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Abstract

Constructing low-dimensional embeddings based on ordinal measure-
ments has been a subject of significant recent interest, motivated in part
by machine learning applications using human input in a robust way.
Recent work has focused on observations of comparisons on distances be-
tween objects. We consider a different model where the embedding is
formed within a latent space of factors upon which a user may make
judgements in the form of a rank order. The user gives an answer based
on weighting latent factors as opposed to Euclidean distance in the embed-
ding. Our contribution is an algorithm that learns the embedding reliably
and efficiently and can use as much information as the user is willing to
provide in the form of a rank-ordered list.

1 Introduction

The problem of ranking a set of n objects given only partial ordering information
is relevant in many applications, from recommender systems to web search to
resource prioritization. There are also applications wherever people and their
work must be judged: hiring at a corporation, graduate school admissions,
conference publication acceptance, or science fair judging, to name a few. Recent
research in rank learning has shed light on when it is possible to learn the ranking
of objects from various kinds of partial information, and several algorithms have
been developed for this purpose.

The perspective we will take in this paper is where partial ordering obser-
vations arise from a low-dimensional embedding of the objects. Whereas much
recent work considers low-dimensional embeddings that respect distances or dis-
tance comparisons, we consider a different model where the embedding is part
of a latent space of factors upon which a user may make judgements in order
to then come to some conclusion in the form of a rank order. So, questions
common to recent work like “Do you prefer A or B” are still appropriate, but
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Figure 1: Example embedding where a,b,c,d are objects in 2d and judges 1,2,3 weight
factors differently when ranking the objects.

the user is giving an answer based on weighting latent factors as opposed to
Euclidean distance in the embedding. This model is appropriate for problems
where one might assume the users have latent factors under consideration, and
the relative goodness of each object compared along a certain dimension deter-
mines its ranking when considering only that factor. Our goal will be to learn an
embedding for the objects and weights describing each user’s preferences that
match the partial rankings observed. Our contribution is both to formulate
this model mathematically and develop an algorithm that learns the embedding
reliably and efficiently and can use as much information as the user is willing
to provide in the form of a rank-ordered list, as opposed to only pairwise or
triple-wise comparisons.

2 Problem Formulation

We consider the problem as follows. Suppose we have n objects and m judges
who we will ask to rank the objects. We assume that judge j’s ranking is
obtained as

rj = rank order(Uwj) j = 1, . . . ,m

for fixed U ∈ Rn×d that is common to all judges and wj ∈ Rd that are weights
particular to each judge. The operator rank order(x) takes the column x and
outputs the index of a descending sort function; i.e., the output is a vector of
1, . . . , n where the position of the highest number in x will get a 1 and so on.
This model implies that all the judges use some shared criteria for the objects
but weight those criteria differently when ranking.

Consider the example given in Figure 1. Here we have four objects repre-
sented by black circles embedded in R2. The experts or judges are represented
by lines in the plane, and the ranking is the projection of each point onto that
line; note that for this example all the weights are positive. Judge 1, the green
line, weights factor 2 very heavily and factor 1 almost not at all. So the resulting
rank for Judge 1 would be {a, b, c, d} (with a tight call between b, c). Judge 3,
the blue judge, on the other hand feels the reverse about factor 1 and 2 and has
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ranking {d, a, b, c}. Finally Judge 2 (in red) finds both factors to be important
and would rank {a, d, b, c}.

This model is in some sense a special case of the landmark model [1, 2, 3],
where each judge is a landmark placed at an unknown location infinitely far
from the origin, implying that an object that is further away from the origin on
a given axis is favored (in the case of positive weight on that axis; disfavored
in the case of negative weight). Natural applications for this model are those
where judges typically differ not in how much of a quality is good (or bad)
but instead how to weight the qualities for an overall ranking. Applications
that are more natural for the landmark model using distance-based embeddings
are those where a user may actually prefer to have “just enough” of a quality;
e.g., in the beer mapper application [4], you may be interested in slightly hoppy
beer or beer with a moderate yeast flavor as opposed to all hops or no yeast.

3 Related Work

A popular model used for ordinal embedding problems seeks an embedding from
given distances or distance comparisons. Our model, while related, has some
fundamental differences resulting in very different properties. However, much
of our approach to ordinal embedding is inspired by related work that we now
describe.

In an early milestone collection of papers including [5, 6] Shepard and then
Kruskal defined non-metric multi-dimensional scaling to be the problem of find-
ing a configuration of points in dimension d such that observed dissimilarities
between those points are respected. To quote from [6], “it is supposed that the
‘true’ dissimilarities result from some unknown monotone distortion of the inter-
point distances of some ‘true’ configuration, and that the observed dissimilarities
differ from the true dissimilarities only because of random fluctuation.” Since
the true dissimilarities are not formally distances but some distortion thereof,
the problem is called “non-metric.” In Kruskal’s seminal work [6] he proposed
starting from a random configuration and using gradient methods to improve
the stress function, a measure of the difference between a test configuration with
distances dij and given dissimilarities δij , which is:

S =

√√√√√∑(
dij − d̂ij

)2

∑
d2
ij

where
d̂ij = arg minS subject to d̂ij ≤ d̂k` ⇔ δij ≤ δk` .

