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ABSTRACT

The true weighted least-squares (WLS) arrival time esti-
mator for scintillation pulse detection was previously found
to out-perform conventional arrival time estimators such as
leading-edge and constant-fraction timers, but has limited
applications because of its complexity. A new diagonalized
version of the weighted least-squares (DWLS) estimator
has been developed which, like the true WLS, incorporates
the statistical properties of the scintillation detector, The
new DWLS reduces estimator complexity at the expense
of fundamental timing resolution. The advantage of the
DWLS implementation is that only scalar multiplications
and additions are needed instead of the matrix operations
used in the true WLS. It also preserves the true WLS's
ability to effectively separate piled-up pulses. The DWLS
estimater has been applied to pulses which approximate
the response of BGO and Nal(Tl) scintillation detectors.
The timing resolution cbtained with the DWLS estima-
tor is then compared to conventional analog timers along
with the Cramér-Rao lower bound on achievable timing
error. The DWLS out-performs the conventional arrival
time estimators but does not provide optimal performance
compated to the lower bound; however, it is more robust
than the true WLS estimator.

Y. INTRODUCTION

In order to improve the timing resolution in scintillation
pulse detection, a weighted least-squares (WLS) arrival
time estimator was developed by Petrick et. al. [1]. This
estimator incorporates the first-order and second-order
statistics of the detection signal into the estimator struc-
ture, unlike the common leading-edge [2] and constant-
fraction [3] timers. The general form for the single-pulse
WLS timing estimator was derived in [1] and is given as

Tage = axgmin(X — J()TEK T (X - a(n), (1)
where

A7) B{X(r)} @
K(r) B{X(r)-a)(X() ~ T}, ()

*This work js supported by the National Cancer Institute, DHHS,
under grant CA46622.

n

are the estimated mean and covariance function of the de-
tected signal respectively. The general WLS structure was
then expanded in [1] to the detection of a pair of piled-up
optical pulses and is given as

oy = argminf(X ~ A(n) ~ in)” -
(K(n) + K(m))™*.
(X — a(n) ~ a(m))], (4

where fi(7;) and K (r;) correspond to the estimated single-
pulse mean and covariance of Eqs. (2) and (3). The WLS
estimator was found to significantly out-perform both the
leading-edge and constant-fraction timers for simulated
BGO and Nal(Tl) scintillator pulses [4]. The WLS struc-
ture also provided the ability to accurately detect mml-
tiple overlapping pulses. This full WLS implementation
has found limited application in real-time systems because
of its computational complexity. In the single-pulse im-

plementation of Eq. (1), K _l(r) can be precomputed but
two matrix multiplications must still be performed for each
time step. This either restricts the sampling rate of the
data collection or relegates the estimator to off-line appli-
cations. The problem is compounded in the double-pulse
case where, along with the matrix multiplications, 2 matrix
inversion must also be performed for each time step.

In this paper, we propose a variation on the full WLS
arrival time estimator. This new estimator, denoted the
diagonalized weighted least-squares (DWLS) arrival time
estimator, is a simplified version of the WLS algorithm
which still ineorporates the first-order and second-order
moments of the scintillation signal. The DWLS estima-
tor was applied to scintillator-type optical pulses having a
fast rise time and 2 longer exponential decay in an anal-
ogous fashion to [4]. Each of the opiical pulses produce
between 100 and 1000 photo-electrons in the PM tube’s
photo cathode, which is a range consistent with the op-
tical signals produced by BGO and NaI{Tl) scintillation
crystals when stimulated by 511 KeV gamma rays.
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II. DIAGONALIZED WEIGHTED LEAST
SQUARES TIMING ESTIMATOR

The diagonalized weighted least-asquares (DWLS) arrival
time estimator was developed as a simplified implemen-
tation of the WLS algorithm by zeroing all off-diagonal
terms in the covariance matrix. It has the form of a WLS
algorithm where the weighting is given by the inverse of
the diagonal elements of the covariance function, X', The
DWLS estimator can therefore be written as

n=1
Tiwts = argmin {; Iﬁi)]‘;(&' - #-'(1'))2} y o (8)

for the single-pulse case, and is extended to piled-up pulses
by minimizing over all the arrival times. This leads to a
double pulse DWLS estimator given by

{"_1 (zi ~ pi{m) — #s‘(‘fz))z} R

4
Tdwls = aTg f_ii!rlgl

B (r )l + (K (m2)lis

-The diagonalized implementation becomes obvious upon
examination of the multiple-photon covariance estimate,
K (7). Fig. 1 depicts the estimated covariance mairix for
single optical pulses comprised of approximately 500 pho-
tons. This figure illustrates that for multiple photon pulses
the off-diagonal terms are much smaller than the terms
along the diagonal. In fact the width of the covariance
is'of the order of the single-electron response (SER) time
width indicating that the correlation is due to the PM tube
aod not the optical source. Therefore, if the optical pulse
width is large compared to the duration of the SER the
covariance will be dominated by its diagonal elements.

