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ABSTRACT

An alternstive method for estimating the time delay
between two noisy waveforms containing a copmmon sig-
nal is presented. The esiimate is obtained by means of
an approximation to the center of symmetry of a certain
correlation funciion. For narrowband signals prelim-
inary results indicate that the procedure is less sensitive
to peak ambiguity which is inherent in the classical
optimal estimator.

I. Introduction

In the passive time delay estimation problem, the
Ceneralized Cross Correlator {GCC) estimate of time
delay is given by the loecation in time of the global peak
of the GCC output trajectory. Under a Gaussian assump-
tion, the maximum likelihood estimate (MLE) of the
delay has been shown to be implementable as a GCC for
known observation spectra [1]. The MLE asymptotically
achieves minirnurm variance over all unbiased estima-
tors. However, for finite observation time, the MLE can
only be said to achieve minimum loeal variance, that is,
when the variation in the estimate is such that the esti-
mate is highly unlikely to fall outside of the immediate
vicinity of the true delay at the global maximum. This
assumption is especially tenuous when the spectra of the
observations contain a narrowband component [2].

Here an alternate estimation scheme is presented
which, by design, takes into account non-local error and
appears to be less sensitive to narrowband components.
The idea is to substitute a center of symmetry estimate
(CSE) of the cross-correlation function in place of the
global peak estimate used in the conventional GCC. We
introduce two variants on this idea which are implement-
able as the Local CSE (LCSE), which acts on the GCC
waveform, and the Modulus CSE (MCSE), which acts on
the absolute magnitude of the GCC waveform. After
displaying an approximate expression for the variance of
the LCSE, for a general filtered sample cross-correlation
function, we optimize the filter to give minimum local
variance and compare the result to the MLE, Results of a
simulation of the CSE estimators are presented and com-
pared to two popular GCC's.

. Problem Statement

Two Gaussian wide sense stationary processes X;{¢)
and X,{t} are observed over a time interval [0.T], where
Xt} and X{¢) are assumed to be of the form

X,(8) =5t + Ni{e) (2.1)
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Xot) = S(t = D) + Ny(£)

Here S{t) is a random signal with an autocorrelation
function R, (7} which falls off to zero for + greater than
T;. the correlation time of the signal. The noises ¥;(¢)
and Na(t) are uncorrelated and are taken as broadband
with respect to ${f). We assume that the sensor obser-
vation time, T, is much greater than 7.

The conventional GCC estimate of the time delay D,
uses a suitably filtered sample cross-correlation function
to yield the estimate Dgee. Specifically the GCC is imple-
mented as follows, First the cross-specirum between the

-observations X,{f} and Xp{f}, G(e), is estimated using

one of a number of varicus approaches [3] This esti-
mate, called the sample cross-spectrum, Zyz{w), is then
weighted in frequency by the real function #{w) and
transformed into the time domain to form the GCC tra-
jeetory, R¥(7). The absclute maximum of R7(r} is then
taken as the GCC estimate of time delay. Symbolically

R = —2-]—;-1_—] Grow ) (w)eMTdw re[-7.T]

Doce = argmaz [R’(T)] (2.2)

Here T is some fraction of the sensor observation time T
and will henceforth be referred to simply as the "obser-
vation time". We associate a correlation time T, with B¢
as some time beyond which the magnitude of the
expected value of K¢ is close to zero,

In the case where the underlying observation spec-
tra are known, #{w) can be chosen to minimize the local
variance of the time delay estimate when Gya{w) is
obtalned by averaging pericdogram type estimates of
the eross-spectrum according to the Bartlett procedure
[38]). The -resulting frequency weight is known as the
Hannan-Thomson processor {HT) [8]

1 ly,gw) 12
Goa{w) 1 —[y1p(w)?

Haplw) =

(2.3)
" Gre{w)
7i2{w) = ——W‘“ e

712{w) is called the coherence between X {¢) and Xp(#),
and Gy {w) and Gyelw) are their respective autcspectra.
Under asumptions of sufficiently large observation time
the HT processor is the maximum likelihood estimator
for the unknown delay D, [1].

The SCQOT processor is an ad hoc scheme introduced
to desensitize the GCC procedure to the bandwidth pro-
perties of the signal [4]. The SCOT uses a GCC weighting
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function

_ 1
Wseor{w) = NewoarEol (2.4)

which essentially prewhitens the spectrum of the sample
cross-correlation associated with ihe sample cross-
spectrum through the inverse Fourier transform.

