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Lower Bounds on Estimator Performance
for Energy-Invariant Parameters of
Multidimensional Poisson Processes

ALFRED O. HERO, MEMBER, IEEE

Abstract —Using rate distortion theory, lower bounds are developed for
the mean-square ervor of estimates of a random parameter of an A-
dimensional inhomogeneous Poisson process, with respect to which the
energy, i.e., the average number of points, is invariant. The bounds are
derived without stringent assumptions on either the form of the intensity or
the prior distribution of the parameter, and they can handle vandom
nuisance parameters. The derivation makes use of a side-information
averaging principle applied to the distortion-rate function and a maximum
entropy property of energy constrained Poisson processes. Under the
additional assumption of conditional entropy invariance of the point pro-
cess with respect 1o the parameter of interest, an explicit bound is given
which depends on the information discrimination between the inhomoge-
neous comditionatly Poisson process and a nearly homogeneons Poisson
process. The application of the explicit bound is illustrated through a
treatment of the problems of time-shift estimation and relative time-shift
estimation for Poisson streams.

1. INTRODUCTION

PROBLEM of importance in optical communica-

tions is the etection and demodulation of a pulse-
position modulation {(PPM) optical signal. This entails the
estimation of time shifts of the point process intensity
function that governs the average rate of detected photons.
A related problem is the estimation of the relative group
delay between two photon packets. This problem arises in
nuclear particle detection systems, such as positron-emis-
sion tomography (PET) medical imaging systems where
the group delay is related to the differential time-of-flight
between a pair of positrons, and in neural response sys-
tems where packets are generated by two associated neural
firings processes. Finally, in astronomical imaging of weak
stellar sources, absolute and relative positional information
such as Doppler frequency is to be extracted from an
observed photon spatial process. The aforementioned esti-
mation problems can all be grouped under a common
model: a multidimensional inhomogeneous Poisson pro-
cess IV for which the “process energy” E[N] is indepen-
dent of the parameter of interest but may depend on
unknown “nuisance parameters” which are not of interest.
The lower bounding of the mean-square error (mse) is
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important in that it provides an indication of the funda-
mental limits on estimator performance and also a bench-
mark for comparison to the known performance of a
particular estimator.

Most of the available performance results have been for
the one-dimensional case of single-detector timing estima-
tion. In [1] the local, or small error, mean-square error of
several ad hoc estimators was studied under the assump-
tion that the unknown time delay 7 is a nonrandom
constant, and the intensity function is smooth and essen-
tially observable with a small random error. In [3] exact
and approximate expressions for the mse were derived for
the case of conditional mean estimators of random 7 and
very simple functional forms for the intensity. In 2] the
mse for the maximum a posteriori timing estimator was
characterized by an upper bound for optical communica-
tions signals. More recently, in [4] the mse of the maxi-
mum likelihood timing estimator has been studied for PET
systems.

One of the simpler lower bounds on timing mse is the
Cramer—Rao (CR) lower bound. The CR bound has been
studied in the context of optical communications [2] and in
the context of PET systems [4]. It was observed, however,
that the Cramer—Rao lower bound becomes useless for
sharp intensity functions. In particular, nearly nondiffer-
entiable intensities give the unachievable CR bound of
zero mse. Important examples of nondifferentiable intensi-
ties are the rectangular pulse train, a common model for a
PPM optical communications signal, and the bi-exponen-
tial pulse, a cormmon model for scintillator pulse shape in
particle detection systems. For the special case of a narrow
rectangular pulse, an approximation to an mse lower bound
for random time shift was derived in [3] using an informa-
tion theoretic approach, and in [6] the parameter estima-
tion Ziv~Zakai lower bound for nonrandom time shift was
computed. While this special case is important for the
optical communications problem, the approximation tech-
niques in [3] and [6] cannot easily be extended to the more
general framework considered in this paper.

Rate distortion theory has been applied to bound the
mse for both static [7] and dynamic [8] nonlinear estima-
tion problems. In this paper an exact rate distortion bound
on the mse of estimators of random parameters, with
respect to which the point process is energy invariant, is
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derived. The bound can handle multiple observations and
nuisance parameters, and it is derived under broad as-
sumptions on the intensity function of the process. These
assumptions are that 1) the intensity function is totally
supported in the observation interval, and 2) the intensity
function is bounded. Hence the bound is more generally
applicable than previous lower bounds. The foundation for
the derivation is rate distortion theory. The general bound
is developed via an important extremal property: the dif-
ferential entropy of an energy constrained point process is
maximized by an inhomogeneous Poisson process.

In Section VI the paper focuses on the case where the
conditional entropy of the point process is independent of
the probability density function (pdf) of the parameter of
interest. This includes the case of shift estimation in the
presence of nuisance parameters, e.g., time delay and rela-
tive time delay estimation in Poisson streams for which the
intensity function is a randomly shifted pulse over time.
For these estimation problems, the mse bound is shown to
decrease exponentially as a function of the average energy
of the point process E[V] where the rate of decrease is
controlled by the information discrimination between the
intensity density of the observed points and a uniform
intensity density over the a priori pulse interval. Since the
information discrimination is a measure of the difference
between two densities, the bound displays the expected
relationship between the accuracy of the estimate of the
pulse location and the sharpness of the pulse. Further-
more, unlike the CR bound, our bound is always nontrivial
for finite valued intensity functions, For the case of a
rectangular PPM pulse, the rate distortion lower bound on
the mse of time-shift estimators is tighter than the approxi-
mate bound of [3] in the low pulse amplitude regime. Next
an mse bound for time-delay estimation is derived for the
case of unknown intensity pulse amplitude and time width.

