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The systematic inference of biologically relevant influence networks remains a challeng-
ing problem in computational biology. Even though the availability of high-throughput
data has enabled the use of probabilistic models to infer the plausible structure of such
networks, their true interpretation of the biology of the process is questionable. In this
work, we propose a network inference methodology, based on the directed information
{DTT) criterion, that incorporates the biology of transcription within the framework so
as to enable experimentally verifiable inference. We use publicly available embryonic
kidney and T-cell microarray datasets to demonstrate our results. We present two vari-
ants of network inference via DTI -— supervised and unsupervised — and the inferred
networks relevant to mammalian nephrogenesis and T-cell activation. Conformity of the
obtained interactions with the literature as well as comparison with the coefficient of
determination (CoD)} method are demonstrated. Apart from network inference, the pro-
posed framework enables the exploration of specific interactions, not just those revealed
by data. To-illustrate the latter point, a DTT-based framework to resolve interactions
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between transcription factor modules and target coregulated genes is proposed. Addi-
tionally, we show that DTI can be used in conjunction with mutual information to infer
higher-order influence networks involving cocperative gene interactions.

Keywords: Mutual information; directed information; transcription factor madule;
comparative genomics; transcription regulatory network.

1. Introduction

Computational methods for inferring dependencies between genes!™ using proba-

bilistic techniques have been used for quite some time now. However, the biological
significance of these recovered networks has been a topic of debate, apart from
the fact that such approaches mostly vield networks of significant influences as
observed/inferred from the underlying structure of data. Alternatively, other bio-
logical data (such as sequence information) might suggest the examination of the
probabilistic dependence of one gene on another gene through the transcription
factor (TF) encoded by the firsi gene. What if we were interested in the tran-
scriptional influences on a certain gene A, but our prospective network inference
technique was unable to recover them? We propose a technique with an eye on two
of these challenges: biological significance and influence determination between any
two variables of interest. Such an approach is increasingly necessary in order to
integrate and understand multiple sources of data (sequence, expression, etc.).

The method that we propose builds on an information theoretic criterion
referred to as the directed information (DTI). DTI is a variant of mutual infor-
mation {MT) that attempts to capture the direction of information flow. It is widely
used in the analysis of communication systems with feedback or feedforward®™® as
well as in economic time series analysis.%” DTI*® can be interpreted as a directed
version of mutual information, a criterion used guite frequently in other related
works.! It turns out, as we will demonstrate, that DTT gives a sense of directional
assoclation for the principled discovery of biological influence networks.

The contributions of this work are as follows. Firstly, we present a short theoreti-
cal treatment of DTI and an approach to the supervised and unsupervised discovery
of influence networks, using microarray expression data. Secondly, we examine two
scenarios — the inference of large-scale gene influence networks (in mammalian
nephrogenesis and T-cell development) as well as potential effector genes for Gatad
transcriptional regulation in distinet biological contexts. We find that this method
outperforms other methods in several aspects and ieads to the formulation of bic-
logically relevant hypotheses that might aid subsequent experimental investigation.
Finally, we conclude with the application of DTI to two important guestions in
bioinformatics: TF module discovery and higher-order network inference. TTF mod-
ule discovery is the identification of common regulatory modules (groups of TFs)
whose binding sites co-occur on the promoters of coexpressed genes. Higher-order
network inference, in this work, examines the resolution of three-way interactions
rather than only pairwise relationships among genes.?
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2. Organization

This paper is organized as follows. In Sec. 3, the working definition of transcriptional
gene networks is given. Based on this definition, four main research problems are
posed — those pertaining to supervised and unsupervised network inference, TF
module—gene interactions, and inference of higher-crder influence networks. DTT is
proposed as part of a general framework to answer these questions (Sec. 5), and
a methodology for the determination of influence and its significance is examined
(Appendix and Sec. 6). The paper concludes with results applicable to each of the
questions posed above (Sec. 8), using a combination of synthetic and real biological
data.

3. Gene Networks

Transcription is the process of generating messenger RNA (mRNA) from the DNA
template representing the gene. It is the intermediate step before the generation
of functional proteins from messenger RNA. During gene expression (Fig. 1), TF
proteins are recruited at the proximal promoter of the gene as well as at distal
sequence elements (enhancers/silencers) which can lie several hundreds of kilobases
from the gene’s transcriptional start site.l® Since TFs are also proteins (or their
activated forms), which in turn are encoded for by other genes, the notion of an
influence network between a TF gene and the target gene can be considered.

In Fig. 2, a characterization of transcriptional regulatory networks, as relevant
to this work, is given. As the name suggests, gene A is connected by a link to
gene ¢ if a product of gene A, say protein A, is involved in the transcriptional
regulation of gene C. This might mean that protein A is involved in the formation
of the complex, which binds at the basal transcriptional machinery of gene C' to
drive gene C regulation. :

As can be seen, the components of the TF complex recruited at the gene pro-
moter are the products of several genes. Therefore, the incorrect inference of a
transcriptional regulatory network can lead to false hypotheses about the actual
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Fig. 1. Schematic of transcriptional regulation. Sequence motifs at the promoter and the distal
regulatory elements together confer specificity of gene expression via TF binding.
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Fig. 2. A transcriptional regulatory network with genes A and B effecting C. An example of C
that we study here is the GataZ gene.

set of genes affecting a target gene. Since biologists are increasingly relying on com-
putational tools to guide experiment design, a principled approach to biologically
relevant network inference can lead to significant savings in time and resources in
downstream experimental design. In this paper, we try to combine some of the other
available biological data {phylogenetic conservation of binding sites across genomes
and expression data) to build network topologies with a lower false-positive rate
of linkage. Some previous work in this regard has been reported in Mac Isaac and
Fraenkel’! and in Kreiman.'?

