bits, SPGL1. The BER
curves for CS rake are nearly identical to that of CS correlator.
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Figure 3.27: BER Performance for different number of fingers Lc=1, 2, 50 in Rake
receiver, with K=24, quantization resolution=5 bits, SPGL1
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CHAPTER IV

Channel Measurement and Channel Capacity

4.1 Introduction

Channel capacity is defined as the least upper bound on the rate of information

that can be reliably transmitted over a communication channel. In order to calculate

channel capacity, it is essential to have the knowledge of channel characteristic. The

IEEE standard 802.15.4a [24] specifies several channel models for ultra-wide band

(UWB) systems in different scenarios such as 1) indoor residential, 2) indoor office, 3)

industrial environment, 4) body-area network (BAN), 5) Outdoor, and 6) agricultural

area/farms. The 5th model only covers a suburban-like microcell scenario. Hence,

there is no channel models in IEEE 802.15.4a specifically for sensors located at girders

under a bridge, where the sensors are deployed. To understand the fundamental limit

of the rate of transmission in a particular scenario, the channel measurement for this

specific environment is needed. The channel measurement procedures is described in

the following Section 4.2. The theorem used to calculate the channel capacity and

the corresponding plots are covered in Section 4.3.
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4.2 Channel Measurement

The actual UWB channel response is measured at the site using the PulsON 200

Evaluation Kit (EVK) from the Time Domain Corporation. The antenna of the EVK

is shown in Figure 4.1. The transmitted pulses radiated from the UWB antenna

Figure 4.1: A transmitter/receiver in EVK

is presented in Figure 4.2. The measurement is performed under the bridge and the

transmitter is fixed at the edge of the bridge width on one side of the Telegraph

Road while the receiver is placed at the different girders under the bridge and also

on the other side of the road. The actual environment is shown in Figure 4.3. For

each measurement, a 110ns waveform is recorded with sampling rate at 31.78 ps

as shown in Figure 4.4. The recorded waveforms are used to estimate the channel

impulse responses by CLEAN algorithm [16]. The CLEAN algorithm is the same

as the matching pursuit (MP) algorithm describe in Section 2.2. The idea is for

each iteration, the largest component within the remainder signal vector is chosen by

correlating the signal with the vectors in a basis which span the signal space. The

corresponding location and amplitude of the largest component is recorded. Then,

this largest component is subtracted from the remainder signal and the subtracted

vector is compared with specific threshold of the signal energy. If the remaining
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Figure 4.2: A transmitted pulse

Figure 4.3: Measurement environment: the girders under the bridge

energy is smaller than the threshold or the number of iteration is more than certain

value, the process is stopped. Otherwise, the procedure continue to find the largest
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Figure 4.4: A measured waveform at the receiver

component in the remaining signal.

4.3 Channel Capacity and Results

The estimated channel impulse response obtained by the CLEAN algorithm is

used to calculate the channel capacity as follows [14]. Recall that the channel model

described in (3.3) is a continuous time model. Consider the model in discrete time

domain and can be written as the following equation:

rk =
L−1∑

i=0

hisk−i + nk, −∞ < k <∞ (4.1)

where the real transmission sequence {sk} produces the real received sequence {rk}

and the finite-length sequence (h0, h1, · · · , hL−1), with h0 6= 0 and hL−1 6= 0, is the

unit-sample response of the equivalent channel filter. The transfer function of this

filter

h(λ) =
L−1∑

i=0

hie
−jiλ, j =

√
−1 (4.2)

48



is periodic in λ with period 2π.

The authors in [14] define a new channel model by changing (4.1) to the cyclic

channel model as:

r̃k =
L−1∑

i=0

h̃is((k−i)) + nk, 0 < k < N (4.3)

where ((·)) denotes modulo N and where N > L. The reason to define a new model

is that in practice, only a finite duration of the received signal is processed at a time

in the receiver. Hence, the number of samples N is bounded. Using the notation

h̃[0, N − 1] = (h0, h1, · · · , hL−1, 0, 0, · · · , 0) as the unit-sample response h[0, L − 1]

extended with N − L zeros, (4.3) can be written as

r̃[0, N − 1] = s[0, N − 1] ~ h̃[0, N − 1] + n[0, N − 1] (4.4)

where ~ denotes the circular convolution operator. For this new channel model, The

input constraint is

E[x2
k] ≤ Es, 0 ≤ k < N (4.5)

where Es is the maximum per symbol average energy. The channel model described

by (4.3) and (4.5) is called the N -circular Gaussian channel (NCGC). The capacity

of the NCGC (in bits per channel input symbol when logarithms of base 2 is used)

can be derived as follows [14]:

C̃N(Es) = (2N)−1

N−1∑

i=0

log[max(Ω|H̃i|2, 1)] (4.6)

where H̃[0, N − 1] is the DFT of h̃[0, N − 1],

H̃i =
N−1∑

m=0

h̃me
−j2πm/N , 0 ≤ i < N (4.7)
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and the parameter Ω is the solution of

N−1∑

i=0,H̃i 6=0

max(Ω− |H̃i|−2, 0) = 2NEs/N0 (4.8)

