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Abstract—A new generalized cross correlator (GCC) for the passive

time delay estimation problem is presented. The interpretation of this-

GCC is that of estimating the cross-correlation function by cross cor-
relating the least mean-square estimates of the signal component in each
of the observed waveforms. The implementation is simply a GCC with
the weighting filter equal fo the magnitude coherency squared. Nu-
merical evaluation of the performance of this processor and a robust
version indicate that they compare favorably to some of the well-known
GCC procedures,

I. INTRODUCTION

HE estimation of propagation delay in a common signal

arriving at two spatially separated sensors is a problem
which has received much attention in the literature. Cross-
correlation methods, among which the standard cross correlator
(CC) is the most basic, are particularly popular because of the
richness and variety of processors within this class and the gen-
eral ease of implementation. Of these, the Hannan-Thomson
(UT) [11, [5], the Eckart (EK) [1], and the Hassab-Boucher
(HB) [2] are examples of “optimum” processors which maxi-
mize some performance criteria. On the other hand, the SCOT
[5] is an example of an *“ad hoc™ or intuitive correlation-type
processor. In general, the optimum processors are very sensitive
to deviations from the assumed signal and noise characteristics.
By way of contrast, the CC and SCOT appear to be more robust
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to these deviations from the nominal model. However, these
latter processors can have very poor performance at the nominal
point,

In the following development, a different approach to the
problem yields another type of (generalized) cross correlator,
This is the Wiener Processor (WP), which has a simple form,
Yet, preliminary results indicate that it outperforms most of
the other above-named processors when compared under various
performance criteria for the few important cases considered
in this paper. A “robust” version of the WP also indicates good
performance relative to the others under spectral uncertainty.

II. PROBLEM STATEMENT AND BACKGROUND

We first consider a system model generating the observations
in Fig. 1. We observe Gaussian, ergodic, wide-sense stationary
processes x,(¢) and x,(¢) over a time interval [0, T'] which
contain uncorrelated broad-band noises n, () and n,(¢) and
signals 5(z) and so(¢), respectively. We assume that ¢{#) isa
linear time-invariant channel having a transfer function C{w)
with unknown linear phase so that s0(#) is a delayed but pos-
sibly distorted version of s(¢). Furthermore, we assume that
the noises are uncorrelated with the signal and that 7is much
greater than the correlation time T, of x,(f) and x,(¢). The
object is then to estimate the time delay D associated with the
channel.

We define the sample cross correlation
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Fig. 1. Model goverming the observations x1(t) and xq(2). C(w) is the
transfet function of a linear phasé intersensor channel. The random
signal s(¢) is independent of the noises ) and na ().

Fig. 2. Generalized cross correlator implemented asa filter onthe sample
cross-correlation funct;on Rys.

or for T3> T, in the frequency domain,

~ 1 o o~ y
sz('f):'z‘;-f G12(w)e"wfdw. o )

Hete G,z = (IIT)X*Xg where X and X, are the finite time -

Fourier transforms of x; and x,. For large observauon time,

12(1‘) is a. good approximation to the true cross-correlation
function which has a global peak at D. In fact, if () is pure
delay and s(f) is white, the cross-correlation functlon isa delta
function at the true delay. For finite observation time, we can
decomipose Rn('r) into the sum of four terms:

Rig(T) =c(7)* Rg-("") +e(r) Rn, §(7)

+§ (‘r)+l,€n n,(f) . @)

where “# » denotes convolution. Here R s{) jsan estlmate of
the signal autoco rrelation function Rg(r)and R,, s, R; in, ()
and R nyn, (7) are cstimates of the cross correlatmn between the
respectlve signal and noise terms in the observations. In the
limit, the sample cross correlation converges to ¢(7) * Ry (1)
which displays an absolute maximum at D. Thus, it is the last
three terms in (3) which constitute zero-mean disturbances af-
fecting peak resolution of the first term. This suggests prefilter-
ing the sample cross correlation with a filter W(w) to obtain
better resolution of the peak at D, where W(cw) has zero phase.
This scheme is referred to as the generahzed cross-correlation
method or the generalized cross correlator (GCC) and is itlus-
trated in Flg 2. We-denote the GCC output waveform R, L (7).
Therefore, we have