4. Problem Setup

In this work, we also study the mechanism of gene regulation, with the Gato? gene
as an example. This gene has important roles in several processes in mammalian
development, %1% such as in the developing urogenital system (nephrogenesis), cen-
tral nervous system, and T-cell development. In order to find out which TFs regulate
the tissue-specific transcription of Gatad (either at the promoter or long-range regu-
latory elements), a commonly followed approach!!'? is to look for phylogenetically
conserved transcription factor binding sites (TFBSs). The hypothesis underlying
this strategy is that the interspecies conservation of a TFBS suggests a possibly
functional binding of the TF at the motif (from evolutionary pressure for function).
With a view to understanding gene regulatory mechanisms, this work primarily
addresses the following issues:

¢ Biologists are also interested in the network of relationships among genes
expressed under a certain set of conditions that uses several network inference
procedures such as Bayesian networks,? mutual information,® etc. However, there
has been a lack of a common framework $o do both supervised and unsupervised
directed network inference within these settings in order to detect directed non-
linear gene—gene inferactions. We present DTI as a potential solution in both
these scenarios. Supervised network inference pertains to finding the strengths of
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directed relationships between two specific genes. Unsupervised network inference
deals with finding the most probable network structure to explain the observed
data (like in Bayesian structure learning using expression data). This is addressed
in Secs. 8.2 and 8.3.

» Which TFs are potentially active at the target gene’s promoter during its tissue-
specific regulation? This question is primarily answered by examining the phylo-
genetically conserved TFBSs at the promoter, and asking if microarray expression
data suggest the presence of an influence between the TF-encoding gene and the
target gene (i.e. Gotad). This approach thus integrates sequence and expression
information (Sec. 8.4).

o Which TFs underlie the tissue-specific expression of a group of coexpressed/
coregulated genes (e.g. Gatad and others)? One common approach is to search
the proximal promoters of all such tissue-specific genes and to look for modules of
TF's that control tissue-specific expression.!?:1? For the Gatad example, we ask
if there are any TFs underlying ureteric bud (UB)-specific expression for Gata3
during nephrogenesis. For this purpose, we find modules from coexpressed gene
promoters and use microarray expression to point out possible effectors of target
gene expression {Sec. 8.5).

* Gene interactions during processes such as development and disease progression
are rarely pairwise, and cceur in cliques such as pathways. Additionally, cross-
talk between components of different pathways is essential in the progression of
such dynamic processes. To this end, the inference of higher-order interactions
(more than only two-way gene relationships) is seen to be a useful approach.?
Using DTI, it would be interesting to find directed interactions between differen-
tially expressed genes of the developing kidney to determine pathway cross-talk
(Sec. 8.6).

4.1. Phylogenetic conservation of transcription factor binding
sites (TFBSs)

As mentioned above, the mechanism of regulation of a target gene is via the binding
site of the corresponding TF. It is believed that several TF binding motifs might
have appeared over the evolutionary time period due to insertions, mutations, dele-
tions, etc. in vertebrate genomes. However, if we are interested in the regulation
of a process which is known to be similar between several organisms (say human,
chimpanzee, mouse, rat, and chicken), then we can look for the conservation of func-
tional binding sites over all of these genomes. This helps us isolate the putatively
functional binding sites, as opposed to those which might have randomly arisen;
this, however, does not suggest that those other TF binding sites have no func-
tional role. If we are interested in the mechanism of regulation of the Gata3 gene
(which is known to be implicated in mammalian nephrogenesis), we examine its
promoter region for phylogenetically conserved TFBSs (Fig. 3). Such information
can be obtained from most genome browsers.'* We see that even for a fairly short
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Fig. 3. TFBS conservation between human, mouse, and rat, upstream (z-axis) of Gatad.
Source: http://www.ecrbrowser.dcode.org/.

stretch of sequence (1kb) upstream of the gene, there are several conserved sequence
elements which are potential TFBSs (light-gray regions in Fig. 3).

In Fig. 3, we have aligned the mouse Goted promoter region with its human and
rat counterparis. The height of each of the dark-gray regions indicates the extens of
conservation between these species. Furthermore, it indicates that several TTs bind
at these conserved regions. To test their functional role in vivo or in vitre, it is nec-
essary to select only a subset of these TFs hecause of the great reliance on resources
and effort. Hence, the genes coding for these conserved TFs are the ones that we
examine for possible influence determination via expression-based influence mesrics.
If we are able to infer an influence between the TF-coding gene and the target gene
at which its TF binds, then this reduces the number of candidates to be tested.
To examine Gatad’s role in kidney development, we use microarray expression
data from a public repository of kidney microarray data (http://genet.chmec.org/,
http://spring.imb.ug.edu.au/, and http://kidney.scgap.org/index.html). Each of
these sources contains expression data profiling kidney development from about
day 10.5 dpc to the neonate stage. Some of these studies also examine expression in
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the de\-reloping ureteric bud (UB) and metanephric mesenchyme (MM) apart from
the whole kidney.
Our approach thus integrates several aspects:

e using phylogenetic information to infer which TFBSs upstream of a target gene
may be functional; and

o identifying if any of the TF genes influence a target gene by coding for a TF that
binds at the site discovered from conservation studies. This directed influence
is captured using an influence metric (e.g. DTT) in conjunction with expression
data,'®'® and is explained in Sec. 5.