-For this case the mse bound decreases exponentially in the

mean pulse amplitude and increases exponentially in the
mean of the logarithm of the pulsewidth. Finally, the
paper treats the case of refative time delay appropriate for
time-of-flight estimation in PET.

Based on the form of the CR and rate-distortion-type
lower bounds presented in this paper, we expect the rate-
distortion bound to be useful for predicting optimum
estimator performance in cases where the process energy
E[N1]is in the low to moderate range. On the other hand,
when the CR bound is nondegenerate, the CR bound is
expected to be tighter than the rate-distortion bound for
higher ranges of process energy.

The organization of the paper is as follows. In Section II
the statistical model for the point process observation is
presented, and all of the necessary assumptions for the
derivation of the rate-distortion bound are stated. In Sec-
tion III the estimation problem is stated, a CR bound on
estimator mse for conditionally Poisson processes with
random parameters is derived, and the bound [3] for the
PPM problem is given. In Section IV some information
properties of Poisson process are established to derive the
rate-distortion bound. The main results of the paper are
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given in Section V. In Section V-A the general bound is
given implicitly in terms of an undetermined channel ca-
pacity for which necessary and sufficient conditions are
given. In Section V-B the property of conditional entropy
invariance is used to derive an explicit mse bound. In
Section VI the bound in Section V-B is specialized to the
problems of shift and relative shift estimation for spatial
point processes and for conditionally Poisson streams.

II. CoNDITIONALLY POISSON OBSERVATION MODEL

Let N={dN(t): t€ 7} be an inhemogeneous Poisson
process whose index space is the finite M-dimensional
rectangular region I 2 X 7 [~ 7,/2,7;/2,0 < T, < 0. As
a matter of terminology, N will be referred to as an
M-dimensional (inhomogeneous) Poisson process over I.
The notation N{£), B a Borel subset of R¥ contained in
I, denotes the total number of points contained in B:
N(B) = f3dN(t). The point process V is described through
the set of points in I where dN(f)=1. We refer o a
specific relative ordering of these points by the labels
f," £, where n=N(I} is the total number of observed
points over I. By contrast, the population of points, with-
out regard to ordering, is denoted by {1, -, fy}.

Let 1 be an L-dimensional random vector with pdf p,
whose support set is J= Xf’_l.f,.é {r: p(z)>0}. In
what follows 7, is the parameter of interest to be esti-
mated, and r,,- - -, 1, are nuisance parameters. We assume
that, conditioned on =1, the point process is Poisson
with intensity A(¢; 7): A(f; 7)dt £ E[dN(2)|r = 1}. Specifi-
cally, if the intensity A(z,7) is integrable over : €1, the
Poisson conditional distribution of N, denoted by P(N|1),
is specified by the set of joint pdf’s of the points #,---, ¢,
for n=0,1,--- [9]:

pr,.---.l,,l:(!l" “t !nlI)

L
AL T)e M, n>0
[f o

e~ Mo, n=0

where A(7) is the integral of the intensity
A(r) & E[N|z] = [A(5 1) at. )
7

It is hereafter implicitly assumed that A(r) is finite (with
probability 1).

-The unconditional distribution of ¥, denoted by P(N),
is specified by the expectation of (1) over s € J:

pgl,---,;-(ili‘ T !n) =Ldng|.---.!,lz(£lv' tty !,.|I)PI(I)- (3)

Likewise, the conditional distribution of N given 7,
P(N|7), is specified ?y the conditional expectation over
52" 2 (7 T E X i

P, ;,|r,(!1’ TR

j=2

= fx, szz"‘ph.....g,h(!p"-.!,,I:r)p!;m(z%lﬁ)- (4)
F=adi
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- Two important propertics of Poisson processes are the
following

Lemma 1: Let N° be an M-dimensional Poisson point
process with integrable intensity function A% Le., A°=
{A°(): 1T}, A2 [ A(t)dt < co. Define #° as the total
number of points over I and {t,---.1,.} the set of these
points. If g is any function of ¢ such that f;|g(£}]*A\°(¢) at
< o9, then

"
e[ L] frovwa @
=1
If g, and g, are two such functions, then

E i gl(!.‘) i gz(fj):l

i=1 i=1

=flgi(z)gz(z)7\°(z)dz+ffgl(z)7\°(z) dngz(z)A”(z)dz.
(6)

Recall the definition of the differential entropy H(X ) of
a random quantity X:

H(X) 2 E[-Tn px(X)] (7

where the expectation in (7) is with respect to the density
Px-

Lemma 2: Let N° be a Poisson process as in Lemma 1.
Assume that X° is bounded almost everywhere. Then the
differential entropy H(N®) of N° is given by

H(N) = o(0)dt- e@ux(d. @)

Proof of Lemma I: The proof follows straightfor-
wardly from the form of the characteristic function of the
inhomogeneous Poisson process. Define the random vari-
able Z £ ¥ g(1,). The characteristic function ¢, of Z is
[9, theorem 4.1]

by (u) & E[ 2] =exp( fre@lerso-1] d;). (%)

Hence from the moment generating property of ¢,:

1

d
E[Z]= }‘ I}I_IPO E‘?z(“)

=2 fim [a% f}“(;)[em‘*’—ll dr)¢z(u). (10)

J u—=0

Since [,A|g] = (AJA%g[*1/t <o (Schwarz inequality),
the limiting and integral operations in (10} are inter-
changeable (Lebesgue dominated convergence lemma [10]);
hence

E[Z]= [X(0)s(0) lim &5 dt = [e()s(0) dt, (11)

which is (5).

