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ABSTRACT

‘We present a general method for approximating the global er-
ror petformance of ML type mulii-parameter estimators. The
method is a multi-dimensional extension of the approaches of
{2] und 1]. Comparisons between the global approximation
to the MSE for known and unknown “nuisance” parameters
indicates the degree to which nuisance parameters degrade
the performance of ML estimators. The results of a numer-
ical atudy illustrate the implementation of our method for
time delay estimation in cases of coherent interference and
doppler,

L Introduction

This paper presents an extension of the method [1] [2] of
error intensity analysis of maximum likelihood (ML) type es-
timators o the case of multiple unknown paramelers. The
method involves calculating the intensity function of a multi-
dimensional point process, called an emor cendidate point
process, which is aseociated with the local maximum of the
ambiguity surface. Under & Poisson mode] for the point pro-
cess and an equally likely model for the distribution of the
global maxime over the set of local maxima, the large er-
ror MSE of a ML type estimator of one of the parameters is
given by the radius of gyration of the marginal one dimen-
sional intensity function cobtained by integrating the multi-
dimensional intensity funclion over all other parameters. As
in |1], the global MSE is obtained by taking & convex com-
bination of the large error MSE and the local MSE, e.g. cal-
culated from the muliidimensional Cramer-Rao (CR) bound.
We will illustrate the method for problems associated with
active and paesive radar/sonar. Specifically, we will consider
the effects of unknown doppler and tle presence of an un-
known interference on the large error probability and the
MSE of ML type time delay estimators.

Based on our investigation, the following general resulis
can be stated. The principal efiect of nuisance parameters
on the intensity function of single parameter estimation er-
ro1s is & broadening and smoothing of the marginal intensity
function, which ie accompanied by en increase in its radius
of gyration. The degree to which the radius of gyration in-
creases in controlled by the size of the a priori region for the
nuisance parameters, and by the coupling among the param-
eters through the statistics of the ambiguity function. Since
the radius of gyration of the intensity is direcily related to
the MSE, our approximation behaves in a manner consistent
with expectations that nuisance pazrameter uncertainly can
only worsen the MSE performance.

II. Background

An observation 2, whose p.d.fL., f(z]8), is parameterized
by & column vector of X unknown hut deterministic signal
patameters § = {8y, -+, 0x|T, is taken over a finite interval of
time ¢ € {0, T]. The anknown paramcter vector § in restricted
to lie within a K-dimensional a priort region ©; = x,,,,B‘
which is & continuous subset of R*. An ML type estimate
£ of § in any estimator obtained by maximiring a statistic,
called the ambiguily function, £(f) within the & prieri region
8. Ailthough not sheolutely necezeary for the following [4],
it will be assumed that &{f) has derivatives of all orders less
than theee with respect to each component 8y i=1,-+-, K.

We say that 2 incurs a small error when [§; — girue i < 5.,
i=1,..., K, for amall positive §;. Otherwise the error is
large. The small and large esror xegions will be denoted 8%
and ©F respectively. By the tota! probability law, the MSE
matrix {1y can be expressed in terms of the conditional MSE
matrices g and (oo givenﬁ cBandfcg” respectively:

0y = E[#-87=)(E— "))

Qgs - {1 - P,) + gz - Py, ()

it

P, = P(ﬁ € Q") i the probability of large errer.

While the expression (1) is valid for any size of 8%, for
eufficiently small &, ¢ = 1,. .., K, lgs can be replaced with 2
local approximation to the M§E matrix in the neighborhood
of the true parameter using standard linearization methods.
For true ML estimation, the matrix form of the CR bound
can be used in place of ﬂi {4]. In the rest of this paper we
focus on the development of approximations to the Iarge error
probability, P,, and the large error MSE matrix Qge.