5. DTI Formulation

As alluded $o above, there is a need for a viable influence metric that can find
relationships between the TF effector gene (identified from phylogenetic conserva-
tion) and the target gene (e.g. Gatad). Several such metrics have been proposed,
notably, correlation, coefficient of determination {CoD), mutual information, ete.
To alleviate the challenge of detecting nonlinear gene interactions, an information
theoretic measure like mutual information has been used to infer the conditional
dependence among genes by exploring the structure of the joint distribution of the
gene expression profiles. However, the absence of a directed dependence metric
has hindered the utilization of the full potential of information theory. In this work,
we examine the applicability of one such metric — the directed information (DTT)
criterion — for the inference of nonlinear, directed gene influences.

DTI, which is a measure of the directed dependence between two N-length
random processes X = XV and ¥ = YV, is given by®

N
I(XN - YNy =3 IX% YY), (W)

n=l
where Y™ denotes (¥1,Y2,...,Yn), i.e. a segment of the realization of a random

process ¥, and T{X?;Y") is the Shannon mutual information.!?

An interpretation of the above formulation for DTI is in order. To infer the
notion of influence between two time series (mRNA expression data), we find the
mutual information between the entire evolution of gene X (up to the current
instant n) and the current instant of ¥ (¥,), given the evolution of gene ¥ up to the
previous instant n— 1 (i.e. Y™~1). This is done for every instant, n € (1,2,...,N )
in the N-length expression time series.

As already known, I(XV;¥¥) = H(XN) — H{XN|YV), with H(X") and
H(XN|YN) being the entropy of X and the conditional entropy of X N given Y,
respectively. Using this definition of mutual information, DTI can be expressed in
terms of individual and joint entropies of X and Y. The task of N-dimensional
entropy estimation is an important one, but due to computational complexity and
moderate sample size, histogram estimation of multivariate density is unviable.
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Nevertheless, several methods exist for consistent entropy estimation of multivari-
ate small sample data.'® 2! In the context of microarray expression data, wherein
probe-level and technical/biological replicates are available, we use the method of
Miller'® for entropy estimation.
From Eq. {1), we have
N
XY - YNy =Y [HXMY™ ) - HX™Y™)

n=1
N
= {[HX™ Y™ - H(Y™ Y] - [H(X™Y™) - HY™)}
i (2)

¢ To evaluate the DTI expression in Eq. (2), we need to estimate the entropy
terms H(X™ Y™ 1), H{Y™ '), H(X™ Y"), and H(Y™). This involves the esti-
mation of marginal and joint entropies of m random variables, each of which
is R-dimensional, R being the number of replicates (probe-level, biclogical, and
technical).

» Although some approaches need the estimation of probability density of the R-
dimensional multivariate data (X™) prior to entropy estimation, one way to cir-
cumvent this is 4o use the method proposed in Miller.*® This approach uses a
Voronoi tessellation of the R-dimensional space to build nearly uniform partitions
(of equal mass) of the density. The set of Voronoi regions (V1, V2, ..., V") for
each of the n points in R-dimensional space is formed by associating, with each
point X}, a set of points V* that are closer to X}, than any other point X7, where
the subscripts k& and [ pertain to the kth and /th time instants of gene expression,
respectively.

e Thus, the entropy estimator is expressed as H(X™) = L5 log(nA(V?), where
A(V?) is the B-dimensional volume of the Voronoi region V. A(V*) is computed
as the area of the polygon formed by the vertices of the convex hull of the Voronoi
region V*. This estimate has low variance and is asymptotically efficient.??

To obtain the DTI between any two genes of interest (X and Y¥) with N-length
expression profiles X% and YV, respectively, we plug in the entropy estimates
computed above into Eq. (2).

From the definition of DT, we know that 0 < I{X}Y — Y¥) < I{(XM;vY) <
co. For easy comparison with other metrics, we use a normalized DTI metric (see
Appendix) given by pprr = V1I— e HXV YY) = /1 _ g 2XiL, HXS¥[Yi-T),
This maps the large range of DTI, ([0,00]), to lie in {0, 1]. Another point of con-
sideration is to estimate the significance of the true DTI value compared to a null
distribution on the DTT value (i.e. what is the chance of finding the DTI value by
coincidence from the series X and ¥'7). This is done using empirical p-value esti-
mation after bootstrap resampling (Sec. 6). A threshold p-value of 0.05 is used to
estimate the significance of the true DTI value in conjunction with the density of
a random data permutation, as outlined below.
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6. Significance Estimation of DTI

We now outline a procedure to estimate the empirical p-value in order to ascertain
the significance of the normalized directed information f{(XN¥ — ¥N) between
any two N-length time series X = XV = (X1, Xs,...,Xy) and ¥ = YV =
(Y1,Y2,...,Yw). In our case, the detection statistic is © = [(X? — Y¥) and the
chosen acceptable p-value is a.

The overall bootstrap-based test procedure is as follows?372%:

» Repeat the following procedure B(= 1,000) times (with index b=1,2,...,B):

— Generate resampled (with replacement) versions of the time series XV, YV,
denoted by XN and V¥, respectively.
— Compute the statistic §* = (X — v}¥).

s Construct an empirical cumulative distribution function (CDF) from these boot-
strapped sample statistics, as Fo(6) = P(© < §) = L 30, Lisolz = 0 — 6°),
where I is an indicator random variable on its argument z.

o Compute the true detection statistic (on the original time series) g = [(XV —
Y™ and its corresponding p-value (pp = 1 — Fis{fy)) under the empirical null
distribution Fg(6).

o If Fg(6y) > (1 — @), then we have that the true DTI value is significant at level
a, leading to rejection of the null hypothesis (no directional association}.

