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ABSTRACT

In this paper we will discuss a new class of performance
approximations for maximum likelihood type bearing esti-
mation systems. This class is based on the application of
various point process models to a sequence of error prone
points along the likelihood trajectory. The point process
model is described by two quantities: the intensity fune-
tion of the local maxima locations over the parameter
space, and a selection rule for the global maximum from
the set of local maxima. This class gives new estimators
to the Mean-Square Error and specializes to the approxi-
mation techniques of [1] and [6].

L INTRODUCTION

In this paper we present a new method for obtaining
performance predictions for maximum likelihood type
time delay estimnators in passive bearing estimation. The
general method includes the techniques [1], [3], [4], [5] and
{6] as special cases. While the method does not in general
give exact analytical predictions, it can provide simple
and accurate approximations for mean-squate error and
probability of large error. As developed here, the approxi-
mations are based on the application of various models
to the sequence of error prone local maxima of the sample
correlation function, The locations, over correlation time,
of these maxima are then related to the time delay esti-
mate which occurs at the global maximum. Interpretation
of the set of local maxima occurrence times as a stochastic
point process gives the point process intensity function a
primary role in our approximation. Aeccordingly, we call
these approximations errer iniensity measures.

Qur observation model is the following. Over an
observation time interval t € T = [0,T! we have:
Ay(t) = 5(e) + Ny(2) (1)

Xoft) = §(t-D) + Ny(t)

where D, D € [-Dys Dy, is the time delay of interest and
5,N,,Ny are mutually uncorrelated wide sense stationary
random processes. We assume that § has bandwidth B
and that N, and N, are broadband noises. The modef (1)
corresponds to the observation of a stationary source § at
bearing & aeross two sensors in ambient ineoherent noises.

The correlator-estimator of D, dencted 5, is simply

the [ocation over the a prioti region [-Dy,Dy] of the glo-
bal maximum of the sample correlation function £ ,,:

T
Ripl) = [ {01 Xole +r)dr )

For broadband flat observation spectra and large BT the
correlator estimator is a maximum likelihood estimator

for D.

To predict the accuracy of the correlator estimator
two performance measures have been used, the Mean-
Square-Error (MSE) and the Probability of Large Error
(P,):

MSE S E{D - DY (3)
P,AP(|D-D]| > (4)

where § is a parameter which characterizes the minirmnum
magnitude of a large error. Several approaches to
estimating MSE and P, have been taken. In [1] a local,
small error approximation to the MSE was derived. For
broadband observation spectra and large observation time
bandwidth product (BT} the small error MSE is
equivalent to the Cramer-Rao Lower Bound (CRLB) on
the variance of D. The local approximation breaks down,
however, for insufficiently large BT {2]. In [3] an approxi-
mation to P, was proposed. The approximation is based
on a caleculation of the joint probability that R 4(7)

exceeds R ,{D), which approximates maz R (u),
e 12{P) PP v € [D-6.D+4 1o{v)
within a set of predetermined “test points”

In [3] these test points were conveniently
chosen to make B 5(t;),...,R(¢t,) approximately
independent random variables for lowpass spectra and
large BT, In [4] the technique of [3] was adapted to the
approximation of MSE for lowpass spectra and in [5] it

T=t,tpnl,.

was generalized to broadband bandpass spectra. TFinally
in [8] a level crossing interpretation of the occurrence of
large error led to a different approximation of MSE and
P,. In this approach 2 correspondance was made between
the occurrence times w, . . ., wy of level crossings of the
random level R 5(D) by R ,(r) and the value of the esti-
mate D. Assumption of a uniform distribution of D over
®y, ...,7Ty, and a Poisson model, gave expressions for
MSE and P, in terms of the level crossing intensity func-
tion.
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II. A GENERAL REPRESENTATION FOR ERROR

~

Define the error penalty g{D~D) where ¢(z) is a
non-decreasing funetion of |z | with g(0) = 0. The MSE
and P, correspond to ¢{z) = 2 and g(z) = I{|z| > &
respectively. Let N be the number of error prone local
maxima of B ,, that is the number of local maxima which
exceed the random level B |,{D) over the a priori interval
i-DygsDyr]. Let my,...,my be the times of occurrence of
these maxima {see Fig. 1). Note that in general N and
m; are random variables and that N > 1 since D is
never exactly equal to D. The contraction property of
iterated expectations relates the mean penalty to the
sequence of error prone local maximas:

E|¢(D-D)| = E[E[¢g(D-D}|m,, . .