RO~ [ Gu@ W@ e aw. @

When W(w) is unity, the resulting GCC is called the simple
cross correlator (CC). Considering the first term in (3) asa

“signal” in additive noise, classical optimal ﬁltermg theory can
be applied to derive filters W(w) which maximize signal-to-
noise ratio.
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- Letting the last three terms of (3) be characterizéd as “noise,”
we can define a signal-to-noise ratie at the output of the GCC
as the magnitude squared of the global peak of the “signal”
term divided by the power of the “noise” which generates
false peaks in R§,(r). We will denote this SNR;. For a suf-
ficiently broad-band signal s(f), the variance of the cross-

correlation estimate (1) outside of the unmedlate vicinity of
the true delay is given by -

var (Riz(f)) = T_;.TI'— f G, 1-(0-’) Gzz(wj dw )

and the variance of I?S 1s given by

e Rued =5 [ 16P ©
for 7 D [12]. G“(w) and Gs2(w) are the power spectral
densities of the observations x, () and x, (¢), respectively, and
G 12((.0) is the cross spectrum, Using the above results, it is
stralghtforward to derive the cross-correlation noise power
which is given by |

| R
A= | _ GGl - Ia(e)
AW(W)*dw, t#D. 7 )
1712 is the maghitﬁde coherency squared
.|Glz(°°)]2
Iyra{e)i? = = 8
e e ®

Then from the defining relation

[E{R (T)IT—D}] 2

SNRy = H ©)
we gbitain
1 " )2
- Bl G120 W) do]
SNR; =~ :
| Gl G- I IH des

—oa

(10)

The maximum is obtained through the Schwarz inequality.and
yields the HT processor for the pure delay channel, The same
result is derived in [4] as the result of minimizing the local
variance of the delay estimate over the entire GCC class, and
in [1] as thé result of maximum likelihood estimation. The
filter is '

1 Iyl
1612(0’)! 1=y’
Neglectmg the effect of the signal and noise cross terms,
el7) » R (@) and R , {r) in (3) gives another characteriza-

tion of the noise in the cross-correlation domain. With this
definition of noise, another signal-to-noise ratio is defined in

Wur (w) = (1)
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[61, SNR;, which is shown for pure delay to be maximized
by the Eckart Processor Wey ()

[—1—- f: |G 12{e)l I#I/(c‘;v)d’cu]2

27 J
SNR, = - W
2;1“ f _ O, (@) G, ()W) des
Weg (w) = 1Gy2(w)] .

G, (@) Gy, (w)

where G’ (w) and G, (w) are the autospectra of the noises
n, () and nz(t) respectively. Note that in terms of the spectra
of the observables x,(¢) and x,(z), the filter takes the form

|G 12 (@)l
(G11(w) - 1G12(6)) (Gaa(w) - 1G 12 ()

Hassab and Boucher [2] take the approach of maximizing a
singal-to-noise ratio SNR5 defined as the ratio of the expected
peak energy at the true delay to the total statistical variation
of the output of the GCC. This, in a sense, lumps the “signal”
e(r) *R“('r) variation mto the noise terms and yields the HB

filter Wyp(w)
(2] 16t wead)

Wek (w) =

SNR; = = .
21:T f - G11(w) Gaa(e) IW(w)l? dew
Wian ()= G11(w)Ga(w)” (15)

The HB is similar to the SCOT introduced by Carter ez al. [5]
in that, for highly dynamic spectra, in addition to suppressing
the cross-spectral estimate in co-regions of low signal-to-noise
ratio, high signalto-noise ratio regions are also suppressed in
an attempt to reject strong tonals in the observations,

Note that the above performance criteria impose equal pen-
alty on small and large errors. That is, the location of the false
peak in the GCC output exerts no influence on the signal-to-
noise ratios defined in (9), (12}, and (14). Therefore, one can
only rely on these criteria if the signal-to-noise ratio is suffi-
ciently high to guarantee a low probability of large error. The
behavior of this probability as a function of signal-to-noise
ratio, observation time, and signal bandwidth is investigated
elsewhere [7], [13].