R45

Define the random variables Z, £ £ ¢.(2,) and Z, £
¥ (). The joint characteristic function $z.2z, of Z, and
Zy is

b2, 200, 5) & E[ X007
=E[eM*] (12)
where Z'& 37 g(1)+(u,/1)g(¢;) and wiuy. The

identification of g in (9) with g +(u,/u,)g, vields the
identity

b ) =omp (1) A s wmai 1) ).
(13)

Now
2

1
E[2122] =2

m ——d, ,(u,u
JEuu -0 duy duy 7. 7 s 42)

= lim ¢z 7(u,u,)
uy, g —+ &

.[fx’(!)gl(!)gz(g)ej[";.gl(!H"zSz(r)]d{
7
+ [1(0)gu(1) e s g
7

. fx»(!) ga(t) s+ gr|  (14)
i

Since [X[g;%, < ([N *A)g21*)!/? < co, and [,3|g}
< (A f;2%|g;|*)? < o0, the limiting operation can be laken
inside the integrals on the right side of (14) to yield (6).
This completes the proof of Lemma 1.

Proof of Lemma 2: The distribution P{N?) of the
Poisson process is specified by the density (1) with the
identification A°(z) = A{f; 7). Hence, with the definition of
entropy (7):

H(N°)=A- E[ln I'fl?\"(!;)]

i=1
—A- E[ 2 In?\"([,-)]. (15)
i=1

In (15), A2 [,X°(1) dt. Note that [,A°(¢)|In X(2) |2 dt < o0
since A’ is bounded and 7 is a finite region. Hence (5) of
Lemma 1 can be applied to (15) to obtain the expression
(8). This establishes Lemma 2.

IIl. THE ESTIMATION PROBLEM

In what follows we focus on the problem of lower
bounding the mse of an estimator of the single parameter
7. In this context the L —1 remaining parameters - =
[ty --,7]7 are regarded as muisance parameters which
confound the single parameter estimator.

A. Energy Invariance

For the derivation of the general bound in Section V, we
make one major assumption concerning the dependency of
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P(¥|1) on m: the total process energy, i.e., the conditional
ratc E[N(J)|z]. is not influenced by the value of . This
property will be called energy variance with respect to =,.
More specifically, it will be assumed that the following
property holds.

Property 1: [;A(f; 1) dt = A("), independent of r, for
TeJ

In the applications section of this paper, Section VI,
Property 1 will be invoked for the special case of shift
invariance for which A(%; 1) = A(¢, — 7, 12,0, 7).

B. Lower Bounds on MSE

Let 4, = #(N) be an estimator of the parameter . We
are interested in lower-bounding the mse, E(r,—#)%
associated with 4, in the presence of the nuisance parame-
ters 7. We first discuss Cramer-Rao (CR) lower bounds
for this problem.

Cramer — Rao Lower Bounds: Under some regularity as-
sumptions [11], [12], the following bound on the mse of an
estimator ¥, of 7, holds:

1

mse 2 E(n—#)%2 P z
E(a— In p!|.---.!.-1'|(£l" "y !",1'1))
M

(16)

The CR bound (16) is dependent on the joint distribution
of N and 1:

Pgl.-».g,,.-rl(!h' “alye 1)

= [ [Pt L)

'P‘r,.---.TL(TZ’. T TL) dTl e dTL' (17)

A frequently more tractable lower bound on estimators
of 7, can be obtained via the multiparameter CR bound:

mse=¢]E(s—%)(1-%)"e;

> efF ey =[a—b"F 8] (18)

where 7 estimates the vector parameter 7, g; =[1,0,- - -,0],

and F is the Fisher matrix defined by:
Fale ¥
b F
T
=E(v,In{p, ..., {tr " 1t T)})

-(V!]n{ph.'".l,..g(!h"'!!n!z)})' (19)

In (19) ¥, is the gradient operator (¥,p, ..., , is a row
vector), and a, b and F, are 1X1, (L=1)x1 and (L —1)
* (L —1} vector quantities, respectively. The quantity a is
the (positive) Fisher information associated with 7,, F, is
the (positive definite) Fisher information matrix for the
nuisance parameters, 7;-, and & is the Fisher information
vector which couples 7, to the nuisance parameters.
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The bound (18) is identical to the bound (16) in the
absence of random nuisance parameters { L =1). However,
when L >1 it has been shown [15] that in general (16} is
tighter than (18}, On the other hand, since the bound (16)
involves averaging over the nuisance parameters within the
argument of the natural logarithm, an explicit expression
for (16) is generally more difficult to obtain.

A CR Bound for Conditionally Poisson Processes: Here
we state and prove a result which specifies the form of the
bound (18} for the case of observations which are condi-
tionally Poisson given the random parameters .

