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Abstract

A marked point process model of a position-sensitive de-
teetor is developed which includes the effeets of detector ef-
ficlency. spatial response, energy response. and source statis-
tics, The average mutual infornuation hetween the incident
distribution of y-rays and the detector response is derived
and used as a performance index for detector optimizarion.
A Dbriefl example is presented wlich uses this Sgure-of-uerit
for optimization of light guide dimensious for u modular scin-
tiliation carnera.

Introduction

The full-width at half-maximum (fwlun) of the poinr re-
sponse function (prf) of a peosition-sensitive detector or canr-
cra has been a hallmark of sorts in performance assessment.
However, to be a useful nieasire of resolution, it requires spa-
tial linearity and a point response function shape invariant of
location, Furthermeore. the fwlin can be of marginal value in
assessing requisite design frodeoffs or examining performance
with respect to an optimal estimation rule or “resolution re-
covery” scheme.

Perhaps the best method to assess performance would be
to define a measure of distortion or fidelity that Lias o mean-
ing of accuracy in light of a specific task. With the complete
transfer characteristies of the detector in hand. we eould an-
alyze the detector performance relative to this weasure of
accuracy. Tlis is generally a difficult approach. Cameros are
usually required to perform multiple tasks, many of which
have poorly specified distortion criterin.  Additionally, per-
formance evalnation of the optimal estimation e with re-
spect to a general distortion measure may itself be an onerous
task. To avold these problems, more diffuse performance cri-
teria are often used-- mean-squared error. for example. The
premise 1s that optimization with respect ta one of these more
tractable measures may optimize performance with respect to
a task of interest.

The patlh taken liere is somewhat more diveet. We make use
of a fundamental quantity representing the average iuforma-
tion conveyed from a photon or particle distribution incident
on a camera to our observations, This quantity is known as
the average mutual information and provides a lower bouud
on the achievable performance with respect to any distortion
nreasure,

This brief note will develop a marked-point process model
of a camera, associated average mutual information and con-
clude with a practical exunple in which we cnploy these
methods to assess the performance of a scintillation detector
for tomographic imaging with respeet to variations in light
puide dimensions.

Background

The average of the mutual information between two ran-
dom vatiables, X and Y, is defined as:

dPxzy(#, y)
dPx(z)dPy(y)

where Py(2) denotes the probability distribution of the ran-
dom variable X. The differential Py (z) reduces to a prob-
ability density function (pdf), if one exists, or a probability
mass fuction if X assumes discrete values. In classical Shan-
non terminology, dPy{x) represents the source of information
aud d Pxy (2, y)/dPy(y) is the channel through which the in-
formation is relayed.

A particularly revealing decomposition of I{X;¥) is ob-
tained by rearranging (1) and applying Bayes’ rule,

I(X:1) = frxydﬂyy(m,y)ln (1)

I{X:Y) = H(X) - H(X|Y). (2)

Here H{X) is the average o priori uncertainty of the random
variable X or the source entropy,

H(X) = —jx dPy(z)1ndPy(z). (3)

The conditivual entropy. H(X|Y), is often called the equivo-
cation and is the average remaining uncertainty in our knowl-
edge of X once ¥ has been specified. The equivocation is
defined as,

B == [ P IndPay(ely). (4

If ¥ and X are independent, the value of ¥ tells us noth-
ing about .V and H(Y¥1X) = H(X)—the average mutual in-
formation reaches its minimum of zero. On the other hand
if knowledge of 17 is entirely equivalent to knowing X then
H{X|Y") = 0 and the mutual information atiains its maxij-
mum, F{X).

Average mutual information is a measure of how well we
can reconcile the value of one rendom variable given the
observation of another, hopefully related, random variable.
Specifically, J{X:1) can be related to a lower bound on the
accuracy to which we can estimate X with respect to a wide
class of distortion critezia. For example, if the distortion
measure is mean-squared error, we liave the bound,

—_— 1 i i TN Y
2 2 — Czh'(.\ }c-lxalnal[.\ B ), (l-))

£+

where the maximization is performed over all source distri-
butions, Px(z). Similar bounds can be derived for other dis-
tortion measurcs.}
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Figure 1: Marked point process camers model. Quantum
incident at time £; is detected while incident quantum at time
t; is not,

ode

In what follows we will develop a marked point-process
model for the observation of a photon or particle distribution
incident on a camera. This approach is similar in spirit to
the model developed for SPECT aperture design.!