1iI. TuE WIENER PROCESSOR

Here a different approach is taken to derive an optimal filter.
We deal directly with the quantities in the observation time
domain (i.e., Fig. 1). The procedure is motivated by the fol-
lowing argument. If we knew the signal s(¢) and the filtered
version 54(r) exactly, then from the linearity of the phase of
the channel, the time delay could be estimated exactly by de-
tecting the peak of the sample cross correlation of s(¢) and
so(#). Therefore, we simply try to estimate the signal 5(¢) as
best we can from the observations x(¢) and the channel out-
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Fig. 3. Implementation of the generalized cross correlator as a pre-
processor on the sensor waveforms. H, is the complex conjugate of
Hy,

put signal 5,(f) from x,(t) by minimizing the mean-square
errors:

E{(s(t) - 5())* } = min (16)
E{(so(t) - 5())*} = min (17)
where
T
5() =f x, (@) h,@- do (18)
-7
T
So(0) =f x,(0) Ay (t - o) do. 19
-7

The above procedure is illustrated in Fig. 3. Given the channe}
characteristic C(ew), the solutions to (16) and (17) are the
Wiener filters H, () and H, (w):

- Gy(w)
()= Gog(w) + Gn1 (w) 20)
Hy(w) = Gy (w) IC(w)I? @n

Gs(w) IC(@)?* +G)y ()

Noting that G,,(w) = C{w) Gx{w), we can express the above
filters in terms of the quantities derived from the observables

_ 1 Gu
A e et @)
Hy(w) = C*e )g”(("’)) @3)

where C"*(w) is the complex conjugate of C(w).

With these filters, the sample cross correlation of the least
mean-square error estimates of s(#)and s4(¢) yields the estimate
of the cross-correlation function:

R}*;"(T)-—— f %—S\*(w)é\o(w)ef“’dw (24)
where
S(w)=H,(w) X, (w) (@25)
Sow) = Hy () X5 (w). (26)
Regrouping terms in (24), we obtain
P 1 16y, (w))? foaT
RO [ G g B e, @)
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Comparing {27) to (4), we have the result that the WP is equiv-
alent to using a generalized cross correlator with the filter
W(to) equal to the magnitude coherency squared,

It should be emphasized that even though the Wiener filters
H, and H, involve the knowledge of the channel C(w) itself,
the GCC equivalent processor does not impose this require-
ment, In fact, as far as the cross-correlation estimate of time
deiay is concerned, the actual channel is immaterial to the
peak detection procedure in the cross-correlation domain.
Hence, the Wiener filter implementation (Fig. 3) with C{w)
arbitrarily set to unity in (22) and (23) is equivalent to any
other choice of C(w) for the time delay estimation problem.

From (5), the variance of the cross-spectrum estimate G, (w)
is proportionat to the product of the autospectra of the ob-
servations G;(w) Gi2(w). Fix the sample autocorrelation
Ry {7} in (3). Then the definition of “additive noise” leading
to the signal-to-noise ratio SNR, (7), yields the interpretation
of I~ |v12(w)* as a measure of the cross-spectral estimator
variance about the “desired signal” ¢(7) * Rs(7). Thus, the
WP deemphasizes those w regions where the sample cross spec-
trum is likely to be a highly inaccurate estimate of the true
cross spectrum. This is not surprising given the raison d’étre of
the WP which is to accurately estimate the smoothed sample
autocorrelation ¢(7) * R (7).

The WP does not, of course, maximize the signal-to-noise ratio
in general. If we examine the optimal processor for SNR, , the
HT (11), we see that it has the additional ability to overer-
phasize as well as to deemphasize the cross-spectral estimate ac-
cording to the function |y, (@)1 - fyy2(w)I?). (Actually,
in (4], the above function is shown to be inversely proportional
to the variance of the phase estimate G,,(w)/|G 2 {t2)} with
respect to the true phase of the cross spectrum.) However, in
situations where the coherence is Iow and the signal spectrum
is nearly flat, the HT and the WP are virtually identical and ex-
hibit identical performance [(11) becomes proportional io
l7,21%].