Proposition 1: Let N={dN(1): t= 1} be an M-dimen-
sional conditionally Poisson process, with intensity X =
{A{f; 7): 1 & I'}, given the L-dimensional random parame-
ter vector £ =7 € J, Assume that for i=1,---, L the in-
tensity satisfies the following condition;

and that &ln p (1)/8, has finite second moment. Then
the Fisher matrix (19) associated with ¢ has the form

f’dgg[‘”“"“‘f) “"”“)Ac;;g)]

dlnA(t;7)

. )\(g;g)dt) < o0 (20}

F=

a dv;

dlnpls) dInp(1)
+E{ I I D)u v

Proof of Praposition 1: Using the form for the condi-
tionally Poisson distribution (1), the partial derivative fac-
tor associated with the ifth element of the Fisher matrix
19) is

d
4

a
= o0 { Ao+ 1d5) (1))
- % '“{(ill’\(!:: z))e"““&(z)}

i

a n 3
~%n El InA(g; 1) - 'é;f(z\(!)—ln 2,(1))

= E gi(!f)_ & (22)
w1
where we have defined
d
g(t) 2 ——InA(s 1), (23)
o
and
d 3
- — -— . 24
RPRCRE LYXC) (29)

Substitution of (22) into (19) gives the ifth element of the

when the CR bound is nondegene;:’ale, the CR bound is
expected to be tighter than the rate-distortion bound for
‘higher ranges of process energy.
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probability 1).
The unconditional distribution of N, denoted by P(N),
is specified by the expectation of (1} over 1 € J:
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Fisher matrix:

f:-,~=E(I)i:1g,-(s,)'-c.-)( » g,(z,)—c,-]

s

—E

E( E g(1) élg,-(;,,,)

—E(¢E igj(!f)ll —-E{¢,E Z”:g:(!r) I))
faml f=1
+ E(cic;). (25)

In (25) the smoothing property of conditional expectation
and the functional dependence of ¢, (24) on 1 have been
used. Since, conditioned on 1, N is a Poisson Pprocess with
intensity A(s; 1) satisfying (20), (6) and (5) of Lemma 1
can be applied to the inner expectations contained in the
leading term and also those contained in the middle two
terms of the final equality in (25). This yields

£y E(Lgf(z)gj(z)h(g; 1) ds)
+E( JeOME a fg (DA z)di)

- E(c,-f,g,-(z)i\(z: 1) dz) - E(c,-flg.-(z)k(z; 1) dz)

+ E{ce))
~ &( [s(08,(ONz1)

+ B fa @D o) fe Mz d-o)

(26)
Next, using the definition (2) in (24):
8 ]
€= a—ﬁf}\(z:z)dz—-&:mp!(z)
dlnA(g 1) dInp (1)
e MDA
al T

- fetonwna- 222D

In (27) the boundedness condition {20) must be used to
justify the interchange of integration and differentiation.
Finally, substitution of (27) into (26) yields (21). This
completes the proof of Proposition 1.

The CR bounds given by (16) and (18) have a major
deficiency which has partially motivated the present work:
they can become trivial bounds even for finite A, For
concreteness, consider the case M = L =1, appropriate for
one-dimensional time shift estimation in the absence of
nuisance parameters: A(f; 1) =A{t—7) and v A(f; 1) =
N'(t — 7). For this case the CR bounds (16) and (18) are

847
equivalent and can be found from (21):
- (28)
- fr/z (?\'(l))deE(p,’('r))z'
“r2 A1), X0

In (28) it has been assumed that the support of A(r— 1) is
contained in the observational interval [~ T/2, T/2] (with
probability 1). Observe that for an intensity with sharp
edges, e.g., with {A’(¢)]>>1 and A(¢) <1 over some finite
interval of time, the integral in the denominator of (28)
becomes large, and the CR bound approaches the degener-
ate case: mse = 0. This suggests that the CR bound is not
tight for rapidly varying intensity functions. To overcome
this severe sensitivity to small but abrupt changes in A an
approximation was developed in (5],

An Approximate Lower Bound for Rectangular A: For
the special case of one-dimensional time-shift estimation,
rectangular A:

A T\ T,
Mez)=A(t-n)={T, _TTSISTF
' 0, other ¢

(29)

T, much less than the observation time 7;=T, and uni-
form p, (r), an approximation to a nontrivial lower bound
was given in [5] using an information theoretic approach:

0.143T2A 2 Ax4
mse = { 0.059T %472, 1<A<4, (30)
0.039TZ% %72,  0<A<}

In the derivation of the approximation (30) a2 number of
technical manipulations and approximations were neces-
sary. In what follows we wilt derive an exact lower bound
under mere general assumptions than in [5] using special
properties of Poisson processes and elements of rate dis-
tortion theory.

IV. INFORMATION THEORY FRAMEWORK

In this section the information theoretic framework for
the Poisson parameter estimation problem is presented,
and the rate distortion principle is outlined. Recall the
definition of the mutua) information J(X; ¥) between two
random quantities X and ¥:

I(X;y)4 E[ln dP(X.¥) ]

4P(X) 4P (¥) (1)

where dP(X,Y¥)/dP(X)dP(Y) is the likelihood ratio
(Radon-Nikodym derivative) of the joint distribution
P(X,Y) with respect to the product distribution
P(X)P(Y). If P is absolutely continuous with respect to
some reference measure x, then the mutual information
has the entropy decomposition:

I(X;Y)y=H(Y)- H(Y|X) (32)
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where H(Y) = E[-IndP(¥)/dp} and H(Y|X)=
E[—IndP(Y|X)/dp] are the unconditional and condi-
tional entropies. We first give a brief outline of the rate-
distortion theory that will be relevant to the bounding
procedure.