The local variance is a measure which is only sensi-
tive to "small errors”. That is, it characterizes estimator
performance for high signal-io-noise ratio in the immedi-
ate region of the true delay IJ;,. However, it significantly
underestimates the actual variance when the global peak
is likely to be far removed from J),, as can occur for
even moderately high signal-to-noise ratic for nar-
rowband signals using the HT [2], Thus the optimality of
the HT can only be asserted in a small error sense. The
meaximum value of the trajectory of the HT is in general
highly unstable in the sense that small variations in
signal-to-noise ratio can translate into large and abrupt
changes in the location of the absclute maximum (e.g.
waveform in Fig. 3.1). This discontinuous behavior of the
estimate is characteristic of GCC’s in general due to the
peak detection based estimation procedure. It is this
undesirable property of peak detection criented time
delay estimation schemes that motivates the present
work.

IH. Center of Symmetry Estimates

The GCC type processors can be interpreted as esti-
mators which utilize the property that, asymptotically,
the cross-correlation function assumes its absolute max-
imum at the true time delay D,. Here we exploit a
different asymptotic property of the eross-correlation to
motivate another approach: the delay B, cccurs at the
center of symmetry. As an approximation to the center
of symmetry of £9 we define the local center of sym-
metry for a real parameter L as any point
7€ [~T+L, T—L] where the regions of length £ to either
side of r eorrespond to equal area under 9. Specifically
this gstimate, the LCSE, is formed by fnding the zero,
7 = D, of the function

’ T+l

L(7) = [fﬁ‘-"(a)da - fR-?(cr)daJ {3.1)

£ is the width of the sliding window over which backward
and forward integrations are performed {see Fig. 3.1}
By convention we will take the median of the zeros of the
expression (3.1) as the estimate of D, if there are multi-
ple solutions.

In principle the window parameter . can be chosen
to optimize the theoretical and/or practical perfor-
mance of the estimate. Indeed in the limit as I becomes
small, L = A say, the LCSE can be looked upon as a gen-
eralization of a peak diseriminator by noting that we
have from Egn. {3.1) {assuming R9 is sufficiently smooth)

RI(r+8) =~ RI(1) _ dR9(T)

a dF (32)

I{r) =

Hence, for small £, z{7} = 0 whenever there is a local
peak at 7, obvicusly not a good atiribute for cur pur-
poses. On the other hand if the maximum admissible
.deviation of D, from zero, D, is such that D, +7. < T
then , asymptotically, one can integrate over the major-
ity of the positive extent of B9 by setting Z = 7,. This

choice should yield a statistie, /;, which has the least
chance of getting hung up on a local maximum of R¥.

Another approach of interest is to perform the
center of symmetry procedure on the modulus {absolute
value) of R9, This estimate, denoted the MCSE, is
cbtained by finding the location of the zero crossing,
7= 0, of

T+L

In(7) = -l-[f | R9(a) | do -~ f | R7{a) | da] (3.3)

Note that for both of the above CSE methods, unlike
the GCC estimates, a small random change in the
detailed structure of 9 will not cause instability in D,
since only large changes in the area under R9(7), 7 > D,
or R9{7r), T < D, can significantly change the location of
a zero of Iz (1) or Ify{r). This can be attributed to the
fact that the LCSE (MCSE) is essentially linear in the
waveform RY (|R¥|) while the GCC estimate is nonlinear.
Thus it may be expected that gross error instability in
the CSE will be less of a problem than with the GCC.

We have derived approximate expressions for the
variance of the LCSE and MCSE using identical assump-
tions to those in [5]. The details are contained in [8].
The expression for the local variance of the LCSE is
reproduced below

L Gp{0)Ga(0) (1 =1 7(0)13) | (o) ?
2k

vm-,;f’ = {3.4)

——f|G[2(-w)iW(w} daw

where & is proportional to 7.

For comparison we display the expression derived in
[5] for the local GCC estimator variance

(3.5)
R [ wreuw)atw)t ~ 7)1 1 (w)l 7w
var, Deoe = = : = £
—;—iw;’lG:a(wﬂ ¥ (w) ety

The gquantity Gy{w)Ge{w)(l —ly(w)} B ¥ (@2 can
be interpreted as the spectral density of the component
of RB¥ which corrupts the global peak at D,. This we
refer to as correlator noise. Comparing the numerators
of (3.4) and (3.5), it is evident that the variance of the
LCSE depends on the correlator noise variance only
through its D.C. component, while for the GCC it varies as
the second moment of the noise spectrum. This reflects
the time averaging criterion which forms the erux of the
center of symmetry estimate. In other words, only the
average value of R7{r) to the left and right of 7 = D are
utilized by 71 (7) in its search for a zero. The ahove com-
ments imply that the {local) variance of the LCSE will be
insensitive to changes in the detailed, ie. high fre-
quency, structure of the noise spectra as long as the
average, or D.C., power remains the same. Thus a certain
robustness to the underlying noise in the observations is
indicated.