7. Summary of Algorithm

‘We now present two versions of the DTI algorithm: one which involves an inference
of general influence network between all genes of interest {unsupervised DTI); and
another, a focused search for effector genes which influence one particular gene of
interest (supervised DTI).

Our proposed approach using {supervised DTI) for determining the effectors for
gene B is as follows:

o Identify the G genes (A4, As,...,Ag), based on required phenotypical charac-
teristics, using fold change studies. Preprocess the gene expression profiles by
normalization and cubic spline interpolation. Assuming that there are N points
for each gene, entropy estimation is used to compute the terms in the DTT expres—
sion [Eq. (2)].

¢ For each pair of genes A; and B among these G genes,

— Look for a phylogenetically conserved TFBS encoded by gene A4; in the
upstream region of gene B.

— Find DTI(A;, B) = I(A¥Y — BWV), and the normalized DTI from A; to B,
pori(As, B) = V1 — e~ 2(AT=BY),

— Bootstrap resampling over the data points of 4; and B yields a null dlstnbu—
tion for DTI(A;, B). If the true DTI(A;, B) is greater than the 95% upper
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limit of the confidence interval (CI) from this null histogram, infer & potential
inflzence from A; to B.

— The value of the normalized DTT from A; to B gives the putative strength of
interaction/influence.

— Every gene A; which is potentially influencing B is an effector. This search is
done for each gene A; among these G genes (41, 4s,...,Ag).

As can be seen, phylogenetic information is inherently built into the influence net-
work inference step above, We note that, in supervised DTI, the choice of potential
effectors for & target gene is based on only those TFs that have a binding site at
the target gene’s promoter. In this sense, supervised D'TT aims to reduce the overall
search space based on biological prior knowledge.

For unsupervised DTT, we adapt the above approach for every pair of genes
(A, B) in the list, noting that DTI(A, B} # DTI(B, A). In this case, we are not
looking at any interaction in particular, but are interested in the entire influence
network that can be potentially inferred from the given time series expression data.
The network adjacency matrix has entries depending on the direction of influence,
and is related to the strength of influence as well as control of false discovery
rate (FDR). The Benjamini-Hochberg procedure®® is used to screen each of the
M{= G{G - 1)) hypotheses (both directions) during network discovery among G
genes.

Briefly, the FDR procedure controls the expected proportion of false positives
among the total number of rejections rather than just the chance of false positives.2”
It tolerates more false positives and allows fewer false negatives.

¢ The p-values of the varicus edges (1, 2,..., M) are ranked from lowest to highest,
all satisfying the original significance cut-off of p = 0.05. The ranked p-values are
designated as p),Pe), - - -, P(ar)-

e For j = 1,2,..., M, the null hypothesis (no edge) H; is rejected at level « if
py) < fro

o All of the edges with p-value < p(;) are retained in the final network.

In Table 1, we compare the various contemporary methods of directed network
inference. Recent literature has introduced several interesting approaches such as
graphical Gaussian models (GGMs), coefficient of determination (CoD), and state
space models (S5Ms) for directed network inference. This comparison is based pri-
marily on expectations from such inference procedures — that we would like any
such metric/procedure to

# resolve cycles in recovered interactions;

* be capable of resolving directional and potentially nonlinear interactions. This is
because interactions among genes involve nonlinear kinetics;

e be a nonparametric procedure to avoid distributional assumptions (e.g. noise);
and
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Table 1. Comparison of various network inference methods.

Method Resolve  Nonlinear  Search for  Nonparametric
cycles framework interaction framework

S8M28.29 Y Y N Y

CoD?30 N N Y N

GGM? N Y N N

DTI® Y Y Y Y

Y, yes; N, no.

® be capable of recovering interactions that a biologist might be interested in.
Instead of using a method that discovers interactions underlying the data purely,
the biologist should be able to use prior knowledge (from the literature, perhaps).
For example, a biologist can examine the strength and significance of a known
interaction, and use this as a basis for finding other such interactions.

From the above comparisons, we see that DTT is one metric which can recover
interactions under all of these considerations.

8. Results

In this section, we give some scenarios where D'TT can complement existing bioin-
formatics strategies to answer several questions pertaining to transcriptional regu-
latory mechanisms. We address four different questions:

o 1o infer gene influence networks between genes that have a role in early kid-
ney development and T-cell activation, we use unsupervised DTI with relevant
microarray expression data, noting that these influence networks are not neces-
sarily transcriptional regulatory networks.

¢ Tofind TFs that might be involved in the regulation of a target gene (like Gotad)
at the promoter, a common approach is to first look for phylogenetically con-
served TFBS sequences across related species. These species are selected based
on whether the particular biological process is conserved in them. To add addi-
tional credence to the role of these conserved TI'BSs, microarray expression can
be integrated via supervised DTT to check for evidence of an influence between
the TF-encoding gene and the target gene.

o Thirdly, we examine the promoters of several genes that have a documented role
in ureteric bud (UB) development. The idea is to look for common TF modules
that govern the combined coexpression and coregulation of these genes.!! Again,
expression data and supervised DTT can be used to check for influences between
the module components and the target gene(s).

e Finally, the problem of inferring higher-order dependencies between various genes
using a combination of mutual and directed information is presented in the con-
text of differentially expressed UB-specific genes of the developing kidney.
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Before proceeding, we examine the performance of this approach on synthetic
data.