A. Rarte Distortion Theory

The starting point is Shannon theory. This gives a bound
on a source’s rate-distortion function R,(4) in terms of
the channel capacity C [13], [14]:

inf X;Y)=R (d)<C=supl(X;Y).
PYIX): BX, V) £d I )= Ry(d) s},’f ( )
(33)

In (33), J(X,Y) is the mutual information between the

source symbol X and the destination symbol ¥, py is the
source distribution, P(¥|X) are the forward transition
probabilities associated with the channel, and p(X,¥) is
an average distortion metric between X and ¥, In the
present context the source symbol X is identified with the
random variable 1, the destination symbol ¥ is identified
with the observation N, and p(X; ¥) is the mse

plniN) £mse=E(m - 4(N)) (34)

For a general source distribution Prp the rate-distortion
function R; is computable from a parametric formula [13].
It is known that R;(d) is continuous and strictly mono-
tone decreasing as a function of 4 over d <d,,, and
constant for d>d .. Furthermore, the infimum of the
mutual information over p < 4 is achieved for p=d. Hence
we have the bound on mse:

mse=d>R;L(C), d=<d

max

mse>d,.... d>d (35)

max "

The bound (35) is not of analytical form for general Py
Weaker lower bounds are obtained in the following propo-
sition via the Shannon lower bound on R_, given in (36)
[13], and by adjoining the “side information™ = to the
destination symbols and averaging the resultant mse bound
over 7.~ given (37).

Proposition 2: The following bounds on the mse of an
estimator 4, hold:

) .
mse > __ezm«l)e—zc (36)
3 . .
mse 2 ——g2fiinln),=2C7 (37)
2qe

In (36} and (37),

C& sup { H(N|z)) -

Pae

H(N|1)} (38)

and H(mjz) & E[-In Pm:z‘("'ﬂ L] is the conditional dif-
ferential entropy of , given
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Proof: We first show (36). Fix the source distribution
equal to p_. Then the Shannon inequality (33) becomes

in It N)=R dY<C=sup I(r;N).
PN Bln Ny sd (13 N) = Roe(d) Pﬂp (mi V)
(39)

Next we recall the Shannon lower bound on R, on the
rate distortion function R; which is derived for p equal to
mse in [13]:

Ryeo(d) 2 R,(d) £ E[ ~In p, ()] = 3 In(2med). (40)

Since the mse can be no less than 4 for a source of rate
R ...(d)[13] we obtain the first inequality (36) by applica-
tion of the inverse of R to the Shannon inequality R, < C
as in {35).

The second inequality (37) is obtained by finding the
rate distortion bound on the conditional mean squared
error 4, given 7 and then averaging the result over these
parameters. In thls case the relevant source distribution is
given by the conditional probability density p, . and, in
view of (32), the capacity of the channel is the quantity ce
given in (38). Hence, using £[—1n p, . c(m|th)|nF] in: place
of H(w) in (40) we obtain the inequality

rnse|‘rz (d)
1
R3(d) 2 E[~In pyp(nlef) || - 5 In(2med)  (41)

or, equivalently, the conditional expectation of the squared
error of %, given 7 has the lower bound:

E[f et 2 d

1
>—oeX
2me P

Z[E[—ln Pl ik o]

dP(Njt)

—sup E —_—dP(Nt L)

ol e

Applying the smoothing property of conditional expecta-
tion, E[X]= E[E[X|t]l and the following special case
of Jensen’s inequality: E[exp X]=exp E[X], to {42):

mse = E[E[('rl— ﬁ)zlzf‘”

Z[E [ —np . ('ﬁl'rzL)]

1
& Ime exp

dP(N|1)
up E|—ATT) 43
mE s Bl NI [f H) “

Since the outer expectation in the second term of the
exponent in (43) is with respect to the joint pdf of =L, it is
independent of the conditional pdf p, 1. Hence the order
of the “E™ and “sup” operations can be interchanged,
giving (37). This completes the proof of Proposition 2.
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Observe that Proposition 2 gives lower bounds that
involve two major factors: the first is independent of the
observation statistics, involving only the source entropy
H{m,), or conditional entropy H(m|rl), and the second is
independent of the source statistics, involving the capacity
C, or conditional capacity C*. It can be shown that when
m is independent of 7 the two bounds (36) and (37) are
equivalent, For the general case it appears difficult to
establish any dominance conditions of one bound relative
to the other. This is despite the fact that (37) is calculated
via introduction of the side information 5~ at the receiver.
On the other hand, it is straightforward to show that

bound lno side information 2 boundlside information

-exp | I{7; o) = sup I('rl;gf')],
Frnd

so that as the mutual information between 7, and -

approaches its maximum value, (36) becomes at least as

tight as (37).

B. An Upper Bound on Channel Capacity

To evaluate the rate-distortion lower bounds presented
in Proposition 2, one must be able to compute C or C°.
Since the computation of C involves the difficult joint
marginal distribution of N and ;, we will concentrate on
the latter. For the present estimation problem, €° is ob-
tained by maximizing the information over positive normed
functions p,,.r. This functional maximization is quite dif-
ficult in general. In what follows we will obtain a tractable
but weaker rate-distortion bound by upper bounding C*.
The bound is obtained by upper-bounding the conditional
entropy H(N|1.%) by H(N?|t}), whence

<< sup { H(N°z")~ H(N|x)} (44)
Pt

where N° is an inhomogencous Poisson process. Specifi-
cally, using the energy invariance property, Property 1, we
will show that a Poisson process model for N, uncondi-
tioned on T,, maximizes the conditional entropy. We give
this maximum entropy property in the [ollowing proposi-
tion.