Similarly to [2], define the “ambiguity process” Af(f) &
(@) — ms, where myg is the maximum value of £(8) over a5,
Observe that since the global maximum location of the am-
biguity process is the ML (type) estimate of the parameters,
the occurrence times and relative magnitudes of the positive
local maxima of the ambiguily process provides an equiva-
lent description of Iarge error, In general, we define the “set
of candidate locations for (large) error” as any set of ran-
doin vasinbles {8}, such that § € {2}, with probebility
one, where M is a random variable represeniing the num-
ber of candidate locations within the large error region. The
{#;}}, correspond to a set of “snmpling points” of the sur-
face of the ambiguity funclion, which form the points of a
multi-dimensional point process N. The point process (com-
plete) intenaity thus chazacterizes the statistics of the sem-
pling points.
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11X, Error Intensity Measure

Since the set of error candidate locations {d,}, contains
& with probability one, an exacl representalion of any risk,
or average loss, ® & E[g( trus )], associated with the esti-
mator iz obtained via iterated expectations:

®(d) E[Ely(ﬂ"‘” 8)ld e (230 6]
E{EH(.&”‘“ 25)- P(E = 8,18 & {&:}2,)],

where g(e, ), in {2) is a general loss function. The special
casen glu, v} = IfL, F(lu; — w| > &), glu,) = I(jur —w| >
51}, and glu,v) = (8 — E)(8 - §)7 give the large error proba-
bility 2,(8), the large error probability P, {91), snd the large
error MSE matrix gz, reapectively.

As can be seen from (2}, to make use of the exact point
process representation, we need o specify the joint statistica
of the candidate locations {$;}}, ,or equivalently the point
process N, and the conditional p:obalnhl.y distribution of 4
over the candidate ertor locations: P P(_B_ ﬂ,|{i}h1
for § = 1,...,M. Analogously to [2] and [1] we model
the points {1’_} as » multi-dimensional Poisson process. We
conmder, a8 examples, the following thtee models for P;,
F=1,... . M
1. Emct Modd {2,} = random point process.

Fy= f_ @) Fugn.m(z, . oze)ds,  (3)
2. Equi-partition Model: {8} = uniform grid.

M
Pi= [ pe) 1] Fuslolalldo, @
—oe ki
3. Uniform Model: {i§;} = random point process.

1
Py= 45 ®
In the exact model (3), f;{») is the marginal probability den-
sity funclion of A{#;) and Fy_ ;1 441, a4 18 the conditional
joint distribution function of { AL, )}, given AL(D,}. Even
though F; in (3) is in a well defined form, it is difficult to
uee this model for analysis due to the complexity involved
in compuling joint distzibutions Fy . j_1441,.85 The equi-
pertition model, on the other hand, fixes the values of {%;}¥,
on a uniform grid, snd imposes the assumption of conditional
independence on the samples {AL(3,)}¥, given Al(d;}. The
equi-partition model is & generalization of the method pro-
posed by Iannjello [3] for large error performance anplysis of
time deley estimators. In (4), Fj(e) represents the marginal
cumulative probability distribution of Afd;). The uniform
mode! (5) for P; assigns equal probabilities to § over each of
the candidate etror points ¥;.
Under the Poisson approximation to the point process
{#}¥,, and the uniform model (5), the large error probability
£, aud the MSE matrix lge can be derived [4:

i

P = 1—e4, (6)
fg = [-E)E- e~ M0 ()

where ’\(_Q) is & normelized version of the intensity, A(f), of
the point process {3,}¥, over 8% (], ,\(ﬂ)dﬂ = 1), and A
is the average number of poinis E[MT In view of (7) and
(6), the Poisson process model for {&}¥, and the uniform
model (5) for {F;}, induce an approximation to the joint

probabilily density of the vector estimator {61,++ fx) by the
normalized intensity A(g), aud the propensity for large error
is measured by the average number, A, of zero exceeding local
maxims of the ambiguity process.

The { )y, element of the MSE matrix (7) can be considered
as the MSE of the estimator & in the presence of K — 1
unknown “nujsance” parameters {6;}¥, when ML estimation
is used:

MSE@) = [ (8- 65 - 3(61)dtn, @)

where 3(8,) is the marginal normalized intensity correspond-
ing to errors in 6

M) ¥ [ doyeo. [ doekig). (9)

From relation (8), we can deduce some implications of the
unknown nuisance parameters on the error associated with
8. By virtue of the K — ] integration in (5), the marginal
normelized inteusity is in general smoother than the 8, cross-
section of the multi-dimensiona! intensity Mg} for {8:}X, in
the neighborlicod of the true values {6 }¥,. This smooth-
ing causes & reduction in the concentration of the intensity
about the true parameter and a corresponding incremse in
MSE, The degree to which this smoothing occurs depends on
two factors: the mize of the a priori search regions {8:}M,;
and the coupling between 6y and the nuisance parameters
manifested in the multi-dimensional intensity function A(g).

