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ABSTRACT

In this paper, we present a novel information embedding based approach for video indexing and retrieval. The
high dimensionality for video sequences still poses a major challenge of video indexing and retrieval. Different
from the traditional dimensionality reduction techniques such as Principal Component Analysis (PCA), we embed
the video data into a low dimensional statistical manifold obtained by applying manifold learning techniques
to the information geometry of video feature probability distributions (PDF). We estimate the PDF of the
video features using histogram estimation and Gaussian mixture models (GMM), respectively. By calculating
the similarities between the embedded trajectories, we demonstrate that the proposed approach outperforms
traditional approaches to video indexing and retrieval with real world data.
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1. INTRODUCTION

In recent years, the rapid development of multimedia technology and popular online multimedia archives have
motivated much research in video indexing and retrieval1.2 Reliable video indexing requires effective measures of
similarity that are sensitive to differences in content and insensitive to variations of content-irrelevant parameters,
such as view angle, range, and illumination. For example, view invariance is one of the most important issues
in video indexing and retrieval due to camera motion. Previous work in view invariant video indexing rely on
different view invariant methods such as null space invariants.1 The indexing and retrieval problem becomes
further complicated by the high dimensionality of the video sequences. Traditional dimensionality reduction
techniques such as Principal Component Analysis (PCA) have also been employed.3

In this paper, we propose a novel framework that uses a recently developed non-linear dimensionality reduced
technique called Fisher Information non-linear embedding (FINE)45.6 FINE inherits invariance properties from
the probability distributions of the features, which here are the grey level pixels of the image. Since the probability
density function is non-negative and sums to one, a direct embedding into Euclidean space is not justified.
Rather, as explained in,4 it is more appropriate to embed the feature vector probabilities into an information
geometry, which is a hypersphere with respect to Hellinger metric. In4 it is shown that this embedding is a good
approximation to the optimal Fisher embedding of a smooth parametric family of densities. To the best of our
knowledge, this is the first time that the Fisher information embedding has been applied to video indexing and
retrieval. The main advantage of FINE embedding is its simplicity: substantial information can be extracted
from low level features.

The rest of the paper is organized as follows: we first briefly introduce the framework of FINE manifold
learning in Section 2. We proposed the novel video indexing and retrieval framework in Section 3. Subsequently,
we discuss the process of feature extraction and estimation of the PDF of the video sequences in Section 4. In
Section 5, we compare the performance to a PCA approach to traditional approaches in video indexing and
retrieval. Finally, we give a brief summary of our results in Section 6.
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2. FINE MANIFOLD LEARNING

In this section, we give a brief review of the methods for Fisher information non-linear embedding.4 Let M be
a family of PDFs parameterized by θ = [θ1, . . . , θn]:

M = {p(x|θ)|θ ∈ Θ ⊆ Rn} . (1)

M is a statistical manifold when the Fisher information metric is used to measure the amount of information
the random variable X contains with respect to the unknown parameter θ. We define the Fisher information
matrix [I(θ)] with elements

Iij = −E[
∂

∂θi
logf(X; θ)

∂

∂θj
logf(X; θ)] (2)

The Fisher information distance between two distributions can be approximated by Hellinger distance:4

DH(p, q) =

√∫
(
√

p(x)−
√

q(x))2dx . (3)

FINE embeds of the distances between PDFs in M into a lower dimensional Euclidean space using Laplacian
Eigenmaps.7

3. INDEXING AND RETRIEVAL ALGORITHM

We propose the following algorithm for video indexing and retrieval:

1. Extract features: We first construct our visual codebook using Bag-of-features (Bof)89 by randomly split-
ting the dataset into 2 parts, 50% for training and 50% for testing where cross-validation is conducted. By
clustering the SIFT features with K-means, we select the size of our visual codebook to be 120. Therefore,
for each video frame, we obtain a 120 by 1 SIFT feature based histogram by mapping SIFT features from
this video frame into the visual codebook.

2. Estimate the joint feature distribution Pi, i = 1, 2, . . . , N of each frame of the video with histogram es-
timation or Gaussian mixture models. Gaussian mixture models are implemented using the MIXMOD
software10 with a BIC model order estimator.

3. Use FINE to embed the Pi into low dimensional Euclidean space. Given the PDFs P = {p1, p2, . . . , pN},
the desired embedding dimension d is selected, e.g. for visualization of videos as trajectories d = 3.
Subsequently, we calculate the matrix of distances D with elements D(i, j) = D̂H(pi, pj). As the example
in FINE,4 we use Laplacian Eigenmaps7 but here it is applied to a time indexed sequence of 2 dimensional
spaces to obtain a trajectory for each video sequence.

4. Quantify the similarity between a pair of videos by computing a distance between the associated curves.
Different distance measure can be used such as chamfer distance or Frechet distance.

4. ESTIMATION OF PROBABILITY DENSITY FUNCTIONS (PDFS)

We investigated two approaches for the estimation of the PDF over the video frames: histogram estimation and
Gaussian mixture models. For lack of space we focus on Gaussian mixture models. The GMM has the form:

p(x) =
K∑

k=1

πkN(x|µk,Σk) , (4)

where πk represents the weight of the kth gaussian components, µk and Σk represent the mean and variance
of the kth gaussian components. We first extract the feature from each video frame using image patches. For
example, for a video frame with the dimension 300 by 300, we can define 3 by 3 image patch features to obtain



Figure 1. Plot of the BIC values versus different number of Gaussian components.

a 9 dimensional feature vector. In this case, there will be approximately 104 features in one video frame. The
Gaussian mixture model (GMM) provides a more parsimonious and compact representation than the histogram
when the PDFs of the video frames consist only a few modes.2 By careful selection of the number of Gaussian
components, one can obtain an accurate model for the feature PDF with fewer parameters than a histogram.
There exist efficient algorithms, e.g. the MIXMOD algorithm10 to implement the EM algorithm for estimating
the weight, mean and variance (πk, µk, σk) of each Gaussian components and to construct the PDFs for the
features over each frame.

