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The systematic inference of biologically relevant influence networks remains a challenging problem in computational
biology. Even though the availability of high-throughput data has enabled the use of probabilistic models to infer
the plausible structure of such networks, their true interpretation of the biology of the process is questionable. In
this work, we propose a network inference methodology, based on the directed information (DTI) criterion, which
incorporates the biology of transcription within the framework, so as to enable experimentally verifiable inference.
We use publicly available embryonic kidney and T-cell microarray datasets to demonstrate our results.

We present two variants of network inference via DTI (supervised and unsupervised) and the inferred networks
relevant to mammalian nephrogenesis as well as T-cell activation. Conformity of the obtained interactions with
literature as well as comparison with the coefficient of determination (CoD) method is demonstrated. Apart from
network inference, the proposed framework enables the exploration of specific interactions, not just those revealed
by data. To illustrate the latter point, a DTI based framework to resolve interactions between transcription factor
modules and target co-regulated genes is proposed. Additionally, we show that DTI can be used in conjunction with
mutual information to infer higher-order influence networks involving co-operative gene interactions.

Keywords: Mutual Information; Directed Information; transcription factor module; comparative genomics; transcrip-
tion regulatory network.

1. INTRODUCTION

Computational methods for inferring dependencies

between genes [31, 36, 52] using probabilistic tech-

niques have been used for quite some time now.

However the biological significance of these recov-

ered networks has been a topic of debate, apart

from the fact that such approaches mostly yield net-

works of significant influences as ‘observed/inferred’

from the underlying structure of data. Alternatively,

other biological data (such as sequence information)

might suggest the examination of the probabilistic

dependence of one gene on another gene through the

transcription factor (TF) encoded by the first gene.

What if we were interested in the transcriptional in-

fluences on a certain gene ‘A’ but our prospective

network inference technique was unable to recover

them?. We propose a technique with an eye on two

of these challenges: biological significance and influ-

ence determination between ‘any’ two variables of

interest. Such an approach is increasingly necessary

in order to integrate and understand multiple sources

of data (sequence, expression etc.).

The method that we propose builds on an infor-

mation theoretic criterion referred to as the directed

information (DTI). The DTI is a variant of mutual

information (MI) that attempts to capture the di-
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rection of information flow. It is widely used in the

analysis of communication systems with feedback or

feedforward [32, 33, 50] as well as in economic time

series analysis [17, 50]. The DTI [32, 42] can be inter-

preted as a directed version of mutual information, a

criterion used quite frequently in other related work

[31]. It turns out, as we will demonstrate, that the

DTI gives a sense of directional association for the

principled discovery of biological influence networks.

The contributions of this work are as follows.

Firstly, we present a short theoretical treatment of

DTI and an approach to the supervised and unsu-

pervised discovery of influence networks, using mi-

croarray expression data. Secondly, we examine two

scenarios - the inference of large scale gene influence

networks (in mammalian nephrogenesis and T-cell

development) as well as potential effector genes for

Gata3 transcriptional regulation in distinct biologi-

cal contexts. We find that this method outperforms

other methods in several aspects and leads to the

formulation of biologically relevant hypotheses that

might aid subsequent experimental investigation. Fi-

nally, we conclude with the application of DTI to

two important questions in bioinformatics, TF mod-

ule discovery and higher-order network inference. TF

module discovery is the identification of common reg-

ulatory modules (groups of TFs) whose binding sites

co-occur on the promoters of co-expressed genes.

Higher-order network inference, in this work, exam-

ines the resolution of three-way interactions rather

than only pairwise relationships among genes [35].

2. ORGANIZATION

This paper is organized as follows: In section 3, the

working definition of transcriptional gene networks

is given. Based on this definition, four main research

problems are posed - pertaining to supervised and

unsupervised network inference, TF module-gene in-

teractions, and inference of higher order influence

networks. Directed information (DTI) is proposed as

part of a general framework to answer these questions

(section: 5) and a methodology for determination of

influence and its significance is examined (sections:

Appendix and 6). The paper concludes with results

applicable to each of the questions posed above (sec-

tion: 8), using a combination of synthetic and real

biological data.

3. GENE NETWORKS

Transcription is the process of generation of messen-

ger RNA (mRNA) from the DNA template repre-

senting the gene. It is the intermediate step before

the generation of functional protein from messenger

RNA. During gene expression (Fig. 1), transcrip-

tion factor proteins are recruited at the proximal

promoter of the gene as well as at distal sequence

elements (enhancers/silencers) which can lie several

hundreds of kilobases from the gene’s transcriptional

start site [23]. Since transcription factors are also

proteins (or their activated forms) which are in turn

encoded for by other genes, the notion of an influence

between a transcription factor gene and the target

gene can be considered.

Fig. 1. Schematic of Transcriptional Regulation. Sequence
motifs at the promoter and the distal regulatory elements to-
gether confer specificity of gene expression via TF binding.

Fig. 2. A transcriptional regulatory network with genes A

and B effect C. An example of C that we study here is the
Gata3 gene.

In Fig. 2, a characterization of transcriptional

regulatory networks, as relevant to this work, is

given. As the name suggests, gene A is connected

by a link to gene C if a product of gene A, say pro-
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tein A, is involved in the transcriptional regulation of

gene C. This might mean that protein A is involved

in the formation of the complex which binds at the

basal transcriptional machinery of gene C to drive

gene C regulation.

As can be seen, the components of the transcrip-

tion factor (TF) complex recruited at the gene pro-

moter, are the products of several genes. Therefore,

the incorrect inference of a transcriptional regula-

tory network can lead to false hypotheses about the

actual set of genes affecting a target gene. Since

biologists are increasingly relying on computational

tools to guide experiment design, a principled ap-

proach to biologically relevant network inference can

lead to significant savings in time and resources in

downstream experimental design. In this paper we

try to combine some of the other available biologi-

cal data (phylogenetic conservation of binding sites

across genomes and expression data) to build net-

work topologies with a lower false positive rate of

linkage. Some previous work in this regard has been

reported in [29, 24].