In the contexi of estimation of 8, it is worthwhile to
consider the difference between kunown parameiers {§}HL,
and unkrown nuisance parameters, trested sbove. When
these parameters are known, the ambiguity function evolves
over the line 9, x {§f*} x .-« x {3‘,?“} Hence the lo-
cal maxime intensity, denoted (8,65, ..., 85%), is a one-
dimensional function pozameterized by {B“""'}K The MSE
approximation (8) for &, is therefore directly implemented
by using the above intensity in place of A(f). It is im-
portant to note that the marginal intensity under multiple
unknown muisance parameters M%) (8) has no relation to
the one-dimensional intensity for multiple known parame-
ters X{6410;,...,0x) since the point process representations
evolve over spaces of different dimension. In particular,
the analog to the classicel conditional probability relation
A(8i]6a,...,8x) = M#by,...,0x)/A(fa,...,0x) is not gener-
ally valid.

IV. Applications

In this section we will illusirate the implementation of
the intensity measures for large error, presented in the pre-
vious section. Although, in geperal, the local maxima on the
interior and on the boundary of 8% must be considered sepa-
rately {4], the boundary local maxima, are neglected in what
{oltows. The iniensity function for the positive interior jo-
cal maxima, including saddlepoints, of the ambiguity process
Al(P) = £(#) - ms has the exact form:

Mg = j;w dmjom dzy '[n dzg zy -+ r2x f(z,0,—2), (10)

where f(z,y, z} is the joint distribution of the 2K + l-vector
consiating of A¢(8) and its first and second derivatives (ex-
cluding mixed partials). For the numerical computations
below, the MSE and P, were computed using a Gaussian
approximstion to f(z,¥,z). In the figures the MSE is nor-
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malized with respect to s uniform variable over the a priori
region. Further details can be found in [4].

Passive Time Defay Estimation with Interference

Available for obscrvation over a time interval [0, 7] are
two sensor outputs with a common delayed Gaussian signal
8, and Guussian interference 23, with PSD'’s G,, snd &, in
independent white Gaussian noises n; and #,:

t) = au(t)+ ea(t) +malt)
maf) = slt- D) +alt-Da)+m() (1)

In the notation of the previous section 8% us def = Dyand 8 = o&ef
D;. The ML estimator of I}y and I}, is the peak location of
the two-dimensional log-likelibood surface, which is derived
in (4] under the assumptions that T and |D) — Dy| are large
relative to the signal decorrelation times:

. 61,85) = j:: Xl_(“’)ﬁ(i)w(w)e—jmdw (12}

Gufw)
() X3(w) G
G.,

T W)

— L W{w)e ™ dw,
where X;(w) is the finite time Fourier {ransform of &;(2} over
[0,7], and W{w) is o weighting funclion independent of 6,
and 63

Figures 1-4 show numerical results for the case of flat G.,
and G,, with identical 20(#H z) bandwidths. The observation
interval ja T' = 8(sec), 8, € [-0.5,0.5], 8,  [0.5, 1.5], the true
valuer of the parameters are Dy = 0{2ec), Dy = 1(aec), the
small error region is 85 = [—0.05,0.05] x [0.95,1.05), and the
SIR is 3(dB). These parameter values represent a scenario for
which a broadband moderate power interferer impinges on a
two sensor array from a known sector of azimuthal angle,
but with unknown position. In Fig. 1, the mean ambiguity
surface E[AL (8),4,)] (12) is displayed, and in Fig. 2 the in-
tensity surface A(#,#8;) is displayed for a SNR of —10(d5).
From these figures the intensity surface can be seen o take a
maximum value at the true parameters I}y and D; and dis-
play z suppressed but similar sidelobe structure to the mmbi-
guity surface. The relatively higher concentration of the error
intensity over 6, 28 compared 1o over 8, is indicative of better
ML cstimaior performance for the stronger signal. In Fig. 3
the one dimensional intensity functions for the ML estimator
of D; are plotied for unknown I, obtained by integrating
Fig. 2 over 8;, and for known D, obtained directly from (10}
with K = 1. From the plots of normalized MSE(4,) Fig. 4,
obtained from the radius of gyration of the intensities of Fig.
2, we note thet, consistent with expectation, ML estimation
error for @, is larger on the average for unknown Dj than it
is for known ;.