The number of Gaussian components in a Gaussian mixture model can be determined using a criterion to
select model order such as Bayesian information criterion (BIC), Akaike information criterion (AIC).11 Here we
use BIC:

BIC = −2 ln(L) + k ln(n) , (5)

where L is the maximized value of the likelihood function for the estimated model, k is the number of free
parameters used by the likelihood functions and n is the number of observations (the sample size). Given
different candidate model orders k, the one with the lowest value of BIC is the one to be preferred.

5. SIMULATION RESULTS

Simulations were performed on the Context Aware Vision Image-based Active Recognition (CAVIAR) database12

in order to illustrate FINE indexing and retrieval. We selected 300 video sequences from the CAVIAR dataset
where each sequence consists of 100 frames. The videos have different content, such as, shopping, chasing or
talking. To test the robustness of the algorithm, we create five noisy video sequences by adding different levels
of salt and pepper noise. The average noise intensity ranges from 0.01 to 0.05.

In Fig.1, we plot the BIC value versus the different number of Gaussian components. As can be seen from
Fig.1, when the number of Gaussian components is equal to 6, the BIC achieves its minimum value. Figs. 2, 3
illustrate the video sequences ”Shopping” and ”Leaving” for the video sequence ”Shopping” from the CAVIAR
dataset. In Fig. 4, the embedded trajectories from different video sequences are shown. We compute the cosine
distances in the full dimensional space and Euclidean distances between the embedded trajectories from the video
sequence ”Shopping”, ”Leaving” and their noisy versions in Table 1. As can be seen from Table 1, the cosine
distances between the embedded trajectories from the same type of video sequences are much closer than the
those from different types of video sequences. To further investigate the FINE-based indexing and retrieval, we
show the three dimensional embedding with the proposed method in Fig.5, where the results indicate the FINE
embedding finds the natural separation of the video sequences in different classes by embedding them into lower
dimensional Euclidean spaces. With the proposed method, we are able to determine the closest two frames
in different video sequences in information geometrical representation. In Fig. 6, we demonstrate the two closest



Figure 2. First 10 video frames from the video segments in CAVIAR dataset for the motion event ”Shopping”.

Figure 3. First 10 video frames of the video segment from CAVIAR dataset for the motion event ”Leaving”.

Figure 4. The six embedded trajectories from the two classes of video sequences ”shopping” and ”leaving” with various
degrees of salt and pepper noise.



Figure 5. The six embedded trajectories from the two classes of the video sequences ”running” and ”talking” with various
degrees of salt and pepper noise using FINE in 3 dimensions for PDF estimation.

Figure 6. The chamfer distance between two embedded trajectories for the video sequences ”shopping” and ”leaving”
determines the two most similar video frames in these two video sequences.

Figure 7. The precision and recall curves with Fisher information embedding into different dimensions and Principal
component analysis (PCA) for video retrieval.



Table 1. Comparison of the cosine distances in full dimensional space and Euclidean distance in lower dimensional space
between different embedded trajectories for CAVIAR videos. ”Shopping (A)” represents the embedded trajectory from
the video sequences ”shopping” without noise. ”Shopping(B)” and ”Shopping(C)” represent the embedded trajectories
from the video sequences ”shopping” with the noise intensity 0.02 and 0.04 respectively. Similar annotation is used for
video sequences ”Leaving”.

Cosine\Euclidean Distance Shopping(A) Shopping(B) Shopping(C) Leaving(A) Leaving(B) Leaving(C)
Shopping(A) 0\0 0.39\0.037 0.50\0.037 1.33\0.53 1.32\0.51 1.29\0.50
Shopping(B) 0.39\0.037 0\0 0.31\0.0007 1.33\0.54 1.34\0.52 1.35\0.516
Shopping(C) 0.50\0.037 0.31\0.0007 0\0 1.35\0.54 1.30\0.52 1.36\0.516
Leaving(A) 1.33\0.53 1.33\0.54 1.35\0.54 0\0 0.31\0.058 0.42\0.076
Leaving(B) 1.32\0.51 1.34\0.52 1.30\0.52 0.31\0.058 0\0 0.37\0.019
Leaving(C) 1.29\0.50 1.35\0.516 1.36\0.076 0.42\0.076 0.37\0.019 0\0

frames in two video sequences ”Shopping” and ”Leaving” where we can identify that both of them correspond
to the similar motions that people are leaving the shops. We compare the retrieval performance of our method
with a canonical Euclidean dimensionality reduction approach based on principal component analysis (PCA) on
the same dataset to plot precision and recall curves in Fig. 7. We apply PCA to the distance matrix and reduce
it to the same two dimension as in FINE. It can be seen from Fig. 7 that the performance of our approach
outperforms this simple application of PCA. This can be attributed to the fact that PCA is a linear Euclidean
method that is not well justified for dimensionality reduction in information geometries.

6. CONCLUSION

We have presented a novel dimensionality reduction framework using Fisher information embedding. This
framework is based on statistical manifold learning and provides a powerful tool for dimensionality reduction
and video indexing and retrieval when there is no explicit Euclidean representation for the distances between
videos. The method requires computation of the feature PDFs for frames of the video sequences. By embedding
the Fisher information into a Euclidean space, we obtain a simple visual comparison between the embedded
trajectories. The simulations demonstrated the superiority of the proposed approach compared to PCA. Future
work will consider more sophisticated image features such as Gabor wavelets and a larger population of videos.
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