4. PROBLEM SETUP

In this work, we also study the mechanism of gene

regulation, with the Gata3 gene as an example. This

gene has important roles in several processes in mam-

malian development [25, 23], like in the developing

urogenital system (nephrogenesis), central nervous

system, and T-cell development. In order to find

which TFs regulate the tissue-specific transcription

of Gata3 (either at the promoter or long-range regu-

latory elements), a commonly followed approach [24,

29] is to look for phylogenetically conserved tran-

scription factor binding sites (TFBS). The hypothe-

sis underlying this strategy is that the interspecies-

conservation of a TFBS suggests a possibly func-

tional binding of the TF at the motif (from evolu-

tionary pressure for function). With a view to un-

derstanding gene regulatory mechanisms, this work

primarily addresses the following questions:

• Biologists are also interested in the network

of relationships among genes expressed un-

der a certain set of conditions, which uses

several network inference procedures, such

as Bayesian networks [52], mutual informa-

tion [31] etc. However, there has been lack of

a common framework to do both supervised

and unsupervised directed network inference

within these settings to detect directed non-

linear gene-gene interactions. We present di-

rected information as a potential solution in

both these scenarios. Supervised network

inference pertains to finding the strengths

of directed relationships between two spe-

cific genes. Unsupervised network inference

deals with finding the most probable net-

work structure to explain the observed data

(like in Bayesian structure learning using ex-

pression data). This is addressed in sections

8.2 and 8.3.

• Which transcription factors are potentially

active at the target gene’s promoter during

its tissue-specific regulation ? - this ques-

tion is primarily answered by examining the

phylogenetically conserved TFBS at the pro-

moter and asking if microarray expression

data suggests the presence of an influence

between the TF encoding gene and the tar-

get gene (i.e. Gata3 ). This approach thus

integrates sequence and expression informa-

tion (section: 8.4).

• Which transcription factors underlie the

tissue-specific expression of a group of co-

expressed/co-regulated genes (eg: Gata3

and others)? - one common approach is to

search the proximal promoters of all such

tissue specific genes, and look for ‘modules’

of TFs that control tissue-specific expression

[24, 29]. For the Gata3 example, we ask if

there are any TFs underlying ureteric bud

(UB) specific expression for Gata3, during

nephrogenesis. For this purpose, we find

modules from co-expressed gene promoters

and use microarray expression to point out

possible effectors of target gene expression

(section: 8.5).

• Gene interactions during processes such as

development and disease progression are

rarely pairwise, and occur in cliques such as

pathways. Additionally, cross-talk between

components of different pathways is essential

in the progression of such dynamic processes.
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Towards this end, the inference of higher or-

der interactions (more than only two-way

gene relationships) is seen to be a useful ap-

proach [35]. Using DTI, it would be inter-

esting to find directed interactions between

differentially expressed genes of the develop-

ing kidney to determine pathway cross-talk

(section: 8.6).

4.1. Phylogenetic Conservation of

Transcription Factor Binding Sites

(TFBS)

As mentioned above, the mechanism of regulation of

a target gene is via the binding site of the correspond-

ing transcription factor (TF). It is believed that sev-

eral TF binding motifs might have appeared over

the evolutionary time period due to insertions, mu-

tations, deletions etc. in vertebrate genomes. How-

ever, if we are interested in the regulation of a process

which is known to be similar between several organ-

isms (say Human, Chimp, Mouse, Rat and Chicken),

then we can look for the conservation of functional

binding sites over all these genomes. This helps us

isolate the putatively functional binding sites, as op-

posed to those which might have randomly arisen.

This however, does not suggest that those other TF

binding sites have no functional role. If we are inter-

ested in the mechanism of regulation of the Gata3

gene (which is known to be implicated in mam-

malian nephrogenesis), we examine its promoter re-

gion for phylogenetically conserved TFBS (Fig. 3).

Such information can be obtained from most genome

browsers [37]. We see that even for a fairly short

stretch of sequence (1 kilobase) upstream of the gene,

there are several conserved sequence elements which

are potential TFBS (light grey regions in Fig. 3).

In this figure, we have aligned the mouse Gata3

promoter region with its human and rat counter-

parts. The height of each of the dark gray regions

indicates the extent of conservation between these

species. Furthermore, it indicates that several tran-

scription factors bind at these conserved regions. To

test their functional role in-vivo or in-vitro, it is nec-

essary to select only a subset of these TFs, because

of the great reliance on resources and effort. Hence

the genes coding for these conserved TFs are the ones

that we examine for possible influence determination

via expression-based influence metrics. If we are able

to infer an influence between the TF-coding gene and

the target gene at which its TF binds, then this re-

duces the number of candidates to be tested. To

examine Gata3 ’s role in kidney development, we use

microarray expression data from a public repository

of kidney microarray data (http://genet.chmcc.org/,

http://spring.imb.uq.edu.au/ and

http://kidney.scgap.org/index.html). Each of these

sources contain expression data profiling kidney de-

velopment from about day 10.5 dpc to the neonate

stage. Some of these studies also examine expression

in the developing ureteric bud (UB), metanephric

mesenchyme (MM) apart from the whole kidney.

Our approach thus integrates several aspects:

• Using phylogenetic information to infer

which TF binding sites upstream of a tar-

get gene may be functional.

• Identifying if any of the TF genes influence

a target gene by coding for a transcription

factor that binds at the site discovered from

conservation studies. This directed influence

is captured using an influence metric (like di-

rected information) in conjunction with ex-

pression data ([8, 47])and explained in Sec-

tion: 5.

Fig. 3. TFBS conservation between
Human, Mouse and Rat, upstream (x-axis) of Gata3, from

http://www.ecrbrowser.dcode.org/.

5. DTI FORMULATION

As alluded to above, there is a need for a viable in-

fluence metric that can find relationships between
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the TF “effector” gene (identified from phylogenetic

conservation) and the target gene (like Gata3 ). Sev-

eral such metrics have been proposed, notably, cor-

relation, coefficient of determination (CoD), mutual

information etc. To alleviate the challenge of detect-

ing non-linear gene interactions, an information the-

oretic measure like mutual information has been used

to infer the conditional dependence among genes by

exploring the structure of the joint distribution of the

gene expression profiles [31]. However, the absence

of a directed dependence metric has hindered the uti-

lization of the full potential of information theory. In

this work, we examine the applicability of one such

metric - the directed information criterion (DTI), for

the inference of non-linear, directed gene influences.