IIT. CRAMER-RAO LOWER BOUND ON
TIMING ERROR

In order to compare the WLS estimator’s timing per-
formance with the optimal minimum mean-squared er-
tor estimator, the Cramér-Rao (CR) lower bound over a
range of large photo-clectron intensities was introduced
in [4]. The general form for the multi-dimensional co-
variance matrix for unbiased estimator errors £ — r :=
[A(X) — 11, 22(X) = m2]T is given by

E{z-D@E-nT}2J7, @

whete J is the Fisher information matrix [6]. The elements
of J can be written as

oy =-p{ PR

and the CR bound on the variance of unbiased estimators
for one of the arrival times, 7;, is

E{(n - a(X)'} 20 % &)

where [J7Y);; is the ,i** element of the inverse Fisher
information matrix J~1 [6].
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Figure 1: The estimated covariance from single optical
pulses comprised of approximately 500 photons each.

Using the assumption that the detector response becomes
Gaussian as the number of photo-electrons increases, itiis
possible to develop an expression for the high intensity GR
lower bound based solely on the mean and covariance of
the detector responses. The CR bound for single optidal
pulse simply reduces to

CR Bound—[ ) g1, )d‘;(:))

~1
LSy d—%,s—f)he-m.,] R

where (1) and K(r) correspond to the mean and covati-
ance of the detector response. The double-pulse CR hhs
the form

I
CR. Bound = \/[1_1]1,1 + I 22, (11)
where
10p7 oy Op | 1087 o, Op
[J]"’ 2 8r; K 61-, 7 6‘1'; a7
1 K-t -
oL N
=1 m=1 :

The parameters g and K in Eq. {14) correspond to tile
double-pulse mean and covariance function, and were a.p-
proximated using

#(n,7) = 3(n) + ft(r) and (13)
K(n,n) = K(n)+ f{('rg). (14)
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Figure 2: The experimental apparatus used to digitize the
Burle 8850 PM tube’s response to single optical pulses.
Note, the input pulses where created using a Berkeley Nu-
cleonics BH-1 tail-pulse generator and the output was dig-
itized using a Tektronix RTD720 real-time digitizer.

IV. MATERIALS AND METHODS

The DWLS estimator was applied to the digitized out-
put signal produced by a Burle 8850 PM tube. The exper-
imental apparatus for digitizing the Butle 8850 PM tube’s
response to single optical pulses is depicted in Fig. 2. The
single optical pulses were created by a pulsed LED and
contained between 100 and 1000 photo-electrons per pulse.
Fig. 3 show a typical optical intensity profile produced by
the pulser and a light emitting diode. This pulse has an
bi-exponential shape with a 20 ns rise and 50 ns decay time
measured between 10% and 90% of the mean signal peak.

Three different sets of PM tube responses were digitized
and stored using the apparatus of Fig. 2. The different
sets of responses correspond to average optical intensities
of 100, 500 and 1000 photo-electrons per optical pulse. In
this study, over 2500 individual PM tube responses were
digitized and stored for each optical intensity.

To evaluate the single-pulse diagonal WLS estimator,
the mean and covariance matrices were estimated for each
of the 100, 500 and 1000 photo-electzon optical intensi-
ties using 2092 of the digitized responses. The estimated
mean, fi{t), and the diagonal terms in the estimated co-
variance, K'(r), were then used in the application of the
WLS estimator of Eq. (5). This estimator along with the
full WLS estimator of Eq. (1) were applied to a set of 523
PM tube responses for each optical intensity and the re-
sults were compared to each other and to the Cramér-Rao
lower bound for achievable timing error.

Pairs of piled-up PM tube responses were created with
approximately 50% pulse overlap by combining 2 sets of
digitized detector responses giving the typical iniensity
profile depicted in Fig. 4 with pulse separation 7, — 7.
The estimated single-pulse mean and the diagonal terms
of the estimated covariance were again used in the imple-
mentation of the double-pulse DWLS estimator of Eq. (8).
In this case, the single-pulse mean, f, and covariance, K,
were delayed by the two arrival time 1y and 2. The de-
layed versions were then added to their counterparts to
create the double-pulse mean and covariance. The double-
pulse DWLS estimator was applied to a set of 523 double-

Figure §: The exponentially shaped optical intensity and
photo-electron distribution used to stimulate the Burle
8850 PM tube. The intensity has 20 ns rise and 50 ns
decay components.
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Figure 4: The exponentially shaped optical intensity and
photo-electron distribution for 2 pair of overlapping optical
pulses. Each of the single-pulse intensities has 20 ns rise
and 50 ns decay component.

pulse PM tube responses and compared with the full WLS
estimator and the CR lower bound on achievable timing
performance.