The work in [7] generalizes the approach of Kruskal and Shepherd to the case
where dissimilarities are not used but only the ordering of them is exploited;
they call this generalized non-metric multi-dimensional scaling (GNMDS) and
we will also use this naming. This leads them to the following optimization
problem. Let G = XTX be the Gram matrix for a set of points in a matrix X.
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Suppose we are given a set of constraints for some pairs of points such that we
know only δij ≤ δk`; call this set Ω. The paper proposes solving the following
semidefinite program:

minimizeG,ξijk`

∑
(i,j,k,`)∈Ω

ξijk` + λ trace(G) (1)

subject to Gkk − 2Gk` +G`` −Gii + 2Gij −Gjj
≥ 1− ξijk` ∀(i, j, k, `) ∈ Ω (2)∑
ab

Gab = 0; G � 0 .

The objective (1) minimizes the sum of slack variables and the weighted trace of
the matrix variable to regularize for rank of the embedding. The constraints in
(2) capture all of the comparison information that we have, requiring the points
to satisfy those constraints with some buffer (a constant 1 in this case) and
allowing slack using the variables ξ. Finally,

∑
abGab = 0 centers the embedding

to remove translational ambiguity and G � 0 imposes the PSD constraint. Our
work takes a very similar algorithmic approach by minimizing slack variables
associated with constraints from the ranking information given. However, we
assume the desired embedding dimension is given, which allows for a faster
and more scalable algorithm without the nuclear norm regularization. Our
constraints are also more structured; since each judge gives ranking information
for a set of objects, we can reduce redundancy introduced by the slack variables
of related constraints.

This work in turn inspired many other algorithmic developments. As two
examples, we describe [1, 8]. The work of [1] proposes an algorithm for landmark
generalized non-metric MDS where comparisons are made only to points in
a landmark set with known locations. Then a convex optimization problem
is executed to find the location of each new point. This problem looks very
similar to that in (1) except (a) with only constraints on a point’s relationship
to the landmark points and (b) without the rank regularization, since we know
the dimension from the landmark points. The work of [8] seeks an ordinal
embedding of relationships in a kNN graph; in other words, for each point x
we are given information as to which k other points are closest, and from this
information we want to reconstruct the embedding. Their approach is to split
the graph into overlapping patches, find an embedding on each patch using
Local Ordinal Embedding [9], and then stitch those patches together by finding
an orthogonal transform and shift for each individual patch that matches nicely
on the overlap.

While all the work described thus far focuses on algorithms, as does our
work here, a great deal of recent effort has gone towards understanding theoret-
ically when ordinal embeddings are unique and recoverable. This line of work
includes [10, 9, 3], which ask when a N comparisons are enough to uniquely
determine an embedding up to a similarity transform. [10] gives uniqueness
results assuming the sample size becomes dense in the embedding space Rd.
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[9] follows up to solve some open questions of [10] and gives results based only
on local information (like the kNN mentioned above). [3] further extends these
results that were only for quadruple comparisons (of the form d(ij) < d(k`))
to the case of triple comparisons (of the form d(ij) < d(jk)). Both [10, 3] as-
sume that all comparisons are available, and that as the number of objects n
grows they become dense in Rd. [3] also gives rates that say as the number
of objects n grows, an embedding can be found that is within some εn Haus-
dorff distance from the true embedding. Again, all comparisons are available.
And in these works, they assume the comparisons are consistent with some true
low-dimensional underlying embedding.

A more recent paper by Jain, Jamieson, and Nowak [11] addressed a tech-
nique similar to [7] and provides even more general guarantees. This paper gives
prediction error bounds for an ordinal embedding learned from only a subset
of all the distance comparisons, and the comparisons may be noisy where the
noise is modeled as a probability p with which the user swaps the comparative
distance inequality. Again where G is the gram matrix, given regularization
parameters λ, γ they solve

minimizeG R̂(G)

subject to G ∈ Sn+, ‖G‖∗ ≤ λ, ‖G‖∞ ≤ γ , (3)

where R̂(G) is the empirical risk over the triple comparisons observed, ‖ · ‖∗
is the nuclear norm and ‖ · ‖∞ is the max absolute value of all entries of the
matrix. They analyze this program under arbitrary probabilities of error, but
in the case that the probability of error decreases as the distances are further
apart according to a known link function (such as logistic), they also guarantee
recovery of the original distance matrix (up to invariances) using the maximum
likelihood embedding. They propose two algorithms, one alternating a step of
a gradient method with a low-rank projection step, and another building off
the existing nuclear norm methods by adding a debiasing step to improve the
estimation accuracy.