Consnier the attributes we. wish to estimate from a se-
quence of events incident on a detector — usually the location
and energy of each event (Figure 1). We assume that the ar-
rival times of these quanta during the observation interval
are governed by an inhomogeneous Poisson counting process,
N, with instantaneous rate, A(#). An n-point realization of
this process on the observation interval [0, T] is given as the
set of artival times, {f1,...;2,}. With each arrival time we
associate the attributes of the incident radiation and form a
marked point process, (N,{X, Z)), with corresponding real-
ization, {(t1, (21,1)), - - -, (tny (24,4))}s where x; is the loca-
tion of the ith quentum and (; its energy. ‘We assume that
z; and ¢; are drawn from the mark space, X x Z according
to a known source pdf, f(z,¢), which is mdependent of time
during our observation.

This incident point process excites an observation process,
{N, W), defined as follows. If the incident photon or particle
is detected we associate with its detection time a collection
of attributes from which we can estimate its position and
energy. If the quantum fails to be detected, we simply anno-
tate the corresponding arrival time with this fact. Accord-
ingly, a realization of our observation process takes the form,

+{tn, wn)} where the mark wy is,

{(th UJ]_),. .-
0= (:,&:) ith quantum detected
B Y/ otherwise

where 1; and f,- are the estimates of position and energy re-
spectively, and U is the mark denoting failure of detection.
Conditioned on N the w; are assumed to be independent,
identically-distributed (i.i.d.) random variables in the ob-
servation interval. Knowledge of the quanta that fail to be
detected is information that is not usually available from our
observations; howevm it allows the development of an upper
bound on the true average mutual information which takes &
relatively simple form.

The average mutual information between the observation
process, { ¥, W}, and the attributes of location and edergy in
the incident process is

dP(W|(X, Z), N)

T((X, Z),m): (N, W) = B [1“ dP(WIN)dP(r)

(6

where the expectation is taken with respect to the joint statis-
tics, dP(W, (X, Z), N).
Due to the fact that the w; are conditionally independent
given N we write:
dP(W|(X,2),N) = H dP(wi|(z;, (). €3}
Toi=l
Flyir&ilza ()1 — P(Ulzi,¢))  detected |
P(Uiz,—, C,) otherwise
(®
In (8), f(wi,&ilwi,¢i) is nothing more than the response of
the camera to a photon detected at location @; with en-
ergy, ¢, and normalized to unit area. As such it represents
the normalized point-energy impulse response of the camera.
P(U|(4,¢:)) is the probability that an incident quantum fails
to be detected.
Again, using the independence of the w;, we have,

dP{wil(zi, ¢:)) = {

dP(WIN) =[] dP(w;). ©
i=1
From the Poisson assumption on N:
L
aP(n) = X (10)

Substituting (7), (9) and (10) into (6), and noting that the
w; are i.i.d., we obtain the result:

I((X, 2),n); (W, N)}) = AI((X, Z; W) + H(n),  (11)
where A is the expected number of incident quanta clurmg
the observation interval, [0,T] and H({n) is the entropy ofa
Poisson random variable with rate A.

Since A and H(n) are independent of the camera parame-

ters, we focus on the rate independent average mutual infor-
mation,

I(X, 2% W) fly, €lz, c)]

E [(1 — Pl ) =
. [ P(UIx,C)]

) (12)
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Figure 2: SPRINT I{ tomograph. The eleven modular detec-
tors are arranged around the periphery.

The cxpectation in the first term is taken with re-
spect te fly, &lw, () f(x.{) and the second with respect to
P(Ulx, C)f(x, (). Inspection of (12) reveals that the camera
prf enters only inte the first term. If changes to the detector
are made which do not modify its detection efficieney, max-
imizing (12) corresponds to maximizing its fivst termt with
respect to the point-energy impulse respouse. It is also in-
teresting to note that if the detection probability is constant
over the region where the source density is non-zero, the see-
ond term vanishes.