Proposition 3: Let N = {dN(¢): t €1} be an M-dimen-
sional conditionally Poisson process, with almost every-
where bounded intensity A= {A{f;): t €[}, given the
L-dimensional random parameter vector t=Tt€J. As-
sume that N is energy invariant in the sense that the
function A satisfies Property 1 with respect to .. Then the
conditional differential entropy of N given ¢t is always
inferior to the conditional differential entropy of a Poisson
process with intensity E[A(t; r)|m’]. Specifically,

H(N1st) < E[A (=)~ B[ [Mo (s o) a|
{45}
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where
Mo o) 2 E[A 6 1)1

= L;\({; Tl.' IZL)P'r”Il"'(T[IEZL) dTl (46)
and J, is the support of p,.

Progf: The Proposition will be proven by showing
that, conditioned on the nuisance parameters 1 and the
total number of points of N over f, n, the difference
between the entropy of a Poisson process and the entropy
of N is identically the mutual information of the popula-
tion of points, {#," -, t,,}, Which is nonnegative.

Since N is conditionally Poisson, the form (1) for the
conditionally Poisson process distribution can be used:

H{N|z})

=£ [ ~In P!;-"'.t..l:{'(gl:' T !n|'f_zL)]

= E[_ln L d'rl Pgl,v--,g.u(!l’. A !nl'rl’ :.rll‘)p‘nkz!'(?ll‘—r;‘)]
L

= E[-n E[e"eDdel n=0]P(n=0)  (47)
+ E[—ln(f dr pype(mint) e hiMend
gA B
n
: H;\(!f:"'lviz!')) ">0]P("> 0)
i=1

= E[A(28)] +E[-ln([ﬂdﬁ Payet(mil5")

) _]-i{l}\(!f; "'1’1';'))]- {48)

Equality (47) is simply the representation of the outer

expectation by an iterated conditional expectation given

the events # = 0 and its complement # > 0. To obtain (48),

Property 1 has been used te move the integrated intensity

JiA(6; Tydt = A(1) outside of the expectation operator

over 1. In (48) the convention is that [T, =1 for n=0.
Consider the second expectation in (48):

E [wln([ﬂd‘rlp.,ﬂﬂ.(fﬂgf)rljlk(!f; «rl,f_r{-))] (49)

=E[—-1n iljl (L d"'l}‘(!i;71=IzL)PnI:rz"(71|IzL))] (50)

H

f_, dm Pyt (mlnf) l_Ili\(!:: 7, %)
1

i=

—Elln

. (51)

n
E_ -[jldTl h(![; TI'EL)p-rl]-_r{'(TIIIZL)

The term (50) is the second term on the right of the
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inequality (45):

E[—h1fﬁ(£

1

d'rl ?\'(‘l! T T )p'r -r-‘. (TIIT )):|

=E—,);1ln?\ ]

o g o
~ |- s n)mA(s ) a (53)
= B[~ [EM D R (s )
-5|- fleinid)a) oo

To go from (52) to (53), Lemma 1 has been applied to
compute the e_xpectation of the sum of Poisson shifted
functions, Zln A(¢; 7). In view of the identities (48), (49),
and (54), we need only show that the term (51) is nonnega-
tive to establish the inequality (45). By the smoothing
property of conditional expectation, we obtain the equiva-
lent expression for (51):

n
fd'TI qu|32’-("'1|"'_2£) Hh(!f;ﬁ’l'z[')
E|ln = = -E|E|1

rl_ll JdTl (fi;TlsIZL)PTLII{'(TllﬁL)
=1%4

Recall the following facts from Poisson process theory
f9). Let N° be an inhomogeneous Poisson process with
intensity A° having an integral A2 f,}°. Then, condi-
tioned on the total number of points #° = n > 0, we have
1} the joint density of the (unordered) population of Pois-
SON POITS £, «, 2, is given by

pfc:l:-“‘-!m"nl""(h’ B (56)
and 2) the marginal density of t.y is given by
»(t;)
P ) = 2. (57)

Let n=n>0 and 7} =75 be fixed. Then, since N is
conditionally Poisson, from (56) the conditional joint den-
sity of the unordered points 1,,,,- - -, By I8

Sl )
" )\(!,,'rl,_{')

=f dm 1_[ ﬁ)_qu, ('rll_z )

J, fml

Py LN o (!1' ’

(58)

On the other hand, the marginal density of any one of the
points ¢, is

-l’ 71>
_ pl(”]n 1+ tln 72 fa.TI l —2 )p‘flln (Tll’l' ) (59)
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In view of (55), (58), (59), and the 7, independence of
A(zl), recognize the inner expectation in (55) as the
quantity:

fd"'lpﬂ-rz("'ﬂ"' ) . ( + T T I)
Elln n, ok
HdeIA(triTl' )p'rl['r; (TIIT )

l(t T, T L)
_[IdTlP7||r; mit )H (1 )
=E|In— (I ; »'rL) n, 1"
+ 71,0
£l i Dt
=E ]n p!m I[.,lu -rz(tl’ h 9!:1]"! TJL) n,hf-
I.Ilp!"][n,-_r{'(ti[n: IZL)
_ i=
=I(f(11""=!(n)§“‘IzL) (60}
fd'rl p’l']i‘rz(Tl.]T )H?\(fr:"'l’ )
':,' n, k], (55)
ULd'ﬁ Tls'f_zL)Pf,|3{-("'1|EzL)
where I(1,,," - -, 1, ") is the conditional mutual infor-

mation of the populauon of points ty,, -, t,y given n
and wf. The nonnegativity of the mutual mformatlon {141
establnshes Proposition 3.