The method to obtain the value of the parameter Ω is as follows. By (4.8), the

range of the Ω is bounded by 2NEs/N0 + H̃−1
min and H̃−1

max, where H̃max = maxi |H̃i|2

and H̃min = mini |H̃i|2. The lower bound H̃−1
max for Ω is from the fact that Ω should

be greater than H̃−1
max. Otherwise, the summation in (4.8) sum up to zero. The upper

bound 2NEs/N0 + H̃−1
min is from the observation that if Ω is greater than this value,

then the summation exceed the right-hand-side value 2NEs/N0. At the first step,

this range is divided into 100 segments and the boundary values for each segment,

denoted as Ωi, i = 0, 1, . . . , 100, is tested by (4.8). For some k, Ωk satisfies the

inequality
∑N−1

i=0,H̃i 6=0
max(Ωk − |H̃i|−2, 0)− 2NEs/N0 ≤ 0 and Ωk+1 changes the sign

of the inequality to
∑N−1

i=0,H̃i 6=0
max(Ωk+1 − |H̃i|−2, 0) − 2NEs/N0 ≥ 0. If Ωk+1 − Ωk

is smaller than a pre-determined threshold, then the procedure is stopped and Ωk is

the approximation value for Ω. Otherwise, set Ωk and Ωk+1 as the lower and upper

bound of the new range and divide it into 100 segments again and continue the same

process.

Using the approximated Ω, which is accurate to the pre-determine threshold, and

(4.6), I calculated the channel capacity with the channel impulse response measured

at the girders under the bridge. The channel capacity at the first girder under the

bridge is plotted in Figure 4.5. In Figure 4.5, I also provided the channel capacity

without the knowledge of the channel information at the transmitter. The formula

for the channel capacity in this scenario is as follows:

C(γ) = E[log(1 + γ|H̃|2)] (4.9)

where γ is the ratio of average signal-to-noise power. To be specific, if we define
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E[n2
k] = σ2 and E[x2

k] ≤ Es for 0 ≤ k < N , then γ = Es/σ
2. Moreover, the minimum

Eb

N0
without the channel information at the transmitter is derived by the following

equation [30]: (
Eb
N0

)

min

=
ln 2

E|H̃|2]
(4.10)

The minimum Eb

N0
with the frequency-domain fading coefficients known at the trans-

mitter is given as follows [30]:

(
Eb
N0

)

min

=
ln 2

H̃max

(4.11)

The channel capacity with the channel impulse response measured at the 4th, the 7th

girder, and across the bridge is presented in Figure 4.6, 4.7, and 4.8.

In these figures, I would like to point out the 4 to 5 dB gap in Eb

N0
between the

scenarios with the channel information and that without the channel information

when capacity is larger than 1 bit per channel input symbol.

4.4 Conclusion

The channel model between sensors in UWB system under a bridge is not explic-

itly described in IEEE standard 802.15.4a. In this chapter, the channel measurement

is performed under the bridge across Telegraph Road and the corresponding channel

capacity is calculated. The obtained channel capacity provides the fundamental trans-

mission rate limit in this specific environment. In comparison, the channel capacity

in the case that the transmitter has no channel information is also presented in the

figures. It is shown that the 5 dB gap Eb

N0
between the transmitter with the channel

information and that without the channel information. This result also can justify

and motivate the channel estimation at receivers and provide feedback information

to transmitters.
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CHAPTER V

Signal Detection and Synchronization

5.1 Introduction

In Chapter III, it is assumed that the receivers have knowledge of system timing.

This assumption is not practical in the real scenario and need to be addressed. if a

receiver has no information about the time when the transmitter begins send a signal,

the receiver cannot determine the proper starting time to perform the correaltion

between the received signal and estimated channel template which is obtained by the

method described in Chapter III. Several papers proposed methods to synchronize the

UWB received signals with the corresponding transmitted signals. Carbonelli et.al

[8] [7] used least square (LS) method to solve the signal synchronization problem

in UWB system and also estimate the multipath channel impulse response but the

proposed method requires a sampling rate of the same order as the inverse of a pulse

duration. Rabbachin and Oppermann [28] apply energy collection on the received

signal to reduced the sampling rate but their algorithm cannot perform the channel

estimation at the same time. In this chapter, a method that can determine the timing

of the received signal and also estimate the multipath channel is proposed.

Beyond solving the synchronization problem, a more fundamental issue is how one

can determine whether the signal of interest is present at the receiver or not. Duarte

et. al [13] presented a method to extract the largest component in the received
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signal with matching pursuit and then compared the amplitude with a threshold.

However, the threshold, which is found using Monte Carlo simulation, would depend

on signal-to-noise ratio. Liu et. al [18] exploit the location information of the signal

to solve the detection problem. They collected a certain number of the strongest

components in the received signal and compared with a estimated template to count

the number of strong components overlapping at the same location. Then, deciding

the signal of interest is present when the number of overlapping components is over

certain threshold. Nevertheless, the threshold is also dependent on SNR, which is

usually hard to determine beforehand. The algorithm proposed here takes advantage

of the autocorrelation characteristic of a repeated signal such that the threshold is

independent of SNR. The approximated false alarm rate is also derived and provides

guidance in choosing the integer threshold.