The maximization of the avernge mutual information of-
ten coincides with what we intuitivley feel should he high-
information. As an example, cousider only the position de-
pendence of (12) and fix energy response and detection effi-
ciency. For gaussian, spatially invariant prfs. and a gaussian
or extended source density, maximizing (12) is equivalent to
minimizing the fwhm of the point respouse function.!

Applications

We applied average mutual information as a tool for op-
timizing the modular detector performance of SPRINT 11—
a second generation ring geometry tomograph for SPECT.?
The arrangement of the eleven camera modules in this in-
strumnent Is shown in Figure 2. Each nodular detector in
this unit is comprised of 45 discrete hars of Nal(T1) scintilla-
tor, optically coupled to a light guide setup whose thickness
must be chosen to yield optimum performance. A x5 hex-
packed array of PMTs is affixed to the light guide and their
outputs are routed to a position computer which caleulates
maximum-likelihood position estimates in veal-time* & pic-
torial diagram of this detector is shown in Figure 3.

Because of the geometry of SPRIXT II. detector perfor-
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Figure 3: Pictorial diagram of the modular detector showing
the individual Xal{Tl} sciutillator bars and the photomulti-
plier arrangment. The light guide is between the detector
and the PMTs.

mance requirements are critical in the azimurhal (z) direc-
tion. An error in position in this direction on the detector
results in a 211 ervor at the center of object space. By vary-
ing the lght guide thickness, seintillation light can be redis-
tributed to the PMTs altering the both the extrema of spa-
tial resolution and its distributiou across the detector. The
choice of optimal thickuess was hindered by luck of a suitable
performance measuve. The fwhm of the point response fune-
tion was & poor choice beeause of the discrete nature of the
detector and matters were further complicated by the wide
variation in prf shapes with position. We applied the aver-
age mutual information measure as an aid in determining the
optimal light guide thickness.

To shmplify the application, our analysis focused cntively
on the azinthal detector performance. We justified this by
noting that in the axial direction, performance requirements
arc not stringent therefore sliglht alterations 1u light guide
thickness are of little consequence. It was alse assumed that
varying the light guide thickness would not affect either the
detection efficiency or the energy response significantly. hence
the second tenn of (12) was ignored for intercomparisons.
The first term: was approximated discretely by,

Iy = z‘:ij: PlyjlePlridiog, i Pyl Play)

(13)
where P(x) is now a diserete. one-dimensional source distri-
bution, z being the location of incilence. and P(ylr) are the
normalized azimuthal prfs of the detector where y is the de-
tector output. The basce of the logarithun has been changed to
give the resulting information rate in bits / detected photon.
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Figure 4: Results using comb function sources with simulated
prfs (Ideal, 1.0mun, 2.0mm, 4.0mm, 10.0mm) and the actual
detector pris (8.4mm, 9.5mm}. The information rate is in
bits/detected photon.

The point response functions for each light guide were esti-
mated by translating a highly collimated line source of ™ T¢
over the 140 mm detector width in 1 mm increments and his-
togramming the detector outputs of 20.000 detected events
at each location. This sampling density was deemed suffi-
cient because: the source had a finite width (0.3 mm), the
detector does not support a resolutionr much below 3.0 mun
fwhm, and dropping the sampling density by a factor of two
did not alter the results.

The evaluation of (13) also required that we choose an
appropriate set of source distributions. Since the acquired
prfs completely characterized the camera response in terms of
our model, the source distributions were computer generated.
A particularly interesting class of sources investigated were
comb functions, essentially “picket-fences” of point sources
in which the spacing between pickets was gradually reduced
to 1 mm. At this spacing, the source was indistinguishible
from a discrete, uniform source.

To assist in analyzing the results a computer model was
implemented which generated simulated point response func-
tions. We employed the follwing model for the modular de-
tector. Photons interacting at any location within a 3 mm
bar were assumed to give the same mean position. An under-
lying gaussian positioning error, whose width could be varied
was combined with this response and the result was again
quantized in terms of the 3 mm bars.
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Results

Two kight guide thicknesses were evaluated, 6.4 mm
{0.25 in.) and 9.5 mm {0.375 in.). Simulated point response
functions were also generated using several values for the un-
derlying gaussian position error including the ideal detector
which unequivocally identified the 3 mm bar in which a pho-
ton interacted. Results using the comb function sources are
shown graphically in Figure 4 where average mutual infor-
mation in bits / detected photon is plotted against the point
source separation of the comb functions for both the simu-
lated and actual detector. In this analysis we assumed that
detection efficiency was 100%. For comparison we also plot-
ted the source entropy for each comb source, which upper-
bounds the average mutual information.