It is also observed that the WP is equivalent to the HB for
nearly flat signal spectra, and also to the Eckart if we add a
low signal-to-noise ratio condition

.. 2.1
Wig (W) = 1G(e) ly12(w)l Gy 2() Wyp(w) (28)

Gys(ew) ~ 1
Gy, (w) G, (@)  1G(w)l

The above signalto-noise ratio condition is that G..(w) be
uniformly small as compared to G, (w) and G, (w).

Wek (W) = bria{w)®. (29)

IV. THE RoBusT WIENER PROCESSOR
FOR UNKNOWN SPECTRA

The optimal GCC’s all require knowledge of the signal and
noise spectra underlying the observations. When the spectral
quantities used in the filter function for the GCC do not match
the true spectra, there is a consequent deterioration in per-
formance. Two approaches to the problem of unknown
spectra are of interest. We either estimate the spectra and sub-
stitute the estimates into the aforementioned filters (totally
unknown spectra) or we search for a robust solution over a range
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of spectra pertwrbed from some nominal point (partially un-
known spectra).

For the estimation approach, the sensitivity of the GCC ftiter
to small deviations in the estimated spectra may be an impor-
tant consideration. As applied to the HT, the substitution
method yields a procedure which weights the phase of the
sample cross specirum G,(w) with the function Wyt {w)=
(Y12 (@)1 - 12()f?), 112 (w)I?, a magnitude coherency
squared estimate. A simple local analysis of the estimation
error associated with Wy yields the variance

1 o 2

A= raa(aypye ™ (1@
I":’HT may critically underweight the phase estimate over fre-
quencies where |y, |? is high, that is, where the phase estimate
is apt to be the most accurate. On the other hand, substitution
of |¥ 12|* for the WP gives only as much error as the estimation
error of 1?12 [? itself. Animproved filter estimate could trans-
Iate into improved performance of the time delay estimate.
Naturally, these comments must be verified through a future
simulation study.

In practice, the specira may be only partially unknown, and
a different strategy can be used to design the GCC. This is the
“robust™ approach-which has been applied to classical matched
and Wiener filtering with some success [8]-[10]. The result-
ant filters are robust in the maximim sense, e.g., the fiiter
maximizes the minimum output signal-to-noise ratio as the
spectra are allowed to vary over their regions of uncertainty.
A more precise formulation is as follows.

It is assumed that the uncertainty corresponding to our
partial knowledge of signal and noise spectra G, G ,20d Gy,
is such that these quantities can be described as belonging to
the uncertainty classes of spectra ¢, 4, and n,, respectively.
Frequently, the above classes represent neighborhoods centered
around some nominal spectra Gg, Gy} ,and G where the size
of the classes is chosen to reflect our overall confidence in the
nominals as underlying the observations. Two common classes
for the signal spectrum are the ed - 4 mixture for ¢ > 0 [9],

0=[G&9: Gg=(1-€)G2+eGg and

var (Wyyr (@) =~ (30)

f Gss{w) dw = 21!0}} €1))
and the total-variation class for § >0 [9],
o= {Gﬂ: j [Gg(w)- GLlw)dw <8 and
f Gg(w)dw = 2m:§} (32)

where, in (31), G is an arbitrary spectrum and v? is a known
signal power. Analogous expressions can hold for the noise
spectra. ’

Let W be a function in the class of filter functions W. Now
define p,a GCC performance criterion, e.g., signal-to-noise ratio,
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as a function of the three spectral quantities and the filter
2= p{(Gs, Gp, , Gy, W), (33)

It is desired to find a W(w) that maintains good perforinance
as the spectra vary over the uncertainty classes. The idea is to
design an optimum filter under adversity, i.e., one that assures
us of a minimum level of “‘good” performance regardless of
the underlyirig spectra. The robust processor for p is defined
asa W, say WR, that arises from the solution of
max min p{Gg, Gn, ,Gn,, W). (B34
W en,..mn, :
Relat_ed to robust processing is the concept of least favorable
spectra discussed by Lehmann [14]. These are points in the
uncertainty classes where the worst possible performance occurs
subject to optimal filtering strategy. Spemﬁcally, let Wbea fil-
ter which maximizes p for the et of spectra (G§, G}, , G} ) e
oX 1 X ny: Then (GL, G,I, \ '1}',1 }is a least favorable set of
spectra for p if, for any other set (G&,., G, ,Gn,)E0X D X
M2, :

p(Gm,Gnl Gp,, W= p(Gls, Gy, Ghy WY). (35)