5.2 Signal Synchronization using Compressed Sensing

5.2.1 System Model

The system model assumed for the purposes of evaluating synchronization is the

same model as in Section 3.1. The system uses ultra-short pulses p(t). When sending

Nf pulses p(t), the kth binary information bit is transmitted with bit duration Tb.

The frame duration Tf = Tb/Nf is the time interval between the starting times of two

consecutive pulses, b(k) ∈ {−1, 1} is the binary information bit that is transmitted in

the interval [kTb, (k+1)Tb] and modulates the amplitude of the pulses, and p(t) is the

pulse with duration Tp � Tf . Therefore, Nf nonoverlapped pulses are transmitted

for each Tb. The transmitted signal can be written as

s(t) =
∑

k

b(k)

Nf−1∑

j=0

p(t− jTf − kTb). (5.1)
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Figure 5.1: Transmitted signals

The same multipath channel model as in (3.3) is assumed with the following impulse

response:

h(t) =
L−1∑

`=0

α`δ(t− τ`). (5.2)

where δ(·) is the dirac delta function, τ` and α` are the delay and the gain associated

with the `-th propagation path of the UWB channel and L is the number of propa-

gation paths. The channel is assumed to be static within Ns bits. Denote by w(t) a

zero-mean AWGN process and t0 as the time offset between the transmitter and the

receiver, which is assumed to be 0 ≤ t0 < Tb. The received signal can be described

as:

r(t) =
∑

k

b(k)

Nf−1∑

i=0

L∑

`=1

α`p(t− jTf − kTb − t0 − τ`) + w(t). (5.3)

The received signal correpsonding to the k-th transmitted bit can be expressed as:

rk(t) = b(k)

Nf−1∑

j=0

L∑

`=1

α`p(t− jTf − t0 − τ`) + w(t). (5.4)
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The received signal corresponding to only the jth frame of the transmitted signal can

be written as

rjf (t) = b(b j
Nf

c)
L∑

`=1

α`p(t− jTf − t0 − τ`) + w(t) (5.5)

= b(b j
Nf

c)g(t− jTf − t0) + w(t) (5.6)

where g(t) = s(t) ∗ h(t).

5.2.2 Optimal Receiver

In this subsection, the optimal receiver in the sense of maximum a posteriori

(MAP) is analyzed. In order to simplify the derivation of the optimal receiver, the

system model described in the previous subsection is transformed to discrete time

domain. First, denote t0 = n0∆t, where n0 is an integer and ∆t is a sampling

parameter for sampling the continuous time signals rk(t), g(t), and rjf (t), and changing

them to the discrete time signal rk[n] = rk(n∆t) and g[n] = g(n∆t) for n = (k −

1)Nb, (k − 1)Nb + 1, . . . , kNb − 1 and rjf [n] = rjf (n∆t) for n = (j − 1)N, (j − 1)N +

1, . . . , jN − 1, where Nb = Tb/∆t and N = Tf/∆t. With the assumption that the

synchronization offset n0 takes the value in the range from 0 to Nb, equally likely,

the MAP receiver becomes a maximum likelihood (ML) receiver. To derived the

optimal receiver from the ML function, denote f as a probability density function for

jointly Gaussian random vector rk. The ML detector can be described as maximizing

conditional jointly Gaussian probability density function by varying n0 and g as
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follows:

max
n0,g

f(rk|n0,g) (5.7)

= min
n0,g

Nf−1∑

j=0

Nb−1∑

n=0

(rk[n+ jNb + n0]− g[n])2 (5.8)

= min
n0,g

Nf−1∑

j=0

Nb−1∑

n=0

(rjf [n+ n0]− g[n])2 (5.9)

whereNb is the number of samples in one bit. The jointly minimization of the equation

(5.9) is performed by seeking the values of g and n0 as follows. In (5.9), taking the

partial derivative with respect to g, setting the result to zero, and solving for g. Then

g̃ that minimizes (5.9) can be written as:

g̃[n] =
1

Nf

Nf−1∑

j=0

rjf [n+ ñ0], 0 ≤ n ≤ Nb − 1 (5.10)

Next, substituting (5.10) into (5.9) to minimize (5.9) with respect to ñ0 yields the

following minimization:

n̂0 = arg min
0≤ñ0≤Nb−1

Nf−1∑

j=0

Nb−1∑

n=0


rjf [n+ ñ0]− 1

Nf

Nf−1∑

i=0

rjf [n+ ñ0]




2

. (5.11)

Next, derive similar minimization equation as (5.11) using compressed sensing

(CS). Let Φ be a K × N projection matrix. Define gn0 [n] = g[n − n0] and xn0 [n] =

x[n − n0]. Let yjf = Φrjf , where yjf = [yjf [0] yjf [1] · · · yjf [N − 1]]T and rjf =

[rjf [0] rjf [1] · · · rjf [N − 1]]T . Note that the projection matrix Φ is operated on the

vector with the frame length N instead of the bit length Nb. Then, it can be written

as

yjf = Φrjf = Φgn0 + Φw = xn0 + u (5.12)

Define yb = [(y1
f )
T · · · (yNf

f )T ]T . The ML detector in CS case can be expressed in the
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following equation:

max
n0,x

f(yb|n0,x) = max
n0,x

Nf−1∑

j=0

K−1∑

n=0

(yif [n+ n0]− x[n])2 (5.13)