Several interesting features are immediately discernible.
At low source information rates or widely separated point
sources, the information transfer through the simulated and
actual detectors is essentially lossless. Evaluation of {5) yields
a lower bound of zero on the mean-squared error and in the
limit of an inficite number of events, these sources could be
recovered exactly. (This is only true for discrete source dis-
tributions and detection efficiencies of 100%.)

At higher source entropies, corresponding to more point
sources at a smaller separation in the field-of-view, some of
the curves break away from the source entropy curve with
the lowest resolution systems deviating first. At this point
information is lost, however, if the operating point is before
the curves flatten, the information could conceivably be sent
without less by properly encoding the source distribution.

Where these curves plateau is a fundamental limit known
as the channel capacity. We verified this by using the itera-
tive Arimoto-Blahut algorithm which estimates the capacity
of a discrete channel.?! Information can not be sent distor-
tion free at a rate preater than the channel capacity and
some ervor in the source estimate is inevitable, The branch
of information theory relating information rates and channel
capacities to the minimurm achievable distortion is known as
rate-distoriion theory.

Results from the light guide evalnations demonstrated that
the thinner light guide exhilited a slightly higher information
transfer rate. The channel capacities were 4.53 bits / ploton
and 4.40 bits / photon for the 6.4 mm and 9.5 mm thick-
nesses respectively. This is in contrast to the capacity for the
ideal SPRINT II modular detector which is log, 45 = 5.49
bits / photon.

Discussion

The marked point process model and average mutual in-
formation can be valuable teols in performance evaluation.
Like all tools, however, they must be used cautiously. Partic-
ularly, our medel does not include the count-rate dependent
effects that plague many camera systems. Incorporating this
into the model, while conceptually not difficult, could lead to
intractable expressions for the average mutual information.

The amount of data required to characterize even modest
detector systems can be staggering. A two-dimensional cam-
era with 64xG4 positions would require at least 4096 64x64
images just to model its spatial response at one energy level.
Some parametric modeling of the detector response could po-
tentially decrease this data requirement tremendously.




The source distributions chosen for analysis should reflect
actual distributions that will be incident on the camera, The
comb functions were chosen here because of their obvious
analogy with the true meaning of resolution. However, our re-
sults were relatively insensitive to the choice of source distri-
bution, The conclusions drawn above were the same as those
resulting from using gaussian sources of various widths and
multi-modal rect function sources—the thinner light guide
always yielded a slightly higher mutual information. This
insensitivity to source may not hold in another application.

The source distribution which yields the channel capacity
can be obtained from the Arimoto-Blahut algorithm and rep-
resents the source which transfers information most efficiently
through the detector system. Knowledge of this distribution
could be useful in cases where some latitude exists in how
the source is projected onto the detector (v-ray astronomy,
for example). The sensitivity of the average mutual infor-
mation to small variations in the capacity-matching source
is also useful in determining the robustness of a particular
detectar system.

To realize the potential benefit of increased information
transfer, the optimal estimation rule with respect to a specific
distortion criterion must be employed. This should always be
the final analysis because it is the ultimate benchmark with
respect to the task of interest.

Conclusion

We developed a marked point process model of a position-
sensitive detector and an expression for the average mmtual
information between an incident source of photons or par-
ticles and the detector’s observations of this process. The
model includes the spatial and energy responses of the cam-
era and its detection efficiency, We feel that this model, along
with the average mutual information measure can e useful
in evaluating necessary tradeoffs in camera design and we
used it to assist in our choice of light guide dimensions for
the SPRINT II modular detectors. While we do unot adveo-
cate replacing the traditional performance measures such as
fwhm, there are many design situations where the traditional
measures are inadequate and this technique can be a useful
adjunct.
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