The DTI - which is a measure of the directed

dependence between two N -length random processes

X ≡ XN and Y ≡ Y N is given by [33]:

I(XN → Y N ) =

N
∑

n=1

I(Xn; Yn|Y
n−1) (1)

Here, Y n denotes (Y1, Y2, .., Yn), i.e. a seg-

ment of the realization of a random process Y and

I(XN ; Y N ) is the Shannon mutual information [12].

An interpretation of the above formulation for

DTI is in order. To infer the notion of influence be-

tween two time series (mRNA expression data) we

find the mutual information between the entire evo-

lution of gene X (up to the current instant n) and

the current instant of Y (Yn), given the evolution of

gene Y up to the previous instant n− 1 (i.e. Y n−1).

This is done for every instant, n ∈ (1, 2, . . . , N), in

the N - length expression time series.

As already known, I(XN ; Y N ) = H(XN) −

H(XN |Y N ), with H(XN) and H(XN |Y N ) being

the entropy of XN and the conditional entropy of

XN given Y N , respectively. Using this definition

of mutual information, the DTI can be expressed in

terms of individual and joint entropies of XN and

Y N . The task of N -dimensional entropy estimation

is an important one and due to computational com-

plexity and moderate sample size, histogram estima-

tion of multivariate density is unviable. However,

several methods exist for consistent entropy estima-

tion of multivariate small sample data [26, 34, 38,

51]. In the context of microarray expression data,

wherein probe-level and technical/biological repli-

cates are available, we use the method of [26] for

entropy estimation.

From (1), we have,

I(XN → Y N ) =

N
∑

n=1

[H(Xn|Y n−1) − H(Xn|Y n)]

=
N

∑

n=1

{[H(Xn, Y n−1) − H(Y n−1)]−

[H(Xn, Y n) − H(Y n)]} (2)

• To evaluate the DTI expression in Eqn.2,

we need to estimate the entropy terms

H(Xn, Y n−1), H(Y n−1), H(Xn, Y n) and

H(Y n). This involves the estimation of mar-

ginal and joint entropies of n random vari-

ables, each of which are R dimensional, R

being the number of replicates (probe-level,

biological and technical).

• Though some approaches need the esti-

mation of probability density of the R-

dimensional multivariate data (Xn) prior to

entropy estimation, one way to circumvent

this is to the use the method proposed in

[26]. This approach uses a Voronoi tessel-

lation of the R-dimensional space to build

nearly uniform partitions (of equal mass)

of the density. The set of Voronoi regions

(V 1, V 2, . . . , V n) for each of the n points in

R-dimensional space is formed by associat-

ing with each point Xk, a set of points V k

that are closer to Xk than any other point

Xl, where the subscripts k and l pertain to

the kth and lth time instants of gene expres-

sion.

• Thus, the entropy estimator is expressed

as : Ĥ(Xn) = 1
n

∑n
i=1 log(nA(V i)), where

A(V i) is the R-dimensional volume of

Voronoi region V i. A(V i) is computed as

the area of the polygon formed by the ver-

tices of the convex hull of the Voronoi region

V i. This estimate has low variance and is

asymptotically efficient [27].

To obtain the DTI between any two genes of in-

terest (X and Y ) with N -length expression profiles

XN and Y N respectively, we plug in the entropy es-

timates computed above into the above expression
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(2).

From the definition of DTI, we know that 0 ≤

I(XN
i → Y N ) ≤ I(XN

i ; Y N ) < ∞. For easy

comparison with other metrics, we use a normal-

ized DTI metric (see Appendix) given by ρDI =
√

1 − e−2I(XN→Y N ) =
√

1 − e−2
P

N

i=1
I(Xi;Yi|Y i−1).

This maps the large range of DI, ([0,∞]) to lie in

[0, 1]. Another point of consideration is to estimate

the significance of the ‘true’ DTI value compared to

a null distribution on the DTI value (i.e. what is

the chance of finding the DTI value by chance from

the series X and Y ). This is done using empirical

p-value estimation after bootstrap resampling (Sec:

6). A threshold p-value of 0.05 is used to estimate

the significance of the true DTI value in conjunction

with the the density of a random data permutation,

as outlined below.

6. SIGNIFICANCE ESTIMATION OF DTI

We now outline a procedure to estimate the empirical

p-value to ascertain the significance of the normalized

directed information Î(XN → Y N ) between any two

N -length time series X ≡ XN = (X1, X2, . . . , XN ),

and Y ≡ Y N = (Y1, Y2, . . . , YN ). In our case, the de-

tection statistic is Θ = Î(XN → Y N ) and the chosen

acceptable p-value is α.

The overall bootstrap based test procedure is

([15],[40],[2]):

• Repeat the following procedure B(= 1000)

times (with index b = 1, . . . , B):

– Generate resampled (with replace-

ment) versions of the times series XN ,

Y N , denoted by XN
b , Y N

b respectively.

– Compute the statistic θb = Î(XN
b →

Y N
b ).

• Construct an empirical CDF (cumulative

distribution function) from these boot-

strapped sample statistics, as FΘ(θ) =

P (Θ ≤ θ) = 1
B

∑B
b=1 Ix≥0(x = θ−θb), where

I is an indicator random variable on its ar-

gument x.

• Compute the true detection statistic (on the

original time series) θ0 = Î(XN → Y N ) and

its corresponding p-value (p0 = 1 − FΘ(θ0))

under the empirical null distribution FΘ(θ).

• If FΘ(θ0) ≥ (1 − α), then we have that the

true DTI value is significant at level α, lead-

ing to rejection of null-hypothesis (no direc-

tional association).

7. SUMMARY OF ALGORITHM

We now present two versions of the DTI algorithm,

one which involves an inference of general influence

network between all genes of interest (unsupervised-

DTI ) and another, a focused search for effector

genes which influence one particular gene of inter-

est (supervised-DTI ).