Note that if (35) holds, we have 2 saddlepoint solution of (34)
and we can take WE =y,
- Unforturiately, no results are known to us concerning the
solution of the above robust time delay estimation problem,
ie., (34). Short of this, the only known published result in
maximin filters for time delsy is that of Kassam and Hussaini
[11] for the pure delay case. In [11], they used the fact that
the Eckart processor maximizes a classically defined signal-to-
noise ratio [see (12)] to relate the filtering problem to robust
hypothesis testing. This is achievable only by associating un-
certainty classes' with the spectral product G, (w) Gp, {(w)
rather than with the individual noise spectra themselves

An alternate approach to performance degradation under
spectral uncertamty is supgested by recent work in robust
Wiener filtering [9], [10] when applied to the WP. Assumie
that the uncertainty classes ¢, 7, and 1, govern the individual
spectra as above, and that {C(w)|=1. Here, one simple con-
structs two robust Wiener filters for the srg,nal 8, gach acting on
x,; and x,, respectively. This procedure can then be related to
a GCC in the same manner as the Wiener filters were related to
the WP in Section III. ‘

Consider first the waveform x, (f) in Fig. 1. Define the mean-
square error of an estimate of s(z) obtained by linearly filtering
x1 () with H, € H, a class of filter functions, by -

e= e(ngs Gnl :Hl)' ’

Following Poor [9], H,
if it is the solution of

(36)

=Hf is called a robust Wiener filter

(37

min max e(Gs, G,zl Hy).
H om
1et H] be the Wiener filter for (G, Gk i , H1 minimizes
the mean-square error for these spectra. The pair (G, G}, JE
o X 1y is called least favombie for Wiener filtering if, for any
other spectra (Gy, Gy, YE 0 X 7y,

e(Gs, G, , Hi )<e(G&.,., Gh HY). (38)

Autharized licensed use limited to: University of Michigan Library. Cownloaded on July 28, 2009 at 13:08 from [EEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-33, NO. 1, FEBRUARY 1985

If the uncertainty classes given by (31) and (32) govern the
srgnal and noise spectra it is shown in {9] that least favorable
spectra exist and that A1 is the robust Wiener filter

. (39)
b GG '

The same discussion carries over to the waveform x,(f) with

the analogous robust Wiener filter

Gh

Hf =5
?Ghk+6l

(40)

With regard to the original formulation of the WP, we cdn
use the robust filters AR and HY in place of H, and H, [see
{22) and (23)]. Finally, we implement these filters in the
cross-correlation domain as a GCC, a scheme which we will
call the Robust Wiener Processor, or the RWP. In the next sec-
tion, we give a detailed example of least favorable spectra and
the resultmg robust filters. For the example considered, there

“is 4 3 dB processing gain at low signal-to-noise ratio using the

RWP.

V. NUMERICAL COMPARISONS

At the present time, no simulation results concetning the ex-
perimental performance of the WP and RWP as opposed to the
other GCC’s are available. In their absence, a preliminary in-
vestigation of the relative merits of the above processors was
performed based on the various signal-to-noise ratio criteria de-

fined in Section H for some specific observation spe::tra and
for the pure delay channe]

Example 1

Figs. 6-10 show the relative performance of the HT, HB,
Eckart, SCOT, and CC under the criteria SNR, , SNR,, SNR;,
and local variance varj, of the time delay estimate [3] for a
third-order Markov signal in first-order Markov noises with the
noise 3 dB bandwrdth a factor of ten greater than that of the
signai (see Figs. 4 and 5) Specrfically, the srgnal spectrum has
the form =

1

w &
\27B; )
with B;= 10 Hz, and the noise spectra Gp, (@) and Gy, (w)
are of identical form:_

Gulw)=$ (1)
2nB; 14

o1 1
Ga(w)=N 2

2By | [ )
2nB

w1th B, =100 Hz. Here S and N are the input signal and noise
powers respectively. These spectra were chosen for their tail
behavior to avoid certain degeneracies in the local varjance
criterion. The interesting thing to note is that under SNR,
and SNR,, the WP exhibits better performance than alf of the
other suboptimum GCC’s for that particular definitionof SNR.
Under SNR;, it is 2 close second next to the MLE. In fact,un-
der the critesion SNR;, performance of the WP is virtually