Similarly, the minimization is performed on x and n0 iteratively. With ñ0 fixed, the

x that maximize (5.13) can be derived by taking partial derivative with respect to x

as follows:

x̃[n] =
1

Nf

Nf−1∑

j=0

yjf [n+ ñ0], 0 ≤ n ≤ K − 1 (5.14)

Substituting (5.14) into (5.13) and minimizing with respect to ñ0, yields

n̂0 = arg max
0≤ñ0≤N−1





Nf−1∑

j=1

K−1∑

n=0


yjf [n+ ñ0]− 1

Nf

Nf−1∑

i=0

yif [n+ ñ0]




2
 (5.15)

5.2.3 Proposed Synchronization Method

In the previous subsection, the optimal receiver is introduced but the complexity

is very high. In this subsection, a practical solution to synchronization problem is

proposed. As a first step, the transmitter sends out NpNf “+1” pulses to estimate

Tf

1 1
Nf = 7, Tb = NfTf

Tp

Channel Estimation
1 1 1

Tf

-1

Tp

m-sequence in Synchronization
-1 -1

Tb

Tb

1 1

1 1 1 1

· · ·

· · ·

Figure 5.2: Transmitted signals

the multipath channel with time uncertainty up to one bit duration Tb = NfTf . This

method to estimate the channel is resulted from (5.10) and the number of frames
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Frame Offset Codewords Modulation Sequence
0 0011101 -1 -1 1 1 1 -1 1
1 1001110 1 -1 -1 1 1 1 -1
2 0100111 -1 1 -1 -1 1 1 1
3 1010011 1 -1 1 -1 -1 1 1
4 1101001 1 1 -1 1 -1 -1 1
5 1110100 1 1 1 -1 1 -1 -1
6 0111010 -1 1 1 1 -1 1 -1

Table 5.1: M-sequence codewords and modulation sequences

collected is increased from Nf to NpNf . Basically, the received signal is averaged

over NpNf frames, that is 1
Np

1
Nf

∑Np

i=1

∑Nf−1
j=0 rjf [n+ iNb + ñ0] for 0 ≤ n ≤ NbNp − 1,

and MP algorithm is used to estimate the multipath channel as shown in the upper

part of Figure 5.5 and 5.4. After estimating the channel, the transmitter starts to

use a maximum length sequence (MLS, so-called m-sequence) to modulate pulses in

each frame. For example, consider a m-sequence with codeword length 7 as shown

in Table 5.1. The first line is chosen to modulate the signal and thus the pulses in

each frame in one bit are modulated by the sequence “-1 -1 1 1 1 -1 1”. Figure 5.2

shows the transmitted “+1” pulses to estimate the channel in the upper part and the

transmitted pulses modulated by the m-sequence “-1 -1 1 1 1 -1 1” in the lower part.

Note that codeword length must be chosen to be equal to the number of frames Nf .

Since a MLS is one type of pseudorandom binary sequence, the advantage of MLS is

that it has an autocorrelation function that has the largest value, Nf (=7), when the

time shift equals zero and the low value, -1, at the other time shift as shown in Figure

5.3. This advantage is exploited to determine the number of frame offsets between

the transmitter and the receiver as described below. In the case of the correlator-base

receiver, the each frame of received signal r(t) is first correlated with the estimated

channel template gcs(t) as shown in the lower part of Figure 5.4 and can be expressed
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Figure 5.3: Autocorrelation function of modulation sequence

as:

zk[j] =

(j+1)Tf+kTb∫

jTf+kTb

r(t)gcs(t− jTf − kTb)dt, (5.16)

where zk[j] is the corrrelated output of the jth frame in the kth bit. Denote mi for

i = 0, 1, . . . , Nf − 1 as a i circular shifted vector of the modulation sequence “-1 -1

1 1 1 -1 1”. For example, if Nf=7, m0 = [−1,−1,+1,+1,+1,−1,+1]. Then the

correlator output of the Nf (=7) frames in one bit and Nf (=7) different modulation

sequences are calculated with inner product. Among Nf inner products, the largest

one is pointed to the estimated number of frame offsets f̂o between the transmitter

and the receiver as follows:

f̂o = arg max
i=0,1,...,Nf−1

(k+1)Nf∑

j=kNf+1

zk[j]mi[j]. (5.17)

For example, if the largest inner product results from the 3rd line of the modulation

sequence listed in Table 5.1, the frame offset is determined to be 2. Figure 5.4 shows

the CS correlator receiver structure that can be adopted to estimate frame offsets
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as described above. Similarly, in the case of the rake receiver, the each frame of
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Figure 5.4: CS correlator receiver with frame offset estimation

Figure 5.5: CS rake receiver with frame offset estimation

received signal is first correlated with the Lc largest components in the estimated

channel template as shown in the lower part of Figure 5.5 and can be expressed by:

zR[k, j] =
Lc∑

`=1

α̂`

kTb+jTf+τ̂`+Tp∫

kTb+jTf+τ̂`

r(t)p(t− kTb − jTf − τ̂`)dt, (5.18)

where zR[k, j] is the output sum of Lc correlators for the jth frame in the kth bit. The

inner product of zR[k, j] and mi for i = 0, 1, . . . , Nf−1 is calculated and the argument

62



i that maximizes the inner product is the estimated frame offset f̂o as follows:

f̂o = arg max
i=0,1,...,Nf−1

(k+1)Nf∑

j=kNf+1

zR[k, j]mi[j]. (5.19)

Figure 5.5 shows the CS rake receiver structure used to estimate frame offset as

described above.