Our proposed approach using (supervised-DTI )

for determining the effectors for gene B is as follows:

• Identify the G genes (A1, A2, . . . , AG), based

on required phenotypical characteristic us-

ing fold change studies. Preprocess the gene

expression profiles by normalization and cu-

bic spline interpolation. Assuming that

there are N points for each gene, entropy

estimation is used to compute the terms in

the DTI expression (Eqn. 2).

• For each pair of genes Ai and B among these

G genes :

{

– Look for a phylogenetically conserved

binding site of TF encoded by gene Ai

in the upstream region of gene B.

– Find DTI(Ai, B) = I(AN
i → BN ),

and the normalized DTI from Ai to B,

DTI(Ai, B) =
√

1 − e−2I(AN

i
→BN ).

– Bootstrap resampling over the data

points of Ai and B yields a null dis-

tribution for DTI(Ai, B). If the true

DTI(Ai, B) is greater than the 95% up-

per limit of the confidence interval (CI)

from this null histogram, infer a poten-

tial influence from Ai to B.

– The value of the normalized DTI from

Ai to B gives the putative strength of

interaction/influence.

– Every gene Ai which is potentially in-

fluencing B is an ‘effector’. This search

is done for each gene Ai among these G

genes ((A1, A2, . . . , AG)).

}
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Note: As can be seen, phylogenetic information is

inherently built into the influence network inference

step above. We note that, in supervised-DTI, the

choice of potential effectors for a target gene is based

on only those TFs that have a binding site at the tar-

get gene’s promoter. In this sense, supervised-DTI

aims to reduce the overall search space based on bi-

ological prior knowledge.

For unsupervised DTI, we adapt the above ap-

proach for every pair of genes (A, B) in the list, not-

ing that DTI(A, B) 6= DTI(B, A). In this case we

are not looking at any interaction in particular, but

are interested in the entire influence network that can

be potentially inferred from the given time series ex-

pression data. The network adjacency matrix has

entries depending on the direction of influence and

is related to the strength of influence as well as con-

trol of false discovery rate (FDR). The Benjamini-

Hochberg procedure [5] is used to screen each of the

M(= G(G− 1)) hypotheses (both directions) during

network discovery amongst G genes.

Briefly, the FDR procedure controls the expected

proportion of false positives among the total number

of rejections rather than just the chance of false posi-

tives [45]. It tolerates more false positives, and allows

fewer false negatives.

• The p-values of the various edges

(1, 2, . . . , M) are ranked from lowest to high-

est, all satisfying the original significance

cut-off of p = 0.05. The ranked p-values are

designated as p(1), p(2), . . . , p(M).

• For j = 1, 2, . . . , M , the null hypothesis (no

edge) Hj is rejected at level α if p(j) ≤
j

M α.

• All the edges with p-value ≤ p(j) are retained

in the final network.

In Table. 1, we compare the various contem-

porary methods of directed network inference. Re-

cent literature has introduced several interesting ap-

proaches such as graphical gaussian models (GGMs),

coefficient of determination (CoD), state space mod-

els (SSMs) for directed network inference. This com-

parison is based primarily on expectations from such

inference procedures - that we would like any such

metric/procedure to:

• Resolve cycles in recovered interactions.

• Be capable of resolving directional and po-

tentially non-linear interactions. This is

because interactions amongst genes involve

non-linear kinetics.

• Be a non-parametric procedure to avoid dis-

tributional assumptions (noise etc).

• Be capable of recovering interactions that a

biologist might be interested in. Rather than

use a method that discovers interactions un-

derlying the data purely, the biologist should

be able to use prior knowledge (from litera-

ture perhaps). For example, a biologist can

examine the strength and significance of a

known interaction and use this as a basis for

finding other such interactions.

From the above comparisons, we see that DTI is

one metric which can recover interactions under all

these considerations.

Table 1. Comparison of various network inference methods.

Method Resolve Non Search Non
Cycles -linear for -parametric

framework interaction framework

SSM [41, 4] Y Y N Y
CoD [20] N N Y N
GGM [36] N Y N N
DTI [42] Y Y Y Y

8. RESULTS

In this section, we give some scenarios where DTI can

complement existing bioinformatics strategies to an-

swer several questions pertaining to transcriptional

regulatory mechanisms. We address four different

questions.

• To infer gene influence networks between

genes that have a role in early kidney devel-

opment and T-cell activation, we use unsu-

pervised DTI with relevant microarray ex-

pression data, noting that these influence

networks are not necessarily transcriptional

regulatory networks.

• To find transcription factors that might be

involved in the regulation of a target gene

(like Gata3 ) at the promoter, a common ap-

proach is to first look for phylogenetically

conserved TFBS sequences across related

species. These species are selected based on

whether the particular biological process is
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conserved in them. To add additional cre-

dence to the role of these conserved TFBSes,

microarray expression can be integrated via

supervised DTI to check for evidence of an

influence between the TF encoding gene and

the target gene.

• Thirdly, we examine the promoters of sev-

eral genes that have a documented role in

ureteric bud development. The idea is to

look for common transcription factor mod-

ules that govern the combined co-expression

and co-regulation of these genes [29]. Again,

expression data and supervised DTI can be

used to check for influences between the

module components and the target gene(s).

• Finally, the problem of inferring higher-

order dependencies between various genes

using a combination of mutual and directed

information is presented in the context of

differentially expressed UB-specific genes of

the developing kidney.

Before proceeding, we examine the performance

of this approach on synthetic data.

8.1. Synthetic Network

A synthetic network is constructed in the following

fashion: We assume that there are two genes g1 and

g3 (both of which are modeled as uniform random

variables) which drive the remaining genes of a nine

gene network. The evolution equations are as below:

g2,t =
1

2
g1,t−1 +

1

3
g3,t−2 + g7,t−1;

g4,t = g2
2,t−1 + g

1/2
3,t−1;

g5,t = g2,t−2 + g4,t−1;

g6,t = g4,t−1 + g
1/2
2,t−2;

g7,t =
1

2
g
1/3
4,t−1;

g8,t =
1

2
g
1/3
6,t−1 +

1

3
g
1/2
7,t−1;

g9,t =
2

3
g
2/3
4,t−1 +

1

4
g
1/2
7,t−2;

For the purpose of comparison, we study the per-

formance of the Coefficient of Determination (CoD)

approach for directed influence network determina-

tion. The CoD allows the determination of associ-

ation between two genes via a R2 goodness of fit

statistic. The methods of [20, 28] are implemented

on the time series data. Such a study would be use-

ful to determine the relative merits of each approach.