The combination of Proposition 3 and (38) gives the
lemma.

Lemma 3: Under the hypotheses of Proposition 3 we
have

C°<C*&sup E fdr)\(r T)
Prigd-

Als 1)
f}‘(i 5 L l{(’fﬂ'."z")d"'l

(61)

Furthermore, the argument of the “sup,” E[ ], in (61) is a
concave function of the conditional density Prjok-
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Proof: Recall the identity (38)
“=suppy{ H(N|z)— H(N|7)).

Since V is conditicnally a Poisson process and is energy
invariant with respect to 7, we have from Lemma 2.

H(N\z) = E[E[-Inp,... 0lts . tlo)is]]

- E[At)- [ M )|
= E[A(51)]- E[fldz?\(z; )Mz 1)]- (62)

In (62) Lemma 1 has been applied to the inner expecta-
tion, Hence, from (62) and Proposition 3, we have the
upper bound

C¢= sup {H(le_rzl')

Prlsf

+ E[f[d;;\(g; 1)l A{g 1)] - E[A(Iz'“)]}

ssup{ [ fdr)\{ ln?\(g )]

I
Prxf

+ E[ffdgh(g: m)lnA(s 5)]}

= sup{E[Ld{h({;g)[—lnX(;

Pryief

)+ )]
(63)

which is equivalent to (61).
To establish concavity of the expectation in (61} as a

function of p, ., it is sufficient to show that the following
function L is concave:

L{pye)*E f,df?\(f:'r)

=

(t:7)
f)\ L p.,ll,z('rlh )a"r1

=i

=j;1 dm P-r,|1,"(""1]IzL)_/;d5)‘(I§ 1)

Al 1)

(64)

f?\(t T T

p"ll"l (TllT )dTl
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Let p,r=p*=ap,+(1—a)p,, 0 <0<, and p,, p, are
density functions of 7. Then using the inequality Inx < x
&

L{p*)~eL(p)-(1-a)L(p,)

== a_[, dmn pI(Tl)f,dEA(f; 1)

) p*(7)
In (65)
) pa(r)

_(1_0‘)'[[‘1'"1 Pz('rl)_[rdfk(li T)

La"r?\(g; T Iz")p*('r)

drA(t; 7,78 ) pa(7)
i

-in

= _a-[rldﬁ (pi(m) "P*("’L))fldl‘\(!i 7)

-(1- “)L dTl(pl(Tl)_p*(Tl))j;dIh(! T

=— A(gz"‘)[aj;d'rl (pi(7) = p*(7))

£(=a) dn (pa(n)= ()| =0. (60

Hence L is concave. To obtain the equality (66), the fact
that A is independent of =, Property 1, has been used.
This completes the proof of Lemma 3.

The next result deals with the maximizing conditional
probability density p, .; of Lemma 3.

Lemma 4: Let N={dN(i): t€1I) be an M-dimen-
sional conditionally Poisson process, with almost every-
where bounded intensity A= {A{f; 7): 1€ [}, given the
L-dimensional random parameter vector 1 =1 € J. As-
sume that N is energy invariant in the sense that the
function A satisfies Property 1 with respect to ,. Then
with C* as defined in Lemma 3:

A, ot

C*=E leﬁpo(ﬁ, fdzh £ 1,1 )m%
(67)
M(ost) & [P (N Endn (69)

where, in (68), p® is a (density) function of r which
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satisfies for all =, € J:

[atA(s7,2¢)In
!

=c(=t),  plmzt)>0
69
{sc(:;). (riet)=0 &
and
Lp"(fl;gz"‘) dr=1. (70)

In (69) ¢(zs) is a constant independent of 7,.

Progf: Lemma 4 is established by the Kuhn—Tucker
theory of constrained maximization [16]. We start from the
identity in Lemma 3 (see (61)), re-expressed to bring out
explicit dependence on p, ..:

C*= defz- . _[’Ldf,_ p_,zL(T_z")

- sup L dn p-rl|z{'(’rlII2L)j;d£A(£; 1)

Pojzf- 1

A1)

“In . (71).

J Mt ) puyet (i) dr

A

In (71) the inner iterated integral over J; X I is a concave
function of Doy 22+ Dy Lemma 3, which is to be maximized
over the convex, closed domain:

Qé {p: p{1)=0; ¥r,and ]j.p(-r])d'r]=1}. (72)

The objective functional to be maximized is the continuous
function:

J(g) éj;d'"lg('ﬁ; T_z")_/;d!)‘(lil')

Ale 1)
-In
fd'rk(g;'r,gzl‘)g('r;g;‘)
4
+7 Ldflg(fl;gzl')—l}. (73)

In (73) the unit normalization constraint (70) on the 7
density g has been introduced via the undetermined multi-
plier . Let i { 2] be the relative interior of 2, and let d2
be the boundary of 2. Since the domain (72) is closed, a
maximizing p, .. must exist in 2. Furthermore, by the
concavity and continuity of J (73), the Kuhn-Tucker
theorem gives the following necessary and sufficient condi-
tions for the maximizing density p, . = p° € @

aJ( p° + edg) =0,
=0 = 0’

de

pen{9}

p°EIZ (74)

Authorized licensed use limited to: University of Michigan Library. Dewnloaded on July 28, 2009 at 13:04 from IEEE Xplore. Restricticns apply.