=E[§9(mr-’3)f’;fv]
k=1

omyll . (8)

Where P;;V iz the conditional probability that D= m,
given the random variables NV, m,,...,my:

Pr(ﬁ =my | my,..omy) , N =12,.
N A T L1aeenyTlipr )
i "{ 1(p=D) , N=0 (6)

The representation (5) is the fundamental relation
between the estimator error and the point process
my, *° ymy on which our class of approximations is
based. Essentially, the representation hinges on the fact
that D must take on ome of the values: D, m,...,my.
Thus the continuous time problem of time delay estima-
tion over [-Dur,Dy| has been imbedded into a discrete
time estimation problem over the true delay time and the
error prone local maxima occurrence times,

It is possible to develop approximations based on (5)
in two different directions. On the one hand, cne ¢an
specify a simple set of fixed "test points”, {m, ..., my}
in {5), and concentrate on developing models for the dis-
tribution of D over the {m,}, PN,...,P§. This is
equivalent to the approach of [3], [4] and [5]. On the
other hand, one can focus on developing models for the
distribution of the randem sequence {m,, ..., my},
while fixing simple distributions {P%,..., P2,
This is the approach taken in [6]. In Section III we will
further develop the latter approach in the context of error
intensity measures.

IOI. ERROR INTENSITY MEASURES

Fix a sequence of distributions {P}, ..., P& ).
Then E [g{D-D)] is solely a function of the {m;}. A
convenient and simple model for the sequence of my is a
Markov model such as an independent increrments model.
This can also be theoretically justified for large BT and
large SNR [6]. An important special case is given by
specification of the {m;} as the occurrence times of an
inhomogeneous Polsson point process. In this cese tlie
mean penalty is characterized by the error intensity funec-
tion X over (D, Dy

M) 2 }lln_r.rb-% Pr(m; € [r,r+h), some j) M

A{(7) can be interpreted as _the pre-disposition of the esti-
mator to giving an error D = . More generally \ is the
mean number of error prone local maxima per unit time
in-the sense that the expected number of maxima over
(<Dt ), , denoted Al#), is given by:

Alt) = gk(?’)df » bt € =Dy Dyl In particular

N
A(Dy) = E[N] the expected total number of error prone
local maxima over [-Dy;,Dy]-

We now specialize (5) to the cases of P, and MSE.
P.: Let g(z) = I[|z| > 8. Under the model
o {mam; ¢ [D-6,D 18}/, is an inhomogeneous Poisson
process:

P, == 1 - ¢ D] (8)
where
i
MO = [P | > ddr ®

is the integrated intensity associated with the large error
prone local maxima locations {m;:m; ¢ [D-4D +4|} 2,
[7]. It is to be noted that (8) is valid independent of any
assumptions on the PN of (6). This is simply because the
mere existence of an m; outside of the small error region
| —D | < §is sufficient for a large error.

MSE: Let g(z) = z% Then under the model
o {mym; ¢ [D-6D+48}/L, is on inkomogeneous Poisson

process,

e PN=P(B =m|my ... ,my)=P(D = m|N):

Dy
MSE = of,e™P4) £ [ (DPA{Ah()dr  (10)

-Dy
where
b2 5 3 PEA () M-AdP ()
dA (T
A(r) = l:‘f) (12)
ok RE[D-D?| |D-D| £ & (13)

The expression {10) is the general form of an approxi-
mation to the MSE. It involves two terms, a small error
contribution o2, plus a large error contribution. We will
be mainly interested in the latter large error term. The
Py in (11) are the distributions of D over the possible
large error values {mym; & [D-§D 48}, for
n = 1,2,.... Consider the following examples:
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Maximal Model Poisson (MMP)} MSE: Under the dis-

tribution P = I[k=argmaz|m;-D |}:
7=1,...,n

(14)