We believe that no one procedure can work for every

application and the choice of an appropriate method

would be governed by the biological question under

investigation. Each of these methods use some un-

derlying assumptions and if these are consistent with

the question that we ask, then that method has util-

ity.

g1 g3 g6

g2 g4

g5g7

g9
g8

g1 g3 g6

g2 g4

g5g7

g8 g9

(With DTI) (with CoD)

Fig. 4. The synthetic network as recovered by (a) DTI and
(b) CoD.

As can be seen (Fig. 4), though CoD can de-

tect linear lag influences, the strongly non-linear ones

are missed. DTI detects these influences and exactly

reproduces the synthetic network. Given the non-

linear nature of transcriptional kinetics, this is es-

sential for reliable network inference. DTI is also

able to resolve loops and cycles (g3, [g2, g4], g5 and

g2, g4, g7, g2). Based on these observations, we ex-

amine the networks inferred using DTI in both the

supervised and unsupervised settings.

8.2. Directed Network Inference:Gata3

regulation in early kidney development

Biologists have an interest in influence networks that

might be active during organ development. Ad-

vances in laser capture microdissection coupled with

those in microarray methodology have enabled the

investigation of temporal profiles of genes puta-

tively involved in these embryonic processes. Forty

seven genes are expressed differentially between the

ureteric bud and metanephric mesenchyme [47] and

putatively involved in bud branching during kidney

development. The expression data [8] temporally
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profiles kidney development from day 10.5 dpc to

the neonate stage. The influence network amongst

these genes is shown below (Fig. 5). Several of the

presented interactions are biologically validated and

there is an interest to confirm the novel ones pointed

out in the network. The annotations of some of these

genes are given below (Table. 2).

Some of the interactions that have been ex-

perimentally validated include the Rara-Mapk1 [3],

Pax2 -Gata3 [18] and Agtr -Pax2 [53] interactions.

We note that this result clarifies the application of

DTI for network inference in an unsupervised man-

ner - i.e. discovering interactions revealed by data

rather than examining the strengths of interactions

known a priori. Such a scenario will be explored

later (Sec: 8.4). We note that though several in-

teraction networks are recovered, we only show the

largest network including Gata3, because this is the

gene of interest in this study.

Agtrap

Gata3

Scarb2

Lamc2

Pax2

Col18a1 Mapk1

Gata2

Rara

Pgf

Fig. 5. Overall Influence network using DTI during early kid-
ney development.

8.3. Directed Network Inference: T-cell

Activation

To clarify the validity of the presented approach, we

present a similar analysis on another data set - the

T-cell expression data [41], in Fig. 6. This data rep-

resents the expression of various genes after T-cell

activation using stimulation with phorbolester PMA

and ionomycin. The dataset contains the profiles of

about 58 genes over 10 time points with 44 replicate

measurements for each time point.

Several of these interactions are confirmed in

earlier studies [41, 16, 54, 43] and again point to

the strength of DTI in recovering known interac-

tions. The annotation of some of these genes are

given in Table. 3. We note that the network of

Fig. 6 shows the largest influence network (contain-

ing Gata3 ) that can be recovered. Gata3 is involved

in T-cell development as well as kidney development

and hence it is interesting to see networks relevant

to each context in Figs. 5 and 6. Also, these 58

genes relevant to T-cell activation are very different

from those for kidney development, with fairly low

overlap. For example this list does not include Pax2

(which is relevant in the kidney development data).

Rb1

Gata3

E2F

Ikaros
Myeloid 
diff

Mapk4

JunD casp7

JunB il4r

Mcl1
AML1

CKR1

casp8

Csf2r

Fig. 6. DTI based T-cell network.

8.4. Phylogenetic conservation of TFBS

effectors

A common approach to the determination of “func-

tional” transcription factor binding sites in genomic

regions is to look for motifs in conserved regions

across various species. Here we focused on the inter-

species conservation of TFBS (Fig. 3) in the Gata3

promoter to determine which of them might be re-

lated to transcriptional regulation of Gata3. Such

a conservation across multiple-species suggests selec-

tive evolutionary pressure on the region with a po-

tential relevance for function.

As can be seen in Fig. 3, we examine the

Gata3 gene promoter and find at least forty differ-

ent transcription factors that could putatively bind

at the promoter as part of the transcriptional com-

plex. Some of these TFs, however, belong to the

same family.

Using supervised DTI, we examined the strength

of influence from each of the TF-encoding genes

(Ai) to Gata3, based on expression level [8,

http://spring.imb.uq.edu.au/ ]. These “strength of

influence” DTI values are first checked for signifi-
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cance at a p-value of 0.05 and then ranked from high-

est to lowest (noting that the objective is to maxi-

mize I(Ai → Gata3)).

Based on this ranking, we indicate some of the

TFs that have highest influence on Gata3 expres-

sion (Fig. 7). Obviously, this information is far from

complete, because of examination only at the mRNA

level for both effectors as well as Gata3.

Table. 4 shows the embryonic kidney-specific

expression of the TFs from Fig. 7. This is an

independent annotation obtained from UNIPROT

(http://expasy.org/sprot/ ). To understand the no-

tion of kidney-specific regulation of Gata3 expres-

sion by various transcription factors, we have inte-

grated three different criteria. We expect that the

TFs regulating expression would have an influence

on Gata3 expression, be expressed in the kidney and

have a conserved binding site at the Gata3 promoter.

This is clarified in part by Fig. 7 and Table. 4.