(42)
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Fig. 4. Third-order Markov signal spectrum for Example 1.
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Fig. 5. First-order Markov noise spectra for Example 1.
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Fig. 6. Relative performance of various processosrs under criterion SNR ;.
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Fig. 7. Relative performance of various processors tinder criterion SNR;.
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Fig. 8. Relative perfonﬁance of various processors under criterion SNR;.
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Fig. 9. Local variance for various processors.
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Fig. 10. Local variance for various processors (magnification of Fig. 9).

identical to the optimal HT processor. Although the local vari-
ance ranks the WP behind the HT, HB, and Eckart (see Figs. 9
and 10), it only marginally disfavors the WP at low signal-to-
noise ratios. (It is to be noted from Fig, 9 that the SCOT and

-the CC have local variance orders of magnitude worse than the

WP and are off scale. They are shown in Fig. 10.)

Example 2 : . : .

Here the performance of the RWP, WP, and other GCC’s are
compared using SNR; for the e-contaminated uncertainty class
on the specific spectra in the example outlined in-Kassam and
Lim’s paper on robust Wiener filtering {9]. Specifically, under
the nominal assumption, at each sensor we have a signal with
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Fig. 11. Signal spectrum for Example 2.
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Fig. 12. Noise spectrum for Example 2.

the flat band-limited spectrum G3(t) in first-order Markov
noise with the spectrum GJ{c) where the signal and noises
are of comparable bandwidths (see Figs. 11 and 12). The un-
certainty on the signal and noise spectra are modeled as the
e-mixtures

(1 - 1) GE(w) * €1 G (@) (43)
and '
(1 - €2) G(w) + &, G (), (44)

respectively, with G (w) and G, (w) arbitrary spectra having

the same mass as the nominal and ¢, and e, lying in the inter-
val [0,1]. When €, =0.2 and e, = 0.1, the [east favorable signal
and noise spectra are plotted in Figs. 13 and 14, respectively.

This corresponds to the case where one may have more con-

fidence in the nominal noise than in the nominal signal. The
least favorable spectra for this example illustrate a typical
attribute of least favorables in that the worst performance of a
Wiener filter occurs when the signal masquerades as the noise
and vice versa, ie., when we get a minimum separation of
hypotheses concerning the presence or absence of the signal
within the uncertainty classes (43) and (44). Fig. 15 shows
the relative performance for the nominal spectra and Fig. 16
the performance for the least favorable signal and noise spectra
for Wiener filtering. Looking at the. nominal cdse, we note
that the use of the RWP entails a loss of about 3 dB at low
SNR. (below about 0 dB) over the optimal for the least favor-
able pair. However, when the true signal and noise spectra are
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least favorable for Wiener filtering, the RWP displays uniformly
better relative performance, gaining about 3 dB over the other
processors at low signal-to-noise ratios. Note that the pair-in
Figs. 13 and 14 is not necessarily the least favorable pair for
HT filtering, so that no conclusive result is indicated here.
However, Fig. 16 does suggest that, at least for some spectra
in the above uncertainty class, we can expect better perfor.
mance with the RWP than with the optimal scheme for the
neminal spectra.

VI. CoNCLUSION

-We have outlined the development of several of the most
popular GCC implementations-and have introduced a simple
GCC, the WP, which is believed to be new. Although the
new GCC was motivated by intuition rather than any overail
~ optimality considerations, it has been shown that the WP can
perform well with respect to the other optimal schemes, as
measured by their respective optimality criteria. For cases
where the spectral uncertainty can be modeled as restricted to
a specific class, classical robustness theory leads to a simple
modification of the WP, which we called the RWP, The evalu-
ation of its theoretical performance for a typical uncertainty

class of signal and noise spectra was performed, which indicated .

a poténtial gain in output signal-to-noise ratio relative to the
other GCC implementations. The above results suggest that
the WP and the RWP may be viable alternatives to existing
~time delay estimation schemes. Further experimental- and
simulation-based performance evaluation is requu:ed before
any general conclusions can be drawn.
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