The result of frame synchronization error rate (SER) v.s. Eb/N0 is shown in Figure

5.6, where Nps is the number of pilot bits used to estimate the frame offset and Np is

the number of pilot bits used to estimate the multipath channel. To calculate SER,

the actual time offset n0 is recorded, divided by the number of samples in one frame

N , and take the floor operation to obtain the integer value of frame offset bn0

N
c = fo.

Then, the estimation of frame offset f̂o using a m-sequence is compared with fo. If

f̂o 6= fo, one error occurs and the total error is divided by number of testing bits to

obtain SER. It is observed that the SER approaches flat starting with Eb/N0 around
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Figure 5.6: Frame synchronization error rate, K=720, Np=128, Nf=7, Nps=10

6 to 8 (dB). This can be explained by the reason that the multipath components

may span cross different frames, say the 2nd and the 3rd frame for instance. With
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Figure 5.7: Frame synchronization offset rate, K=720, Np=128, Nf=7, Nps=10

certain probability, the more signal energy could be split into the 3rd frame. When

this occurs, it is more likely that the inner product resulting from the 3rd modulation

sequence is higher than that from the 2nd modulation sequence. The estimated

number of the frame offset f̂o is determined as 3 while fo=2 so an estimation error

on frame timing occurs.

Figure 5.7 shows synchronization offset rate (SOR) v.s Eb/N0, where SOR is

defined as the number of frame offsets per bit. The SOR is calculated by summing

up |fo − f̂o| and then dividing by total number of testing bits. In Figure 5.7, the

SOR also becomes flat when the SNR reaches around 6 to 8 (dB). The same reason

described above can be applied to explain this phenomenon.

The frame offset mean square error (FMSE), which is defined as the average of

(n0

N
− f̂o)2 per bit, is also shown in Figure 5.8. It illustrated that FMSE also becomes

flat when SNR reaches 6 to 8 (dB).

The BER performance for perfect synchronized and unsynchronized receiver used

proposed synchronization algorithm is shown in Figure 5.9. Notice that the BER

maintain waterfall curve even when SNR reaches 8 (dB) and beyond and the perfor-
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Figure 5.8: Frame synchronization offset mean square error rate, K=720, Np=128,
Nf=7, Nps=10
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Figure 5.9: Bit error rate, K=720, Np=128, Nf=7, Nps=10
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mance is very close to the one with perfect synchronization. This shows that receiver

can detect the information bit and is robust even though the certain amount of the

frame offset occurs.

5.3 Detection of Signal Presence

In previous section, the method of signal synchronization using compressed sens-

ing is introduced. A more fundamental problem is how one determine whether a

signal is transmitted or not. In this section, a method to detect signal presence is

proposed to solve the problem. The advantage of this method is that the thresh-

old to determine the existence of signal is independent of signal-to-noise ratio. The

algorithm is described as follows.

5.3.1 Detection Model

This detection problem can be formed as a hypothesis testing problem. Define H0

as the null hypothesis that no signal is transmitted and H1 as a signal is transmitted.

Considering the discrete time domain, let r be the received signal, g = s ∗h, where s

is the transmitted signal and h is the channel impulse response, and w is the additive

white Gaussian noise (AWGN). The discrete time formulation can be expressed as:

H0 : r = w, (5.20)

H1 : r = g + w. (5.21)

where w ∼ N(0, σ2IN) be i.i.d. Gaussian noise. According to [10], given the the signal

g ∈ RNb is known, with the false alarm set to be PFA = α, the detection possibility

is as follows:

PD(α) = Q

(
Q−1(α)−

√
gTg

σ

)
(5.22)
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However, the threshold for this optimal result is dependent on SNR and g is known,

where in practice these two terms is hard to obtain at receivers beforehand. On the

contrary, the proposed method is independent of SNR as described below.

For each transmitted pilot bit s, the Barker code with the length Nf is used,

which is the same as the number of frame in one bit. For example, if Nf=3, the

Barker code with length 3 is [+1,+1,−1] and the transmitted signal s = [s1 s2 s3]T

can be pictured in Figure 5.10, where si, for i = 1, 2, . . . , Nf , is the ith frame in the

transmitted signal s. With the Barker code [+1,+1,−1], the pulses in the first and

second frames s1 and s2 are modulated by +1 and the pulse in the third frame s3 is

modulated by -1. Next, considering that s is cyclic shifted by n0 time samples (for

Tf

1
Nf = 3, Tb = NfTf

Tp

s

1

-1

sn0

-1

Tb

n0

1 1

s1 s2 s3

sn01 sn02 sn03

Figure 5.10: Transmitted signal s and shifted template sn0

n0 = 0, 1, . . . , Nb − 1 and Nb = NNf is the number of samples in one bit) and the

corresponding shifted signal is denoted by sn0 = [sn0
1 sn0

2 sn0
3 ]T as shown in Figure

5.10. Then, sn0 is the templates used to correlate with the received signals r. With

this notation, the proposed detection of signal presence is described as follows:

First, for the ith bit with Nf frames, the inner product of sn0 and r is calculated
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and the maximizer k̂i for the ith bit is obtained in the following equation:

k̂i = arg max
n0

〈sn0 , r〉 (5.23)

This process is iterated for Np bits and notice that for each iteration one may record

different values of k̂i. Next, among Np bits, the number of times k̂i occurred for

different values k, for k = 0, 1, . . . , Nb − 1 is counted. In other words, since the

maximizer of the ith bit is denoted as k̂i, the following determines the number of

times that k̂i = k:

nk =

Np∑

i=1

I{k̂i = k} (5.24)

where I{·} is the indicator function. Last, the maxk nk is compared with an integer

threshold to determine whether there is a signal transmitted or not. The threshold

is chosen such that the criteria of the false alarm (FA) rate is satisfied. Figure 5.11

illustrate the concept of the proposed detection algorithm as describe above. In

Figure 5.11, s[n] is the transmitted signal, g[n] = sn0 [n] ∗ h[n] is the received signal

with timing offsets n0 but without noise, r[n] = g[n]+w[n] is the received signal with

timing offsets and noise. If there is no noise in the received signal, the peaks of the

correlation between g[n] and sk[n] (k-shifted s[n] for k = 0, 1, . . . , Nb−1) occurs at the

same location k̂ within every bit duration Nb. Hence, the number of times the peak

occurring at the same location, that is, nk is equal to Np. As long as the threshold is

chosen to be smaller than Np, the receiver determines the signal is present. If noise is

added into the received signal, the peak of correlation between r[n] and sk[n] within

each bit may occurs at the different locations. In this case, if the number of times the

peaks occurs at any location nk is not more than the threshold. The receiver declares

no signal is transmitted only noise.

Consider the same hypothesis testing problem with compressed measurement, that
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Figure 5.11: Illustration of the detection concept, Nb=192
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Figure 5.12: Shifted transmitted signal sn0 and projected template vn0 = Φsn0
i

is:

H̃0 : y = Φw (5.25)

H̃1 : y = Φ(g + w) (5.26)

where Φ = [φ1 φ2 · · · φN] is a K ×N projection matrix and w ∼ N (0, σ2IN) is i.i.d.

Gaussian noise. According to [10], given g is known at receivers and the false alarm

probability PFA = α, the corresponding detection rate PD can be expressed by:

PD(α) = Q

(
Q−1(α)−

√
gTΦT (ΦΦT )−1Φg

σ

)
(5.27)

This result is derived from the fact that the threshold for the detection is also de-

pendent of SNR and the g is known at receivers, which is basically impractical for

receivers to have this information in advance.

The threshold of the proposed detection algorithm described below is independent

of SNR using compressed sensing. The projected vectors for each frame sn0
i in sn0 is

denoted by vn0
i = Φsn0

i , for n0 = 0, 1, . . . , Nb − 1 and shown in Figure 5.12. Define

y = [y1 y2 · · ·yNf
]T and yi = Φri for i = 1, 2, . . . , Nf . Denote vn0 = [vn0

1 vn0
2 vn0

3 ]T

for n0 = 0, 1, . . . , Nb − 1 Then, vn0 is the templates used to correlate with the pro-
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jected received signals y. The proposed detection of signal presence using compressed

sensing is described as follows:

First, for the ith bit with Nf frames, compute the inner product of vn0 and y

for n0 = 0, 1, . . . Nb − 1 and record the k̂ci that maximizes the inner product for

i = 1, 2, . . . , Np, that is,

k̂ci = arg max
n0

〈vn0 ,y〉 (5.28)

This process is performed over Np bits and notice that for each bit one may record

different values of k̂ci . Next, among Np bits, the number of times k̂ci occurred for

different values k, for k = 0, 1, . . . , Nb − 1 is counted. In other words, since the

maximizer of the ith bit is denoted as k̂ci , the following equation determines the

number of times that k̂ci = k:

nck =

Np∑

i=1

I{k̂ci = k}. (5.29)

Last, the maxk n
c
k is compared with an integer threshold to determine whether there

is a signal transmitted or not. The threshold is chosen such that the criteria of the

false alarm (FA) rate is satisfied. The approximation of the false alarm rate will be

derived next.