8.1. Synthetic network

A synthetic network is constructed in the following fashion. We assume that there
are two genes, g1 and g3 (both of which are modeled as uniform random variables),
which drive the remaining genes of a nine gene network. The evolution equations

are as below:
. +1 +
Gat = 2gl,t—1 393,1:—2 g7i—1
1/2
G4t = Q%,t—l + ga{pl
g5t = g2,t—2 + g4,6—1

g6t = gai—1t+ 95,/3_2

_ 1 i
g7t = 5941
1 1/ 1 12
gt = 596,4_1 -+ §97,/¢_1
2 o3 1 3

9ot = 3941 -+ 1972

For the purpose of comparison, we study the performance of the CoD approach
for directed influence network determination. The CoD allows the determination of
association between two genes via an R? goodness-of-fit statistic. The methods of
Hashimoto et ol.3° and Li et ol.3! are implemented on the time series data. Such a
study would be useful to determine the relative merits of each approach. We believe
that no one procedure can work for every application, and the choice of an appro-
priate method would be governed by the biological question under investigation.
Each of these methods uses some urnderlying assumptions; if these are consistent
with the question that we ask, then that method has utility.

As can be seen in Fig. 4, though CoD can detect linear lag influences, the
strongly nonlinear ones are missed. DTT detects these influences and reproduces the
synthetic network exactly. Given the nonlinear nature of transcriptional kinetics,
this is essential for reliable network inference. DTT is also able to resolve loops and
cycles (g3, (g2, 94|, g5 and go, g4, g7, 92). Based on these observations, we examine
the networks inferred using DTT in both the supervised and unsupervised settings.

8.2. Directed network inference:Gata3d regulation in early kidney
development

Biologists have an interest in influence networks that might be active during organ
development. Advances in laser capture microdissection coupled with those in
microarray methodology have enabled the investigation of temporal profiles of genes



Using Directed Information to Build Biologically Relevant Influence Networks 505

Fig. 4. The synthetic network as recovered by (&) DTI and (b} CoD.

Fig. 5. Overall influence network using DTI during early kidney development.

putatively involved in these embryonic processes. Forty-seven genes are differentially
expressed between the UB and MM, !¢ and are putatively involved in bud branch-
ing during kidney development. The expression datal® temporally profile kidney
development from day 10.5dpe to the neonate stage. The influence network among
these genes is shown in Fig. 5. Several of the presented interactions are biologically
validated, and there is an interest to confirm the novel ones pointed out in the
network, The annotations of some of these genes are given in Table 2. .

Some of the interactions that have been experimentally validated include the
Rara—Mopk1,3? Pax2-Gatad® and Agtr—Paz23! interactions. We note that this
result clarifies the application of DTIT for network inference in an unsupervised
manner, i.e. discovering interactions revealed by data rather than examining the
strengths of interactions known a priori. Such a scenario will be explored later
(Sec. 8.4). We note that, though several interaction networks are recovered, we
only show the largest network including Gata$ because this is the gene of interest
in this study.
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Table 2. Functional annotations {Entrez Gene) of some of the genes coexpressed with Gata2

and Gated during nephrogenesis.

Gene symbol Gene name Possible role in nephrogenesis {function)

Rara Retinoic acid receptor Crucial in early kidney development

Gata2 G ATA binding protein 2 Several aspects of urogenital development

Gatad GATA binding protein 3 Several aspects of urogenital development

Pox2 Paired homeobox-2 Conversion of MM precursor cells to
tubular epithelium

Lomcg Laminin Cell adhesion molecule

Pgf Placental growth factor Arteriogenesis, growth factor activity
during development

Coli8al Collagen, type XV III, alpha 1 Extracellular matrix structural
constituent, cell adhesion

Agtrap Angiotensin II Ureteric bud cell branching

receptor-associated protein

8.3. Directed network inference: T-cell activation

To clarify the validity of the presented approach, we present a similar analysis on
another data set — the T-cell expression data®® (Fig. 6). This data set represents
the expression of various genes after T-cell activation using stimulation with phor-
bolester PMA and lonomycin. The data set contains the profiles of about 58 genes
over 10 time points with 44 replicate measurements for each time point.

Several of these interactions have been confirmed in earlier studies,28:35737 and
again point to the strength of DTI in recovering known interactions. The anno-
tations of some of these genes are given in Table 3. We note that the network in
Fig. 6 shows the largest influence network (containing Gated) that can be recovered.

Fig. 6. DTI-based T-cell network.
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Table 3. Functional annotations of some of the genes following T-cell activation.

Gene symbol Gene name Possible role in T-cell activation (function)

Casp7 " Caspase 7 Involved in apoptosis

JunD Jun D proto-oncogene Regulatory role of in T lymphocyte
proliferation and Th cell differentiation

CKR1 Chemokine receptor 1 Negative regulator of the antiviral CD8™%
T-cell response

Ii4r Interleukin 4 receptor Inhibits IL4-mediated cell proliferation

Mapkd Mitogen activated kinase 4 Signal transduction

AML1 Acute myeloid leukemia 1; amll  CD4 silencing during T-cell differentiation

oncogene

Rbi Retinoblastoma 1 Cell ¢ycle control

G'atad is involved in T-cell development as well as kidney development, and hence
it is interesting to see networks relevant to each context in Figs. 5 and 6. Also,
these 58 genes relevant to T-cell activation are very different from those for kidney
development, with fairly low overlap. For example, this list does not include Paz2
(which is relevant in the kidney development data).