Both the optimization algorithm of [7] in Eq (1) and of [11] in Eq (3) inspired
the Aura Algorithm we present in the next section. However, our model is quite
different, and so the results we have just described using distance comparisons
are not directly applicable. Consider again the example in Figure 1. From
the ranking information we observe, we cannot recover distance comparisons.
Judge 2, for example, ranks {a, d, b, c}, but this does not imply that dist(a, d) <
dist(a, b). The same is true for Judge 3; her rank is {d, a, b, c} even though
dist(d, a) > dist(d, b) and even dist(d, a) > dist(d, c).

Our model additionally allows for a PCA-like analysis, where the factors
and weights identified in the embedding may have a semantic meaning that will
allow a deeper understanding of the judges and objects involved. This would in
turn allow one to improve judge diversity and facilitate active selection of which
new objects a judge should incorporate into his ranking. The second strength
is that this model, when restricted to have positive weights, can be naturally
applied to the rank aggregation problem, a well-known difficult problem in social
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choice theory.

4 The Aura Algorithm

We suppose that several judges are queried, each on a subset of objects, and we
observe a resulting ranking matrix:

R = rank order([UW ]Ω)

where W =
[
w1 . . . wm

]
is the matrix stacking each judge’s weights as

columns, Ω ⊂ {1, . . . , n} × {1, . . . ,m} is the subset of object-judge pairs that
were part of the query, and it is understood that rank order is applied to each
column individually and only the observed items therein. From here we wish to

Algorithm 1 Aura Rank Satisfaction

Input: R, d, tolerance ε, max iterations
Output: Û , Ŵ
Initialize random Û ∈ Rn×d, Ŵ ∈ Rd×m
R̂ = rank order([ÛŴ ]Ω);
Set τj(i) = k such that rj(k) = i for all (i, j) ∈ Ω where rj is the jth column
of R.
for ` = 1 to max iterations do
if ‖R− R̂‖F ≥ ε then

Update Û by solving

minimize
Û,ξ∈RM

‖ξ‖1 (4)

subject to Uτj(i)wj ≥ Uτj(i+1)wj + 1− ξij (5)

and ξij ≥ 0 ∀(i, j) ∈ Ω

where wj are columns of W and Uk are rows of U , and M is the number
of constraints.

end if
if ‖R− rank order(ÛŴ )‖F ≥ ε then

Update Ŵ by solving

minimize
Ŵ ,ξ∈RM

‖ξ‖1 (6)

subject to Uτj(i)wj ≥ Uτj(i+1)wj + 1− ξij (7)

and ξij ≥ 0 ∀(i, j) ∈ Ω

end if
end for
Return Û and Ŵ

6



estimate Û and Ŵ so that

rank order([ÛŴ ]Ω) =: R̂ ≈ R .

The Aura Ranking algorithm begins with a fixed embedding dimension and
randomly initializes the n × d matrix Û and d × m matrix Ŵ . We then use
alternating minimization to solve for Û , Ŵ , enforcing the sorted order of every
column in ÛŴ with constraints to approximate the information given in R.
After convergence, the algorithm outputs Û , Ŵ such that rank order([ÛŴ ]Ω) =
R̂ ≈ R. The algorithm is given in Algorithm 1.

We make a few remarks about our proposed algorithm. It is a natural al-
ternating estimation algorithm for the low-rank embedding given by our model.
Since each judge ranks several objects in order, we only need to constrain those
objects that follow each other in the ranking, eliminating redundancy that may
be in the slack variables of Eq (1). We require the embedding dimension as
input. We also require as input a maximum number of iterations, but we find
that an embedding consistent with the given ranking information is often found
in just a few iterations (see e.g., Fig 2(b)) and the decrease in objective (or lack
thereof) is a reliable indicator of whether the algorithm will succeed in finding a
consistent embedding. Finally, even with random initialization we get excellent
results, as we now demonstrate empirically.

5 Numerical Results

We implemented Aura with cvx [12] in Matlab.