The performance of the estimators were compared using
the standard deviation (SD)}, \/E{(# — E(#;))?}, of the
arrival time estimates.

For a complete description of the digitization of the op-
tical pulses and the implementation of both the full WLS
and diagonalized WLS estimators refer to Refs. [4] and [5].

V. RESULTS AND DISCUSSION

The single-pulse DWLS estimator along with the full
WLS estimator were applied to the digitized time histo-
ries. The resulting timing resolution for the 100, 500 and
1000 photo-electron optical pulse is given in Table 1 along
with the measured leading-edge and constant-fraction res-
olutions. This table also includes the minimum achievable
timing error given by the Cramér-Rac lower bound.

The DWLS estimator out-performs the analog leading-
edge and constant-fraction timers when the optical inten-
sity is low (i.e. the 100 photo-electron case) but these
estimators are comparable for the large photo-electron in-
tensities. This is not the case with the full WLS imple-
mentation where it maintains an advantage in the high
intensity regime as well. None of the estimators approach
the fundamental limit of the Cramér-Rao bound in this
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LE CF | WLS | DWLS| CR DWLS | WLS CR
Photons | Error | Error | Error { Error | Bound Photons Error | Error | Bound
per Pulse | (ns) | (ns) | (ms) (ns) {ns) per Pulse | Overlap | (ns) (ns) (ns}
100 3.03 2.96 1.99 2.36 0.117 500 50.9% 3.04 0.53 0.269
500 1.98 1.92 1.40 1.87 0.109
1000 167 | 1.68 | 0.36 1.50 0.080 Table 3: The performance of the DWLS and the true WLS
arrival time estimator using the matched covariance funec-
Table 1: The performance of the leading-edge (LE), tion, Kop(7), for the detection of pairs of gamma rays

constant-fraction (CF), WLS and DWLS arrival time es-
timators for the detection of single gamma rays where the
optical pulses have 20 ns rises and 50 ns decays. ‘This ta-
ble also includes the Cramér-Rao (CR) lower bound on
achievable timing error where the timing error is the stan-
dard deviation of the estimated arrival times.

DWLS | WLS CR
Photons Error | Error { Bound
per Pulse | Overlap | (ns) (ns) {na)
100 48.9% 4.02 5.71 | 0.297
500 50.9% 3.08 | 3.61 | 0.269
1000 50.7% 240 | 1.44 | 0.228

Table 2: The performance of the DWLS and the true WLS
arrival time estimator for the detection of pairs of gamma
rays where the optical pulses again have 20 ns rise times,
50 ns decays and overlap by 50%. This table also includes
the double-pulse Cramér-Rao (CR) lower bound on timing
error where the timing error is the standard deviation of
the estimated arrival times.

implementation. The large error associated with the WLS
estimator is probably due to the estimation errors in the
off-diagonal terms of the covariance matrix [4].

The double-pulse timing resclution for the diagonalized
and full WLS implementation is given in Table 2 along
with the corresponding Cramér-Rao lower bounds,

These results indicate a different trend. The diagonal-
ized estimator out-performs the full WLS implementation.
This should not be the case if we have accurate measure-
ments for the double-pulse mean, p(ry, ), and covariance
matrix, K(ri,72). In the full WLS implementation we
use the single-pulse covariance in the double-pulse imple-
mentation. A problem again arises with the off-diagonal
terms in this covariance matrix, The off-diagonal terms jn
this matrix are much smaller than in the single-pulse case
making them meore difficult to estimate, The results of Ta-
ble 2 indicate that we are not accurately estimating these
off-diagonal terms, leading to the DWLS estimator out-
performing the full WLS implementation. Table 3 sum-
marizes the WLS error found when a matched covariance
matrix is used in the estimator sttucture. From this ta-
ble, we see that the full WLS implementation does indeed
approach the Cramér-Rao bound while there is only slight
improvement with the diagonalized version.

VI. CONCULSION

These results indicate that the DWLS arrival time esti-
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where the optical pulses again have 20 ns rise times,:50
ng decays and overlap by 50%. This table again include
the double-pulse Cramér-Rac (CR) lower bound on timing
error where the timing error is the standard deviation of
the estimated arrival times.

mator can be used to approximate an optimal arrival time
estimator and provides improved timing resolution over
leading-edge and constant-fraction timers. 'The DVVILS
estimator structure is simply one of weighting and sujm-
ming the output signal from a PM tube. This stmct".f:e
opens the possibility for a hardware implementation which
would allow the estimator to be applied in real-time appli-
cations. A real-time implementation of this DWLS e#ti

mator would provide improved performance over leaditg-
edge and constant-fraction timers when the detector pko-
duces a significant number of piled-up optical pulses, l‘ut
would only provide small improvements for isolated optlka.l
pulses, '
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