I~p1

Dy f Afu)du
= a,zue_ﬂ‘(‘v”) + [ (=D Prr)e! dr
Dy

MSE ¢ A4 D)

The maximal model is conservative in that it maxim-
izes the MSE over all choices of P! for n = 1,2,.... A less
pessimistic model is the following:

Uniform Model Poisson (UMP) MSE: Under the dis-
1

tribution P! = o n=12,..
(15)
MSE = o, e MO 1 [ (ropp M) o (1 aio)

Rl v»

The expression (15) involves a natural measure of
error dispersion: the radius of gyration of the error inten-
sity function about the point D, [(mD YEs{r)dr, where
)‘5 is a PDF normalized version of ;. Lllfkgwfvme (14)

involves the radius of gyration of Njr)exp| [ Mfu)du,
w|r-D|

which is a measure of the tail behavier of A appropriate
for the characterization of the largest magnitude error.
Finally, P, (8) involves only the integral of the un-
normalized error intensity function.

IV. APPLICATIONS

The approximations (8), (14) and {15) are functions
of the error intensity X associated with 2 set of possible
locations for D: {m,, ..., my}. In Section HI these
were the large error prone local maxima locations of E ;.
In general, however, the {m;} can be defined as an arbi-
trary sequence of test points for the value of the error D.
This provides an additional degree of freedom in designing
an approximation to the mean penalty using error inten-
sity measures. Consider the following examples:

{m;} = level crossing locations: The incidence of a

level crossing of ar R ,(u) by the sample correla-
g e[’?an“[)y samp

tion R, implies tha’c an error of magnitude greater than &
has occurred {see Fig. 2}, Therefore the intensity of the
level crossing times wy, ..., wy is an appropriate error
intensity measure. The Gaussian approximation to B,

nd an approximation of max R o{u) by R (D
and an appro. oR O « & DD+ 12(u) by Ry,{D)
gives the well known formula for the intensity of the zero

up-crossings by the Gaussian random  process
B o(r)~R o(D):
o,
M) = @) ST NBENER(E) ] (19)

where Eré (0'#'1,-—9,&,—}1,)/ [(1—,0,? léaf&r] and I-":ﬂ,az:az are
the means and variances of R o(¢)-R ;5(D) and its deriva-
tive, respectively, and p is the correlation between them.
In (18) ¢ and ¢ are the Gaussian CDF and PDF respec-
tively. For more detailed treatment see [6).

{m;} = local maxima locations: The exact form for
the intensity function of the error prone local maxima is
more complicated than (16) On the other hand 2 simple
approximation {7] yields:

Ol pr it

M(7) = = ¢(§5) ‘I’(W) (17)

T
For flat lowpass observation spectra of bandwidth B
radians and large BT AU(r) and M¥7) are similar and
virtually constant over |=~D | >>46. It can be shown that
A3 1') aB®(—BT), |r| > § where
4t 2 [2(1+SNR-1?4+1]. A SNR threshold SNE; occurs
when VBT =31 or equivalently SNR,~v2/BT
(BT >>1). Below SNR; the error intensity increases
abruptly and uniformly over the 2 priori region.

In Fig. 3 the intensity A" is plotted over time and
SNR for a flat bandpass observation spectrum. Note the
time varying nature of the error intensity over time as the
SNR decreases. In Figs. 4 and 5 we plot the MSE given
by the approximations (14) and (15), using X == A1 for
lowpass and bandpass flat observation spectra. Also plot-
ted for comparison is the Ziv-Zakai Lower Bound (ZZLB)
(2] and, where applicable, the approximatioa of [3]. Note
the similar behavior of the approximations and the ZZLB
in that they all indicate the presence of multiple thres-
hOIdS Of SNR SNR!I? SNth and SNR“;-

V. CONCLUSION

We have developed a general framework for the
approximation to the performanece of maximum likelihood
type estimators in the context of time delay and bearing
estimation which includes several previously developed
methods. In this paper we focused on a particular
category of approximations within this framework: the

error intensity measures. These are functions of z point
process intensity associated with 2 sequence of error prone
points along the correlator trajectory. The flexibility and
generality of the technique shouid appeal to investigators
who are modeling the error performance of general max-
imum likelihood type estimators.
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