As an example, we see that the TFs Pax2, PPAR,

SP1 have high influence via DTI and are expressed

in embryonic kidney (Table. 4), apart from having

conserved TFBS. This lends good computational ev-

idence for the role of these TFs in Gata3 regulation,

and presents a reasonable hypothesis worthy of ex-

perimental validation.

Additionally, we examined the influence for an-

other two TFs - STE12 and HP1, both of which

have a high co-expression correlation with Gata3 as

well as conserved TFBS in the promoter region. The

DTI criterion gave us no evidence of influence be-

tween these two TFs and Gata3’s activity. This

information coupled with the present evidence con-

cerning the non-kidney specificity of STE12 and

HP1, presents an argument for the non-involvement

of these TFs in kidney specific regulation of Gata3.

Thus, the DTI criterion can be used to guide more

focused experiments to identify the true transcrip-

tional effectors underlying Gata3 expression.

This application shows the utility of DTI to

specifically explore the expression-level influence of

a TF of interest to any target gene. This result cou-

pled with the unsupervised network inference meth-

ods in kidney and T-cell data, establish the DTI-

based methodology as a common framework for both

types of analysis.

8.5. Module TFs in co-regulated genes

We examine another interesting scenario for the

principled application of the DTI criterion. The

co-expression of genes in a biological context is

a complex phenomenon involving the combinator-

ial regulation of such genes by several transcrip-

tion factors (TFs). Such co-expression occurs dur-

ing processes like development and disease progres-

sion. This is also observed in co-clustered genes

from the output of hierarchical clustering algorithms

(signatures). The underlying hypothesis is that

co-clustered/co-expressed genes might be under the

control of some common TFs (modules) that under-

lie the co-ordinated expression of all these implicated

genes.

Gata3

PPAR Pax2 Zic1 EGR3

ELK1
Tcf1

Foxn1 HIF1 SP1 ATF4

STRA13 GLI

3 1 2 11

4

12108

5

6

7

9

Fig. 7. Putative upstream TFs using DTI for the Gata3 gene.
The numbers in each TF oval represent the DTI rank of the
respective TF.

Several tools (Genomatix [10], CREME [39],

Toucan [1]) allow the inference of such transcription

factor modules from sets of genes. However, the next

logical question is if any of the TFs comprising the

module indeed have an expression-level influence on

these target gene(s). Supervised DTI can be used in

this context to rank the most likely “effector TFs”

for each gene in the gene-set.
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Table 2.
Functional annotations (Entrez Gene) of some of the genes co-expressed with Gata2 and Gata3 during nephrogenesis.

Gene Symbol Gene Name Possible Role in Nephrogenesis (Function)

Rara Retinoic Acid Receptor crucial in early kidney development
Gata2 GATA binding protein 2 several aspects of urogenital development
Gata3 GATA binding protein 3 several aspects of urogenital development
Pax2 Paired Homeobox-2 conversion of MM precursor cells to tubular epithelium
Lamc2 Laminin Cell adhesion molecule
Pgf Placental Growth Factor Arteriogenesis, Growth factor activity during development
Col18a1 collagen, type XV III, alpha 1 extracellular matrix structural constituent, cell adhesion
Agtrap Angiotensin II receptor-associated protein Ureteric bud cell branching

Table 3. Functional annotations of some of the genes following T-cell activation.

Gene Symbol Gene Name Possible Role in T-cell activation (Function)

Casp7 Caspase 7 Involved in apoptosis
JunD Jun D proto-oncogene regulatory role of in T lymphocyte proliferation and Th cell differentiation
CKR1 Chemokine Receptor 1 negative regulator of the antiviral CD8+ T cell response
Il4r Interleukin 4 receptor inhibits IL4 -mediated cell proliferation
Mapk4 Mitogen activated kinase 4 Signal transduction
AML1 acute myeloid leukemia 1; aml1 oncogene CD4 silencing during T-cell differentiation
Rb1 Retinoblastoma 1 Cell cycle control

Table 4. Functional annotations of some of the tran-
scription factor genes putatively influencing Gata3 reg-
ulation in kidney.

Gene Description Expressed
Symbol in Kidney

PPAR peroxisome proliferator- Y
activated receptor

Pax2 Paired Homeobox-2 Y
HIF1 Hypoxia-inducible factor 1 Y
SP1 SP1 transcription factor Y
GLI GLI-Kruppel family member Y
EGR3 early growth response 3 Y

To illustrate this application, genes that have

expression in the developing Ureteric Bud (UB) in

the kidney are examined. The inductive signals be-

tween the ureteric bud and metanephric mesenchyme

causes the differentiation of fetal kidney stem cells

into nephrons, the basic unit of function of the kid-

ney. An examination of these UB-specific genes (ob-

tained from the Mouse Genome Informatics repos-

itory at: http://www.informatics.jax.org/ ), [48, 47]

reveals some modules. The UB-specific genes as well

as the modules are listed in Tables. 5 and 6 respec-

tively.

Briefly, the modules are obtained as follows:

the various UB-specific gene sequences are mined

for their proximal promoter (from ∼ 2000bp up-

stream to 200bp downstream from the transcription

start site). The various promoters are then aligned

and a search for significantly over-represented TFs

is done using the position weight matrices derived

from the TRANSFAC/JASPAR database (MotifS-

canner). From this set of TFs, modules of TFs (with

potentially overlapping sites) are obtained (Module-

Searcher). The TOUCAN 3.0.2 tool [1] allows for the

entire sequence of steps from sequence extraction to

module searches. The list of all TFs in the various

modules identified are listed in Table. 6.

Table 5. Genes expressed in the devel-
oping ureteric bud (day e10.5-11.0), as
reported in Mouse Genome Informatics
database.

Ensembl Gene ID Gene Name

ENSMUSG00000015619 Gata3
ENSMUSG00000032796 Lama1
ENSMUSG00000015647 Lama5
ENSMUSG00000026478 Lamc1
ENSMUSG00000018698 Lhx1
ENSMUSG00000008999 Bmp7
ENSMUSG00000023906 Cldn6
ENSMUSG00000059040 Eno1
ENSMUSG00000004231 Pax2
ENSMUSG00000030110 Ret
ENSMUSG00000022144 Gdnf
ENSMUSG00000031681 Smad1
ENSMUSG00000024563 Smad2
ENSMUSG00000074227 Spint2
ENSMUSG00000015957 Wnt11
ENSMUSG00000039481 Nrtn
ENSMUSG00000063358 Mapk1
ENSMUSG00000063065 Mapk3
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Table 6. Annotation of the module TFs from UB-specific genes.