B8.4. Phylogenetic conservation of TFBS effectors

A common approach for the determination of functional TFBSs in genomic regions
is to look for motifs in conserved regions across various species. Here, we focused on
the interspecies conservation of TFBSs (Fig. 3) in the Gatad promoter to determine
which of them might be related to transcriptional regulation of Gated. Such a
conservation across multiple species suggests selective evolutionary pressure on the
region, with a potential relevance for function. As can be seen in Fig. 3, we examined
the Glatad gene promoter and found at least 40 different TE's that could putatively
bind at the promoter as part oi the transcriptional complex. Some of these TFs,
however, belong to the same family. 7

Using supervised DTI, we examined the strength of influence from each of the
TF-encoding genes (4;) to Gatad, based on expression level*® (http://spring.imb.
ug.edu.au/). These strength-of-influence DTI values were first checked for signifi-
cance at a p-value of .05, and then ranked from highest to lowest (noting that the
objective is to maximize /(A4; — Gatad)). Based on this ranking, we indicate some
of the TFs that have the highest influence on Gatad expression (Fig. 7). Obviously,
this information is far from complete, because of examination cnly at the mRNA
level for both effectors and Gatas. '

Table 4 shows the embryonic kidney-specific expression of the TFs from Fig. 7.
This is an independent annotation obtained from UniProt (http://expasy.org/
sprot/). To understand the notion of kidney-specific regulation of Gatad expression
by various TFs, we have integrated three different criteria: we expect that the TFg
regulating expression would have an influence on Gata? expression, be expressed
in the kidney, and have a conserved binding site at the Gata8 promoter. This is
clarified in part by Fig. 7 and Table 4. As an example, we see that the TFs Pax2,
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Fig. 7. Putative upstream TFs using DTI for the Gated gene. The numbers in each TF oval
represent the DTT rank of the respective TF. - '

Table 4. Functional annotations of some of the TF genes
putatively influencing Guted regulation in kidney.

Gene Description Expressed
symbaol . in kidney
PPAR Peroxisome protliferator- Yes
activated receptor
Pex2 Paired homeobox-2 Yes
HIF1 Hypoxia-inducible factor 1 Yes
SP1 SP1 transcription factor Yes
GLI GLI-Kruppel family member Yes
EGRS Barly growth response 3 Yes

PPAR, and SPI have high influence via DTI and are expressed in embryonic kid-
ney (Table 4), apart from having conserved TFBSs. This lends good computational
evidence for the role of these TFs in Goted regulation, and presents a reasonable
hypothesis worthy of experimental validation.

Additionally, we examined the influence for another two TFs, STE12 and HPI,
both of which have a high coexpression correlation with Gatad as well as conserved
TFBSs in the promoter region. The DTI criterion gave us no evidence of influence
between these two TFs and Gatad activity. This information, coupled with the
present evidence concerning the nonkidney specificity of STE12 and HPI, presents
an argument for the noninvolvement of these TFs in kidney-specific regulation of
Geatad. Thus, the DTT criterion can be used to guide more focused experiments to
identify the true transcriptional effectors underlying Gata8 expression.

This application shows the utility of DFI to specifically explore the expression-
level influence of a TF of interest to any target gene. This result, coupled with the
unsupervised network inference methods in kidney and T-cell data, establishes the
DTI-based methodology as a common framework for both types of analysis.
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8.5. Module TFs in coregulated genes

We examine another interesting scenario for the principled application of the DTI
criterion. The coexpression of genes in a biclogical context is a complex phenomenon
involving the combinatorial regulation of such genes' by several TFs. Such coex-
pression occurs during processes like development and disease progression. This
is also observed in coclustered genes from the output of hierarchical clustering
algorithms (signatures). The underlying hypothesis is that coclustered/coexpressed
genes might be under the control of some common TFs (modules), which underlie
the coordinated expression of all these implicated genes.

Several tools (e.g. Genomatix,3® CREME,* Toucan®®) allow the inference of
such TF modules from sets of genes. However, the next logical question is whether
any of the TFs comprising the- module indeed have an expression-level influence on
these target gene(s). Supervised DTI can be used in this context to rank the most
likely effector TF's for each gene in the gene set.

To illustrate this application, genes that have expression in the developing
ureteric bud (UB) in the kidney are examined. The inductive signals between
the UB and MM cause the differentiation of fetal kidney stem cells into
nephrons, the basic unit of function of the kidney. An examination of these UB-
specific genes (obtained from the Mouse Genome Informatics (MGI) repository at
http://www.informatics.jax.org/) 164! reveals some modules. The UB-specific genes
and the modules are listed in Tables 5 and 6, respectively.

Briefly, the modules are obtained as follows. The various UB-specific gene
sequences are mined for their proximal promoter (from ~2,000bp upstream to

Table 5. Genes expressed in the developing
ureteric bud (days e10.5-11.0), as reported
in the Mouse Genome Informatics database.

Ensembl gene ID Gene name
ENSMUSGO00000015619 Gatel
ENSMUSG00000032796 Lamal
ENSMUSG00000015647 Lamab
BNSMUSG00000026478 Lamcl
ENSMUSG00000018698 Lhxt
ENSMUSG00000008999 Bmp7
ENSMUSG00000023906 Cldné
ENSMUSG00000059040 Enol
ENSMUSG00000004231 FPozZ
ENSMUSG00000030110 Ret
ENSMUSG00000022144 Gdnf
ENSMUSG00000031681 Smadl
ENSMUSGO0000024563 Smad?2
ENSMUSGO00000074227 Spint2
ENSMUSGO0000015957 Wnill
ENSMUSG00000039481 Nritn
ENSMUSG00000063358 Mapki

ENSMUSG00000063065 Mapks
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Table . Annotaticn of the module TFs from UB-specific genes.