The form of Egn. (3.4) is amenable to the following
optimization problem. Assume we impose an energy
constraint on the GCC weight W(w). Then the left hand
side of Eqn, {3.4) is minimized by applying the Schwarz
ineguality giving the sclution

wiw) =gl Gelw)l =g G, lw) {3.8)
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where ¢ in Eqn. (3.6} is chosen to satisfy

j-| F{w)|dw = ¢f

and ¢% is the energy associated with the filker #(w).
This filter can be interpreted as a variant of the
“matched” filter in the sense that W({w) is equal to the
average value of the sample-cross-correlation function,
i.e. the signal component. (Note this does not define a
matched filter in the conventional sense since the signal
is non-deterministic and no prewhitening is employed).
Although optimality cannot he claimed one may expect
that the choice of weighting in Eqn. (3.8) would also be a
fortuitous one in the MCSE procedure. In the next sec-
tion we discuss the experimental performanece of this
implementation, hereafter referred to as the MFP-MCSE,

IV. Simulation Resultg

A comprehensive simulation study is currently in
progress and we only give a preliminary sample of the
results here for the MF-MCSE. We synthesized two sensor
seguences which contain a common narrowband com-
ponent in uncorrelated white Gaussian noises to exercise
and compare the various processors discussed in sec-
tions Il and 1il. The spectrum and auto-correlation func-
tion of the signal sequence are displayed in Figs. 4.1 and
4.2 which correspond to a suppressed carrier A.M.
waveform S{k). The relative delay D, of the signal com-
ponent in the sensor sequences X, and X, was set {c 25
bins. 5120 samples of these two records were divided
into 5 distinct groups and the averaged cross-spectral
estimate was constructed. This estimate was then
weighted with the MF, SCOT and HT functions, Eqns. {3.8),
{2.4) and (2.3). Finally peak detection was performed
over the 1024 samples of the GCC trajectory
§R9 (k)% 5, for the various processors, and Eqn, (3.3)
was implemented in discrete time.

The full length window was used for the MCSE when a
priori the true delay lies within 100 bins of the ©-th bin
corresponding to the middle 200 indices of the sequence
§R7(k)}. That is we summed over 411 bins to the left and
to the right of each point in the interval |[—100,100].

For signal-to-noise ratios (SNR} between -20dB and
20dB the HT and SCOT gave exact estimates of D, while
the MP-MCSE was ohserved to be in error by 1 bin on the
average. Figs. 4.3, and 4.4 show the GCC trajectories for
the HT and the S8COT respectively for a SNR of -23dB {The
MCSE has a trajectory virtually identical to that of the
MCSE for this SNR). Note thai the HT and SCOT fail to
resolve a global peak anywhere near the true delay of 25
bins, and that within 100 bins of 0 the highest peaks
occur at 0 and -48 respectively. Fig. 4.5 shows the statis-
tic Iy, Bgn {3.5). for the MP-MCSE, as a function of the
parameter k& = —100, .., 0, .. 100. The zero crossings of
Iy are clustered close to the 25-th bin at values 18, 20,
21, 22 and 23 giving an estimate of 21 bins, a significant
improvement over the HT and 8COT processors.

V. Conclusion

In this study we have presented several forms of the
center of symmetry estimator, which are simple
modiflcations of ‘the Generalized Cross Correlation
method for time delay estimation. Based on a variance
approximation an optimization of the LCSE weight
yielded a "matched" filter function. Even though we
could neot show the optimality of the "matched” filter for
the MCSE the simulation results indicate that the magni-
tude CEE may have better performance than the GCC for
narrowband signal spectra at low signal-to-noise ratio.
We believe that this results from the insensitivity of the
MCSE to peak ambiguity relative to the GCC.

In general the HT is a more accurate estimator for
small errors than any other unbiased estimator[B). This
is borne out in the simulations by the high SNR perfor-
mance of the "matched” filter implementation of the
MCSE. One possible estimation strategem would be to
use the optimal GCC and CSE together as a possible
improvement over either processor alone. This would be
a variant of the so called "gated mods” implementation
of the GCC [8]. That is one would censure the GCC out-
put outside of some region determined by the rough esti-
mate obtained using the CSE, estimating the delay as the
location of the highest peak within the gated region.
Further study of this and other uses of the C3E remains
to be undertaken.
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Figure 4.1 Figure £.4
Speetrum of the simuleted signal corresponds ie an AWM. SCOT trajectory for SNR of -23dB, Max over [—100, 100] at 8.

waveform with carrier-to-signal ratie of -BdB.
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Auto-correlation function of simulated signel, CSE stetistic fy{k ). Median of zero locations at 21,
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