TFs in Annotation Kidney-
module specificity (Y/N)

(GNF/literature)

SP1 trans-acting TF 1 Y
LMO2 LIM domain only 2 N
OCT1 POU domain, class 2, TF 1 Y
ZIC1 zinc finger protein of the cerebellum 1 N
MZF1 myeloid zinc finger 1 Y
AP2 TF AP-2 Y
AP4 TF AP-4 Y
YY1 YY1 transcription factor Y
TAL1 T-cell acute lymphocytic leukemia 1 Y (cell line)
PAX2 paired box gene 2 Y
HNF4 Hepatocyte Nuclear Factor 4 Y

The list of module TFs is obtained by combin-

ing expression annotations (from MGI) and sequence

analysis. For the purpose of integrating heteroge-

neous data and to reduce the number of candidate

TFs that are putatively involved in regulating UB-

specific genes, we can use DTI to find influences be-

tween the TF-genes and the UB-specific genes using

expression data. As an example, one of the TFs in

the module list is Pax2 and has an important role in

UB differentiation [18]. Another gene expressed in

the developing UB is Gata3. We now examine if the

DTI, I(Pax2 → Gata3) is significant and ranks high

in the list. This is highlighted in Fig. 8.

Fig. 8. Cumulative Distribution Function for bootstrapped
I(Pax2 → Gata3). The true value of I(Pax2 → Gata3) =
0.9911.

For the Pax2 -Gata3 interaction, we show the cu-

mulative distribution function of the bootstrapped

detection statistic (Fig. 8) as well as the position

of the true DTI estimate in relation to the overall

histogram. With the obtained density estimate of

the Pax2 -Gata3 interaction, shown below, we can

find significance values of the true DTI estimate in

relation to the bootstrapped null distribution.

An experimental validation of this is presented

in [14, 18]. Thus, we can look at each module mem-

ber for possible role in Gata3 regulation. As can be

seen, this approach integrates sequence information,

phylogeny, and expression to look for upstream ef-

fectors for genes of interest (those that share some

pattern of co-expression/co-regulation).

Extending this further, the strength and signif-

icance of the DTI can be found between every pair

of TF and UB-specific gene of Tables. 5 and 6. This

can be visualized as a ‘bipartite graph’ of TF-gene

interactions, shown in Fig. 9. The graph summarizes

the degree of interactions between the various tran-

scription factors in the modules and the co-expressed

genes, and is the overall integration of annotation,

sequence and expression data. Additionally, the em-

bryonic kidney specificity of the various module TFs

is listed, based on literature and tissue-specificity an-

notation (http://symatlas.gnf.org/SymAtlas/ ). It is

to be noted that some transcription factors such as

SP1 have ubiquitous expression across most tissues

[11, 44], and are not as informative as kidney-specific

ones like Pax2 [18] or HNF4a [49].

8.6. Higher-order MI and DI

The final part of this work highlights that directed

information (DTI) and mutual information (MI) can

together aid in the discovery of higher order inter-

actions amongst genes. Higher order MI [34, 35]

has been used successfully for the discovery of in-

teractions among triples of genes. Following work

done in [46], we use the ‘triplet information’ given by

I3(xi; xj ; xk) =
∑

i

H(xi) −
∑

i<j

H(xi, xj) + H(xi, xj , xk)

= I(x1; x2; x3) −
∑

i<j

I(xi; xj)

= [I(x1; x3) + I(x2; x3)] − I({x1, x2}; x3)

From the above definition, it is clear that the

use of triplet information helps resolve the pairwise-

joint dependencies between xi, xj and xk versus the

synergistic dependence of any variable on the ‘com-

bination’ of the other two variables. A positive value

of I3(xi; xj ; xk) indicates pairwise-dependence and

hence DTI can be used to infer directional associ-
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SP1 LMO2 ZIC1 AP2A MZF1 AP4 AP2 Oct1 YY1 TAL1 Pax2 HNF4

Gata3 Lama1 Lama5 Lamc1 Lhx1 Cldn6Bmp7 Eno1 Pax2 Ret Gdnf Smad1 Smad2 Spint2 Wnt11 Nrtn Mapk1 Mapk3

Fig. 9. A bipartite graph between the group of module TFs and genes co-expressed in the developing ureteric bud (MGI:e10.5-
11.0).

ation between xi, xj and xk. A negative value indi-

cates synergy and needs to be resolved further.

For the network shown in Fig. 5, we aim to

recover any synergistic interactions of various genes

using higher-order entropy methods, that are poten-

tially missed due to consideration of only pairwise

interactions.

For the synergy framework presented above, we

seek to determine the direction of association of

{xi, xj} and xk, for all genes i, j, k. For this pur-

pose, I({xi, xj} → xk) is determined, using methods

presented earlier. Depending on the relative magni-

tude of I({xi, xj} → xk) and I(xk → {xi, xj}), the

direction of association can be determined.

We now consider the set of genes common to

those profiled in the microarray expression [7, 8, 47]

study as well as the annotated genes from MGI. For

these 12 genes (Bmp7, Cldn7, Gata3, Gdnf, Lamc2,

Mapk1, Mapk3, Nrtn, Pax2, Ret, Spint1, Wnt11 ),

we study the dependencies discovered using ‘triplet

information’. Also, for the purposes of this work, we

only present those dependencies wherein the triplet

information is negative indicating possible synergis-

tic interactions. These interactions are indicated be-

low (Table. 7).

Several of the pathways, such as the Gdnf-Ret,

Wnt, and Mapk are implicated in ureteric bud dif-

ferentiation [30, 13]. However, most studies have

focussed on interaction within a pathway and not

so much on cross-talk between various pathways.