5.3.2 False Alarm Rate Analysis

Consider the null hypothesis H0 : r = w. The compressed measurement for ri,

the ith frame of the received signal r, can be written as:

yi = Φri = Φwi (5.30)
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The inner products of vn0
i and yi for n0 = 0, 1, . . . , Nb − 1 and i = 1, 2, . . . , Nf can

be expressed as:

〈vn0
i ,yi〉 (5.31)

= 〈vn0
i , φ1wi1 + · · ·+ φNwiN〉 (5.32)

=

(
K∑

j=1

vn0
ij φ1j

)
wi1 + · · ·+

(
K∑

j=1

vn0
ij φNj

)
wiN (5.33)

Notice that the length of vn0
i is K so the summation is from 1 to K. To simplify

the derivation for FA rate, one can assume that the terms wi`(
∑K

j=1 vn0
ij φNj) for

` = 1, 2, . . . , N are mutually independent. The approximation of FA rate with this

assumption is close to the actual FA rate without this assumption and will be shown

in the simulation later. Using this assumption, the derivation of the FA rate for

threshold=1 can be expressed in the following equation:

PFA = 1− P (max
k
nk ≤ 1|H0) (5.34)

= 1−
(
Nb − 1

Nb

)
× · · · ×

(
Nb −Np + 1

Nb

)
(5.35)

where Nb = NNf . This is actually the same as the birthday problem that there

are Nb days in one year and the probability PFA is among Np people more than one

person have the same birthday. However, considering the case for threshold =2, one

needs the solution to the generalized birthday problem [22] to solve the false alarm

rate. With the definition of S2 as the set such that for every k ∈ S2, nk = 2, where

nk is calculated by (5.24), and |S2| as the number of elements in S2, one can write
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the FA probability as follows:

PFA = 1− P (max
k
nk ≤ 2|H0) (5.36)

= 1−
bNp/2c∑

i=1

P (|s2| = i|H0)− P (nk ≤ 1,∀k|H0) (5.37)

= 1−
bNp/2c∑

i=1

Nb!

N
Np

b i!(Np − 2i)!(Nb + i−Np)!

Np!

(2!)i
− Nb!

(Nb −Np)!N
Np

b

(5.38)

Given the threshold = 3, similarly, define S3 as the set such that for every k ∈ S3,

nk = 3 and |S3| as the number of elements in S3, and then the corresponding FA

probability can be expressed as:

PFA = 1− P (max
k
nk ≤ 3|H0) (5.39)

= 1−
∑

i,j≥0
2i+3j≤Np

P (|S2| = i, |S3| = j|H0) (5.40)

= 1−
∑

i,j≥0
2i+3j≤Np

Nb!

N
Np

b i!j!(Np − 2i− 3j)!(Nb −Np + i+ 2j)!

Np!

(2!)i(3!)j
(5.41)

Define the following equation:

P (i, j) = P (|S2| = i, |S3| = j|H0) (5.42)

Then, notice that P (0, 0) = Nb!

N
Np
b (Nb−Np)!

= P (nk ≤ 1,∀k|H0). Last, the derivation of

the FA rate for threshold=4 can be expressed as follows:

PFA = 1− P (max
k
nk ≤ 4|H0) (5.43)

Define S4 be the set such that for every k ∈ S4, nk = 4. Denote |S4| as the number

of elements in S4. Then, the probability P (maxk nk ≤ 4|H0) can be calculated by the
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following equation:

P (max
k
nk ≤ 4|H0) =

∑

i,j,k≥0
2i+3j+4k≤Np

P (i, j, k), (5.44)

where

P (i, j, k) = P (|S2| = i, |S3| = j, |S4| = k|H0) (5.45)

=
1

Np

Nb!

i!j!k!(Np − 2i− 3j − 4k)!(Nb −Np + i+ 2j + 3k)!

Np!

(2!)i(3!)j(4!)k
.(5.46)

5.3.3 Simulation Results

In this section, the simulated FA rate and the approximated FA rate is first illus-

trated with different Np. Then, the detection rates with different thresholds and Np

are shown to demonstrate the performance of the proposed algorithm. In the simu-

lation, the parameters of the system are set as follows: N=64, K=48, and Nf=7.

The simulated false alarm rate and the approximation FA rate with the assumption

that the terms wi`(
∑K

j=1 vn0
ij φNj) are mutually independent are shown in Figure 5.13.

Recall that the received signal is first process by a K ×N projection matrix Φ. One

can observe that the two curves are close to each other, which means the assumption

is valid. Figure 5.14 shows the FA rate versus different thresholds without projection

matrix multiplying on the received signal. In this case, the assumption that inner

product 〈sn0 ,w〉 for n0 = 0, 1, . . . , Nb are mutually independent is also valid since

the two curves are very close. Next, the number of pilots Np is changed to 100. In

this case, the FA rate increases as expected in the formula and shown in Figure 5.15

and Figure 5.16. In Figure 5.14 and 5.16, one can observe that the curves based

one the approximation is lower than the curve based on simulation in the case where

no projection matrix is applied to the received signal. This could be be due to the

fact that in simulation scenario, the inner product terms 〈sn0 ,w〉 are slightly corre-
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Figure 5.13: False alarm rate v.s threshold with received signals processed by projec-
tion matrix Φ, K=48, and Np=75
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Figure 5.14: False alarm rate v.s threshold without received signals processed by pro-
jection matrix Φ, N=64, and Np=75
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Figure 5.15: False alarm rate v.s threshold with received signals processed by projec-
tion matrix Φ, K=48, and Np=100
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Figure 5.16: False alarm rate v.s threshold without received signals processed by pro-
jection matrix Φ, N=64, and Np=100
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lated so the probability maxk nk greater than the threshold is likely larger. In Figure