Active Time Delay Estimation with Doppler
For this case the observation model ia :
2{t) = a(d(t — D)} + n(2), (13)

where a{t) is a known determiniatic signal, 2 is an unknown
time delay, d i» a positive “doppler ratic” and n(t) is a
white Gaussian noise. In the notation of the previous sec-
tion 8trve % pand Girue ¥ i, The log-likelihood function for
4, snd 8, is proportional to:

£(6,,6)) = j: X(w)S’(%)e""“dw, (14)

where §(w) is the Fourier traneform of s(t).

Figures 5-8 show numerical resulis for the case of a Gaus-
sian envelope r.f. signal wth center frequency f, = 2.5(Hz)
nod bandwidth B =-0.26(Hz). In Fige. 57, & € |-4,4],
9; € [0.8,1.2], the true values of the parameters are £} =
O{sec) and 4 = 1, and the small error region is ©F
[-0.01,0.01] x [0.9,1.1). Thesc values correspond to rulu
ranging of a target which is known o prion to be slowly mov-
ing. Figure 8 was obtained for the saine parameters ag above
except the doppler has & larger a priori region §; € [0.1,1.9].
Figures 5 and 6 show the ambiguity surface and the inten-
sity sutlace for SNR = —10{dB}. Note that for a fixed value
of the time deley variable, 8,, near D, the intensity surface
has no sidelobes over valuea of the doppler varinble 8;. On
the other hand, for = fixed value of 4; near d, the intensity
over &, has high sidelohes. This implies that, for a small
a prioré region of doppler, the ML time delay eslimator is
mote prone to peak ambiguity errors than the ML doppler
eatimator. This penchant for peak ambiguity in reflecied in
the presence of multiple SNR thresholds in M. .S'E(é;) {Fig.
7), equal to the radius of gyration of the marginal intensity
3(8,) = Jo, Al61,62)df5. On the other hand, for a larger @
priori doppler region, the sidelobes in A(B,) become signifi-
cautly smoother, due {o the diverging ridges on 3(8, 8;), and
hence M SE(H;) (Fig. 8), losea the multiple thresholds.

V. Conclusion

In this paper we have presented an extension of the er-
ror intensity measure analysis of [1] to multiple parameters.
The critical component of the analysis is the computation
of the intensity function of the local maxima of the mulii-
dimensional smbiguity surface over the parameter space. For
the case of Gaussian ambiguity surfaces this calculstion is
siraightforward. The technique should be vuluable in inves-
tigating the global performance of ML type estimatorns in the
presence of unknown parameters.
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Fig. 1: Mean ambiguity function E|8(8,,8;)] lor passive time
delay estimation with interference. gi™e = Dy 8™ = by,

SNR=-10dB.
AMELn,

8,8}

Fig. 2. Error intensity, A(61,6;), corresponding to Fig. L

SNR =-10d8.
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Fig. 5: E{t(6,,8;)) for active time delay (D} estimation in the

presence of doppler (d). ¢ = D, 6™ = d, SN R = —1045,
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SNR = -10d5.

Fig. 8: Error intensity, i(ﬂl,&), corresponding to Fig. §.
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Fig. T: Normalised M SE(#,) and M 5 E(f;) obtained from the

known sad unknown Dj. rading of gyration of the marginal intensities, A(8;) and Mdz)

o abtained from Pig. 6, with small o priori doppler region.
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Fig. 8: Normalized MSE(#;) and MSE(f;) aa in Fig. 7 but
with targe a priori doppler region.

Fig. 4: Normaliced M5 E(f ), compnted from radius of gyration
of \(81|D1) and (1) (Fig. 3}, respectively.
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