TFs in Annotation Kidney specificity (Yes/No)
module {GNF/literature)
SP1 trans-acting TF 1 Y

LMOZ LIM domain only 2 N

oCT1 POU dormmain, class 2, TF 1 Y

ZIC1 Zinc finger protein of the cerebellum 1 N

MZF1 Myeloid zinc finger 1 Y

APZ TE AP-2 Y

AP4 -TF AP-4 Y

YYi YY1 transcription factor Y

TALI T-cell acute lymphocytic leukemia 1 Y (cell line)

PAX2 Paired box gene 2
HNEY4 Hepatocyte nuclear factor 4

<

GNF: Cenomics Institute of the Novartis Research Foundation.

200 bp downstream from the transcription start site}. The various promoters are
then aligned, and a search for significantly overrepresented TFs is done using the
position-weight matrices derived from the TRANSFAC/JASPAR database (Motif-
Scanner). From this set of TFs, modules of TFs (with potentially overlapping sites)
are obtained (ModuleSearcher). The TOUCAN 3.0.2 tool4? allows for the entire
sequence of steps from sequence extraction to module searches. All TFs in the
various modules identified are listed in Table 6.

The list of module TFs is obtained by combining expression annotations (from
MGI) and sequence analysis. For the purpose of integrating heterogeneous data and
to reduce the number of candidate TFs that are putatively involved in regulating
UB-specific genes, we can use DTI to find influences between the TF genes and
the UB-specific genes using expression data. As an example, one of the TFs in the
module list is Paz2 and it has an important role in UB differentiation®®; another
gene expressed in the developing UB is Gata3. We now examine if the DTI I{PazZ —
Gataf) is significant and ranks high in the list. This is highlighted in Fig. 8.

For the Paz2-Gatad interaction, we show the cumulative distribution function
of the bootstrapped detection statistic (Fig. 8) as well as the position of the true DTT
estimate in relation to the overall histogram. With the obtained density estimate
of the Par2-Gatad interaction, in Fig. 8, we can find significance values of the true
DTI estimate in telation to the bootstrapped null distribution.

An experimental validation of this is presented in Grote et al®® and Dressler
and Douglas.®2 Thus, we can look at each module member for a possible role in
Gatad regulation. As can be secen, this approach integrates sequence information,
phylogeny, and expression o look for upstream effectors for genes of interest (i.e.
those that share some pattern of coexpression/ coregulation).

' Extending this further, the strength and significance of the DTI can be found
between every pair of TF and UB-specific genes of Tables 5 and 6. This can be
visualized as a bipartite graph of TF-gene interactions, shown in Fig. 9. The graph
summarizes the degree of interactions between the various TFs in the modules
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Fig. 8. Cumulative distribution function for bootstrapped I(Paz2 — Gata3). The true value of
I(Paz2 — Gata8) = 0.9911.

SP1 LMO2 ZIC1 AP24 MZF1 AP4  ap2  Odi YY1 TALY Pax? HNF4
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Fig. 9. A bipartite graph between the group of module TFs and genes coexpressed in the developing
ureteric bud (MGI: e10.5-11.0).

and the coexpressed genes; and is the overall integration of annotation, sequence,
and expression data. Additionally, the embryonic kidney specificity of the vari-
ous module TFs is listed, based on literature and tissue-specificity annotation
(hitp://symatlas.gnf.org/SymAtlas/). It is to be noted that some TF's such as SPI
have ubiquitous expression across most tissues,**-** and are not as informative as
kidney-specific ones like Paz23 or HNF4a.%®

8.6. Higher-order MI and DTT .

The final part of this work highlights that directed information (DTI) and mutual
information (MI) can together aid in the discovery of higher-order interactions
among genes. Higher-order MI%:'® has been used successfully for the discovery of
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interactions among triples of genes. Following work done in Schneidman et al.,*6
we use the triplet information given by

Iziasee) =) Hlw) =y H(wi,;) + Hlzs, 27, 2)
i i<
= Iz zeima) — > I(zi;25)
i<y
= (w13 23) + I{z2523)] — I({m1,22}; 23).

From the above definition, it is clear that the use of triplet information helps
resolve the pairwise-joint dependencies between x;, z;, and zy, versus the synergistic
dependence of any variable on the combination of the other two variables. A positive
value of I3(w;;2;; 7k indicates pairwise dependence, and thus DTI can be used
to infer directional association between z;, T4, and oz, A negative value indicates
synergy and needs to be resolved further.

For the network shown in Fig. 5, we aim to recover any synergistic interactions
of various genes, using higher-order entropy methods, that are potentially missed
due to consideration of only pairwise interactions.

For the synergy framework presented above, we seek to determine the direc-
tion of association of {z;,z;} and my, for all genes 4,4,k For this purpose,
I({z;,z;} — ) is determined, using methods presented earlier. Depending on
the relative magnitude of I({z;,z;} — ) and I(z; — {z;,2;}), the direction of
association can be determined. '

We now consider the set of genes common to those profiled in the microar-
ray expression'® 1647 study as well as the annotated genes from MGI. For these
12 genes (Bmp?, Cldn7, Gate3, Gdnf, Lamc2, Mapkl, Mapk3, Nrin, Paz2, Ret,
Spinti, Wnt11}, we study the dependencies discovered using triplet information.
Also, for the purposes of this work, we only present those dependencies wherein the
triplet information is negative, indicating possible synergistic interactions. These
interactions are indicated below (Table 7).