Organ development is a complex phenomenon and

needs several reciprocal interactions to control the

growth of various cell populations. It is interesting to

see several known cross-interactions picked up using

higher-order information, based on expression data

alone (Table. 7). Given that co-operation/synergies

between various pathways is essential in most other

biological processes, we believe that using a combi-

nation of higher-order MI and DTI would aid in the

experimental resolution of such interactions.

Table 7. Some triplet interactions (discovered using DTI) that have
putative biological role. Biological validation from literature is given
in parentheses.

UB-Specificity & Citation
(http://symatlas.gnf.org/SymAtlas/ )

Gdnf Ret Gata3 Y [18]
Ret Bmp7 Gata3 Y [13]
Pax2 Gata3 Ret Y [9]
Ret Wnt11 Gdnf Y [30]
Pax2 Wnt11 Gata3 Y [18]
Pax2 Ret Gdnf Y [9,6]

CONCLUSIONS

In this work, we have presented the notion of di-

rected information (DTI) as a reliable criterion for

the inference of influence in gene networks. After

motivating the utility of DTI in discovering directed

non-linear interactions, we present two variants of

DTI that can be used depending on context. One

version, unsupervised-DTI, like traditional network

inference, enables the discovery of influences (regula-

tory or non-regulatory) among any given set of genes.

The other version (supervised-DTI ) aids the model-

ing of the strength of influence between two specific

genes of interest - questions arising during transcrip-

tional influence. It is interesting that DTI enables

the use of a common framework for both these pur-

poses as well as is general enough to accommodate

arbitrary lag, non-linearity, and resolution of cycles,

loops and direction.

We see that the above presented combination

of supervised and unsupervised variants enable their
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applicability to several important problems in bioin-

formatics (upstream TF discovery, module-gene in-

teractions, and higher-order influence determina-

tion), some of which are presented in the results sec-

tion. The network inference approach can also allow

incorporation of additional biophysical knowledge -

both pertaining to physical mechanisms as well as

protein interactions that exist during transcription.

We point out that given the diverse nature of biolog-

ical data of varying throughput, one has to adopt an

approach to integrate such data to make biologically

relevant findings and hence the DTI metric fits very

naturally into such an integrative framework.
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APPENDIX: A NORMALIZED DTI

MEASURE

In this section, an expression for a ‘normalized DTI

coefficient’ is derived. This is useful for a meaningful

comparison across different criteria during network

inference. The purpose of this section is to establish

some connections between quantities like MI, DTI,

and correlation. In this section, we use X , Y , Z

for XN , Y N and ZN interchangeably, i.e X ≡ XN ,

Y ≡ Y N , and Z ≡ ZN .

By the definition of DTI, we can see that 0 ≤

I(XN → Y N ) ≤ I(XN ; Y N ) < ∞. The normal-

ized measure ρDTI should be able to map this large

range ([0,∞]) to [0, 1]. We recall that the multivari-

ate canonical correlation is given by [19]: ρXN ;Y N =

Σ
−1/2

XN ΣXN Y N Σ
−1/2

Y N and this is normalized having

eigenvalues between 0 and 1. We also recall that,

under a Gaussian distribution on XN and Y N , the

joint entropy H(XN ; Y N ) = − 1
2 ln(2πe)2N |ΣXN Y N |,

where |A| is the determinant of matrix A, ΣXN Y N de-

notes the covariance matrix, computed as ΣXN Y N =
1

R−1XT Y , indicating that there are R replicates of

the X, Y time series, each of length N .

Thus, for I(XN ; Y N ) = H(XN) + H(Y N ) −

H(XN , Y N ), the expression for mutual information,

under jointly Gaussian assumptions on XN and Y N ,

becomes, I(X ; Y ) = − 1
2 ln(

|Σ
XN Y N |2

|Σ
XN |.|Σ

Y N | ) = − 1
2 ln(1−

ρ2
XN ;Y N ). Hence, a straightforward transformation

is normalized MI, ρMI =
√

1 − e−2I(XN ;Y N ) =
√

1 − e−2
P

N

i=1
I(XN ;Yi|Y i−1) . A connection with

[22], can thus be immediately seen.

With this, ρMI is normalized between [0, 1] and

gives a better absolute definition of dependency that

does not depend on the unnormalized MI. We will

use this definition of normalized information coeffi-

cients in the present set of simulation studies.

For constructing a normalized version of the

DTI, we can extend this approach, from [17]. Con-

sider three random vectors X, Y and Z, each of

which are identically distributed as N (µX , ΣXX),

N (µY , ΣY Y ), and N (µZ , ΣZZ) respectively. We also

have,

(X,Y,Z) ∼ N









µX

µY

µZ



 ,





ΣXX ΣXY ΣXZ

ΣY X ΣY Y ΣY Z

ΣZX ΣZY ΣZZ









Their partial correlation δY X|Z is then given by,

δY X|Z =
√

a2

2

a1a3

with, a1 = ΣY Y − ΣY ZΣ−1
ZZΣZY ,

a2 = ΣY X − ΣY ZΣ−1
ZZΣZX , a3 = ΣXX −

ΣXZΣ−1
ZZΣZX .

Recalling results from conditional Gaussian

distributions, these can be denoted by: a1 =

ΣY |Z , a2 = ΣXY |Z and a3 = ΣX|Z . Thus, δY X|Z =

Σ
−1/2
Y |Z ΣXY |ZΣ

−1/2
X|Z . Extending the above result from

the mutual information to the directed information

case, we have, ρDTI =
√

1 − e−2
P

N

i=1
I(Xi;Yi|Y i−1).

We recall the primary difference between MI and

DTI, (note the superscript on X):

MI: I(XN ; Y N ) =
∑N

i=1 I(XN ; Yi|Y i−1).

DTI: I(XN → Y N ) =
∑N

i=1 I(X i; Yi|Y i−1).

Having found the normalized DTI, we ask if the

obtained DTI estimate is significant with respect to

a ‘null DTI distribution’ obtained by random chance.

This is addressed in Section 6.

We note that though the normality assumption

was used to show the connection between informa-

tion and correlation, this distributional assumption

is not used anywhere in the original DTI metric for-

mulation and computation during its application to

network inference.