5.13 and 5.15, the approximation curve is plotted with Kb = KNf=336 instead of

Nb = NNf=448, and thus the FA rate calculated by approximation is higher than

the FA rate by simulation. It is because in the simulation, the possible time shift n0

is range from 0 to Nb − 1 even though the length of the vectors vn0 is Kb. Hence, it

is reasonable that the simulation curve falls below the approximation curve.
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Figure 5.17: Detection rate v.s SNR, for threshold=1 and different Np

Figure 5.17, 5.18, 5.19, and 5.20 show the detection rate for different number of

pilot bits Np from 25 to 200 and for different thresholds, respectively. One can observe

that when received signals are processed by compressed measurement matrix Φ, the

performance degrade at low SNR. However, choosing Np large enough reduces the

the performance loss at low SNR. These figures show that for Np=75, the detection

performance yield good results combined with the false alarm rate results shown

before. Figure 5.19 also demonstrates the performance compared to optimal detection

described in (5.22). It is observed that for Np=25, the proposed algorithm requires

extra 5 to 6 dB to achieve the same detection rate as the optimal detection. However,

77



0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR(dB)

D
et

ec
tio

n 
R

at
e

 

 

Np=25,No Proj.
Np=25,with Projection
Np=50,No Proj.
Np=50,with Projection
Np=75,No Proj.
Np=75,with Projection
Np=100,No Proj.
Np=100,with Projection
Np=150,No Proj.
Np=150,with Projection
Np=200,No Proj.
Np=200,with Projection

Figure 5.18: Detection rate v.s SNR, for threshold=2 and different Np
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Figure 5.19: Detection rate v.s SNR, for threshold=3 and different Np, compared with
optimal detection
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Figure 5.20: Detection rate v.s SNR, for threshold=4 and different Np

the optimal detection is not practical since the knowledge of the signal g and SNR is

needed at receivers in advance.

5.4 Conclusion

In this chapter, the algorithms to synchronize the signal and to detect the existence

of signal are proposed. Using m-sequences and compressed sensing, the proposed

synchronization algorithm can determine the frame offsets between the transmitted

and received signal and estimate the channel estimation at the same time while the

required sampling rate is on the order of inverse of a frame duration instead of a

pulse duration. The BER performance of unsynchronized receivers using proposed

synchronization algorithm is shown to be very close to that with perfect synchronized

receivers.

Exploiting the Barker code and autocorrelation of repeated signals, one can de-

termine the signal presence and the threshold is independent of SNR in my proposed

algorithm. With the independence assumption of the received signal under the null
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hypothesis, the approximated false alarm probability is also derived and shown to be

close to the simulation result. When the threshold equals to 2 or 3, the system with

Np=75 provides a sufficient detection rate while maintaining a low false alarm rate.
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CHAPTER VI

Conclusion

6.1 Conclusion

In this thesis, the method to use the compressed sensing with reduced sampling

rate on received signals to reconstruct the multipath channel template is described.

The different coding and projection schemes including using a Hadamard matrix

are also introduced. Furthermore, the different receiver structures which reduce the

complexity of implementation is presented. The BER performance of CS-correlator

and CS-rake receivers is evaluated and compared with the conventional correlator

by changing the parameters such as number of pilot bits Np, number of projections

K, and number of finger Lc in rake receivers. It can be observed that when these

parameters increase, the BER performance improves. The possible choices for these

parameters are also provided. The practical implementation scenario where the finite

bits resolution is restricted on channel estimation is considered and the effect of finite

bit resolution on BER performance is demonstrated.

Since IEEE 802.15.4a standard only provides channel models for indoor and out-

door but on specific for bridges, the channel measurement is performed under the

bridge carrying I-275 across Telegraph Road, where the sensors are deployed in our

project. The channel capacity based on the measurement of channel impulse response

obtained at the different girders under the bridge across Telegraph Road is evaluated
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with and without channel knowledge at transmitters.

It is important and practical to investigate the algorithm to detect the existence

of signals and the synchronization of signals at receivers. Hence, the method of the

detection and synchronization of signals in UWB system using compressed sensing

technique is proposed. The m-sequence is used to estimate the frame offset and

Barker code and autocorrelation of the repeated signals are exploited to determine the

existence of the signal of interest. The BER performance of a unsynchronized receiver

with proposed synchronization algorithm is very close to a receiver with perfection

synchronization despite the fact that the synchronization error rate becomes flat at

high SNR. This demonstrates that the propose synchronization algorithm is robust

to detect the transmitted information bits even when some synchronization errors

occurred. The proposed algorithm to detect the signal presence provides the threshold

which is independent of SNR at receivers. The false alarm analysis is derived with

the assumption that the inner product of projected received signal y (=w in H0) and

projected templates v are mutually independent. This assumption is illustrated to

be a reasonable approximation by simulated figures. The simulation figures suggest

that with the threshold equaling to 3, the Np=75 provides promising detection rate

while remaining low false alarm rate.

6.2 Future Research

The research in this thesis is focus on a point-to-point communication system. It

can be the next topic to study how to use compressed sensing to address the issue of

a multiple access scenario. Moreover, it is assumed that the delay spread is limited

within one frame duration so no intersymbol interference (ISI) occurs. Hence, the

problem involving ISI can also be investigate in the future.
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