Several of the pathways, such as Gdnf-Ret, Wnt, and Mapk, are implicated in
UB differentiation.?®:“° However, most studies have focused on interaction within

Table 7. Some triplet interactions (discovered using DTI) that have a putative
biological role. Biological validation from the iiterature is given in parentheses.

UB specificity and citation
(http://symatlas.gnf.org/SymAtlas/)

Gdnf Ret Gatas Y (Grote et l33)
Ret Bmp¥ Gatad Y {Davies®)
Pax2 (Fated Ret Y (Clarke et ol.50)
Ret Wntii Gdnf Y (Majumdar et ol.8)
Paz2 Wntli Gatad Y (Grote et al.33)

Pax2 Ret Gdnf Y (Clarke et al.5% and Brophy et al.31)
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a pathway and not so much on cross-talk between various pathways. Organ devel-
opment is a complex phenomenon and needs several reciprocal interactions to con-
trol the growth of various cell populations. It is interesting to see several known
cross-interactions picked up using higher-order information, based on expression
data alone (Table 7). Given that cooperation/synergies between various pathways
are essential in most other biological processes, we believe that using a combina-
tion of higher-order MI and DTI would aid in the experimental resolution of such
interactions.

9. Conclusions

In this work, we have presented the notion of directed information {DTI) as a
reliable criterion for the inference of influence in gene networks, After motivating the
utility of DTT in discovering directed noulinear interactions, we present two variants
of DT1 that can be used, depending on the context. One version, unsupervised DTT,
like traditional network inference, enables the discovery of influences (regulatory or
nonregulatory) among any given set of genes; the other version, supervised DTT, aids
the modeling of the strength of influence between two specific genes of interest —
questions arising during transcriptional influence. It is interesting that DTI enables
the use of a common framework for both these purposes and is general enough
to accommodate arbitrary lag, nonlinearity, and resolution of cycles, loops, and
direction.

We see that the above presented combination of supervised and unsupervised
variants erables their applicability to several important problems in bioinformat-
ics (e.g. upstream TF discovery, module—gene interactions, higher-order influence
determination), some of which are presented in Sec. 8. The network inference
approach can also allow incorporation of additional biophysical knowledge per-
taining to both physical mechanisms and protein interactions that exist during
transcription. We point out that, given the diverse nature of biological data of
varying throughput, one has to adopt an approach to integrate such data io make
biologically relevant findings. Hence, the DTI metric fits very naturally into such
an integrative framework.
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Appendix: A Normalized DTI Measure

In this section, an expression for a normalized DTT coefficient is derived. This is use-
ful for a meaningful comparison across different criteria during network inference.
The purpose of this section is to establish some connections between quantities like
MI, DTI, and correlation. In this section, we use X, Y, and Z for X¥, ¥V and
N interchangeably, ie X = X¥ YV = V¥ and Z = ZV.

By the definition of DTT, we can see that 0 < I{(XV — vV} < [{X¥; YN < .
The normalized measure pryy1 should be able to map this large range ([0, o]} to
[0, 1]. We recall that the multivariate canonical correlation is given by®? p YNy N =

2;\,/22 XNYNE}_,.L/ 2, and this is normalized having eigenvalues between 0 and 1.
We also recall that, under a Gaussian distribution on XV and V¥ , the joing
entropy H{XV;YN) = —£In(2ne)?Y Sy ~nyw|, where |Ex~yw| is the determi-

nant of matrix Eyw~yw~, and Dywnyr denotes the covariance matrix, computed as
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Sxnyn = g==XTY, indicating that there are R replicates of the X, Y time series,
each of length N.

Thus, for I{XN;YN) = H(XY) + HYV) — HXV,YN), the expres-
sion for mutual information, under jointly Gaussian assumptions on X N and

V¥, becomes I(X;Y) = —%ln(%) = —3In(1 — pkwyn). Hence, a

straightforward transformation is normalized ML: pm1 = V1—e (XNYN) =
V1 - e 2ZIL IXMYYSY) | A connection with Joe®® can thus be immediately
seen.

With this, pur is normalized between [0, 1] and gives a better absolute definition
of dependency that does not depend on the unnormalized MI. We will use this
definition of normalized information coefficients in the present set of simulation
studies.

For constructing a normalized version of the DTI, we can extend the approach
from Geweke.” Consider three random vectors X, Y, and Z, each of which is identi-
cally distributed as M {ux, Rxx), N(py, Zyy), and N{uz, X zz), respectively. We
also have

. Txx Ixy Zxz
X
(X1Y= Z) ~ N (,’J» u ) ) SYX EYY E:YZ
Yz
Yzx Xzgy Xzz
Their partial correlation dy x|z is then given by dy x|z = %, where a1 =

Syy — Syz8,50zy, a2 = Dyx — SyzL555ax, and a3 = Sxx — Lxz8755zx-
Recalling results from conditional Gaussian distributions, these can be denoted
by a1 = Zy|z, a2 = Lxy|z, and a3 = Xx|z. Thus, dyx)z = y[é Exwzz}qé
Extending the above result from the MI to the DTI case, we have ppTi =
V1 — e 2Tk, H{XEYi|YT)
We recall the primary difference between MI and DTI (note the superscript
on X):

N
MI: (XY, yNy=>"1(xN; vy
i=1
N
DTI: I(XN -YN)=> Ix4v|y*").
i=1

Having found the normalized DTI, we ask if the obtained D'IT estimate is sig-
nificant with respect to a null DT distribution obtained by random chance. This
is addressed in Sec. 6.

We note that, though the normality assumption was used to show the con-
nection between information and correlation, this distributional assumption is not
used anywhere in the original DTI metric formulation and computation during its
application to network inference.
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