5.1 Full observed rankings.

We begin with the case where every judge ranks all the objects and we observe
these full rankings. We vary the number of objects and number of judges for two
different embedding dimensions, d = 2, 10. For a range of number of objects (n)
and number of judges (m), we plot several metrics to show that the performance
of Aura is very strong, despite it being a simple alternating algorithm solving
a highly non-convex and underdetermined problem. First in Figure 2(a) we
sweep the number of objects n from 5 to 85 and number of judges m from 5
to 100 to show that from a random initialization, this algorithm succeeds in
finding an embedding to match the given ranking matrix at a rate of nearly
100%. When there are too few judges for the number of objects, we have
worse performance. Figure 2(b) shows we require a small number of algorithm
iterations for convergence. More iterations are needed for larger problem sizes,
as expected. In Figure 2(c) we show a metric that demonstrates the accuracy of
the underlying embedding itself: we compute all three angles of every triangle
formed by the objects in both the true and estimated embedding; we take the
difference between the corresponding angles and average over all angles in the
embedding. Figure 2(d) we show the proportion of successful trials for higher
embedding dimension d = 10.
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5.2 Partially observed and Noisy rankings.

In Figure 3 we show results for partial rankings. When the sampling density
is above or below a certain threshold, the algorithm is able to match the given
ranking information. The angle to the true embedding, on the other hand,
improves smoothly as we increase both the number of judges and proportion of
objects ranked. In Figure 4 we show the noisy results; when we add noise to
X = UW and the noise is high enough, our algorithm does not match the given
rankings because X is no longer low-dimensional. The rightmost plot however
shows error in the embedding, computed simply by ‖R − R̂‖2F /nm. Below a
certain noise level, the error is < 0.2, which could correspond to a scenario
where roughly a fifth of the rank orders are off by only 1 position.

5.3 Embedding examples.

Finally, we show examples of embeddings in R2 recovered by Aura in Figure
5. To align them for visualization purposes, we matched the points with label
1 and 2 by translation and scale, and then with reflection we ensured label
3 is on the correct side of the 1-2 line. We show both successful embeddings
for full and partial rankings as well as failed embeddings, where the random
initialization did not admit a match within 20 iterations. We can see that the
successful embeddings are very well aligned with the original, true embeddings.
The failed embeddings both seem to have begun to collapse to a line; studying
this phenomenon is a subject of future research.

6 Conclusion

We have proposed a new model and associated algorithm for ordinal embedding
from ranking information. When full ranking information is given, the Aura
algorithm succeeds in finding an embedding to match the given ranking matrix
at a rate of nearly 100%, despite being an underdetermined and non-convex
problem. Aura’s performance degrades gracefully with partial rankings and
noise. Our various experiments illustrate a variety of compelling directions for
future work.

We require the embedding dimension be specified. One could start with a
small dimension and increase it until the results are satisfactory; studying this
approach is a subject of future work. Identifying an initialization better than
random is another interesting direction for future work.

While the empirical results for Aura are compelling, we lack theoretical
guarantees. The various experiments illustrate a variety of potential routes
to understand Aura theoretically. In particular, success in matching partial
rankings has a clear trend where for a moderately small number of ranked
objects the algorithm stalls entirely, despite the fact that this would result
in fewer constraints. Finally, when a random initialization does fail it seems
to often find an embedding that has collapsed to a line; understanding this
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phenomenon could help improve the iteration and the reliability of algorithm
convergence.
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(b) d = 2 Algorithm steps required
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Figure 2: This figure shows recovery results for the Aura algorithm for d = 2, max-
imum allowed 40 steps, and full rankings observed. (a) Proportion of 100 trials that
succeed in finding an embedding to match the full given rankings. (b) Number of
algorithm steps (two per iteration) required to converge to a matching ranking. (c)
The average difference between all angles (computed from every triple of points) in
the original and estimated embedding. (d) We increase the embedding dimension to
d = 10 and show the proportion of 100 trials that succeed. Here we see a stronger
trend that the proportion of objects to judges must not be too large or small.
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Figure 3: This figure shows recovery results for the Aura algorithm given partial
rankings. d = 2, n = 30, varying sampling density and m. (a) Proportion of 100 trials
that succeed in finding an embedding to match partial rankings. (b) Number of alg
steps required to converge. (c) Average angle difference to original embedding.
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Figure 4: This figure shows recovery results for the Aura algorithm given noisy rank-
ings. d = 2, n = 50, varying noise variance and m. Noise is added to each entry of the
matrix X = UW , so it becomes impossible to match the rankings because the true
data are not low-dimensional. (a) Proportion of 100 trials that succeed in finding an
embedding to match noisy rankings. (b) Number of alg steps required to converge.
(c) Error to true rankings (before noise) averaged over 100 trials.
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(d) Partial rankings, failed embedding

Figure 5: This figure shows example embeddings for successful runs and failed runs
of the Aura algorithm for d = 2, n = 15, m = 20. We call them ‘adjusted’ because we
have translated, scaled, rotated, and reflected our estimated embedding to match the
original by first matching points 1 and 2, and then reflecting to make sure point 3 is
on the same side of the 1-2 line. (a) Successful embedding with full data. (b) Failed
embedding with full rankings. We see the embedding begins to collapse. (c) Successful
embedding with 60% items ranked. (d) Failed embedding with 60% ranked.
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