1EEE TRANSACTIONS ON INFORMATION THEQRY, VOL. 35, NO. 4, JULY 1989

In (74) 8g is an arbitrary integrable function such that
pP°+ebge P, ie, the mixture remains a density over
7 € Ji. The derivative is given by

8J( p” + ebg)
de

c=(
=le1-183('rl; r_zL)f’dg)\(g; T)
At 1)

-In
f d'rk(g; T,IZL)p"('r; _'1_'2")
i

_Ld'rl Po('rl; T_ZL)_[Id!A(fi 7)

f dr8g(r; of A (g v, o)
Jl

[ara(sre)p(n o)
A

+nj;ld¢18g(1-1;121‘). {75)

Note that the second iterated integral on the right of (75)
integrates to the quantity: f; d7,8gf,; dtA. Hence, collect-
ing terms in {73), we get the equivalent expression to the
right side of (75)

= f dndg{m: )
S

A fdin )

“f,‘“(“ T)+n). (76)

Finally, since by Property 1 the second additive term in
(76) is the 7~independent term A(zl),

aJ{ p°+ebg)
de

=0

- f, dr, 8g(n; ) L Mt 1)

-1n - _ —C'(‘Hr') (77)

where ¢(1) £ A(z/)—%. In the present case it is clear
that p° is on the boundary of 2 (72) if and only if
po(7) 2 po(r; o) =0 for some 7, € J. By the
Kuhn-Tucker condition (74), (77) must be equal to zero
for those values of 7, where p°(;) > 0 and less than or




HERO: MULTIDIMENSIONAL POISSON PROCESSES

equal to zero for those 7, for which p°(z)=0. This
implies that the integrand of (77) must be identically zero
if p®(7;) > 0. On the other hand, if p°(r,) =0, the pertur-
bation 8g( ) must be positive so that p° + efg € 2, which
implies that the integrand must be less than or equal to
zero for this case. This completes the proof of Lemma. 4.

V. Main THEOREMS

In this section the results obtained in the previous
section are combined to yield the main results of this
paper.

A. A General Bound

Theorem 1: Let N={dN(t): t€l} be an M-dimen-
sional conditionally Poisson process, with almost every-
where bounded intensity A= {A{z;7): t €]}, given the
L-dimensional random -parameter vector 1 =1 &€ J. As-
sume that /N is energy invariant in the sense that the
function A satisfies Property 1 with respect to 1,. Then the
mse of any estimator 4, of 7, has the lower bound

fd"'l Po(ﬂ;IzL)
4

?\_(z;fl_,'_rzL) D 78)

JM(gm i x(; %)

where p” and X° are the functions given by (68) and (69)
of Lemma 4.

1
mse > ——e2lt exp| ~2F

we

Theorem 1 applies to estimation of 7 for a general
M-dimensional conditionally Poisson point processes which
is energy invariant. It involves the solution of the integral
equation (69) of Lemma 4 for the maximizing conditional
density p, ... = p° Finding this solution is as difficult as
solving for the capacity of a general continuous channel
[14).

B. Conditional Eniropy Invariance

The lower bound of Theorem 1 was obtained by estab-
lishing necessary and sufficient conditions for the maxi-
mizing conditional density, p, .- % in C*=
SUP Py 00 [ H(N?|T) - H(N|'r)], (61) of Lemma 3. Thus
the bound of Theorem 1 is not explicit as a function of A
and p_. The next theorem deals with the special case where
N satisfies the additional property of conditional entropy
invariance. For this case, a weaker but more explicit lower
bound is obtained via maximization of the entropy differ-
ence (61) in Lemma 3 directly over A.

Let the differential conditional entropy of IV given 7 be
functionally independent of 7. Then N is said to satisfy
the conditional entropy invariance property with respect to
1,. More specifically, taking into account the form of the
conditional entropy of N in (2}, the conditional entropy
invariance property is given by the following property.

Property 2: H(N|1) £ E[~1a P(N|z)|r = 1] =
frdtA(z; TyIn A(r; 1), is independent of =, € J;.

At this point it is appropriate to give two definitions.

853

Deﬁ'ni:ion 1: A set of 7-insensitive components of ¢ =
[, - ty] is any set of components, [7,,---,7; L {i;}
dlstmct indices, such that the integral of A over the re-
maining components of ¢ is independent of .

Without any loss in generality we will assume that the
compaonents of ¢ have been ordered so that any 'r,—msensx-
tive components are successive components:
t,7] for some m. Then, by definition,

A
i‘m+1

[FVSRERN
/2 nt
f i/ diy -+ fT & dt, A(t; 7) is independent of 7,.
~TN/2 Tm/2 . ’ .
(79)

By the terminology “maximal set of r,-insensitive compo-
nents of ¢ is meant either min, t¥, , if the set of =-
insensitive components of { is nonempty, or the empty set,
if no components of ¢ are 7,-insensitive. Associated with
the maximal set of “r -insensitive” components are what
will be called the “7-sensitive” components: ¢/. As an
illustrative example consider the case:

;\(!:I)=)\1(Zi’; Tl)kz(irﬂiﬂ IzL)_ (80)

where A, satisfies energy invariance Property 1. For (80),
the integral (79) with m =/ is independent of , and the
M, are thus r-insensitive components.’

Definition 2: The support of A over "2 [t, -, 1,],
denoted supp,= A(f; 1), is the m-dimensional set:
supppA(f; 1) = {4 M(t; 1) > 0}. (81)

Observe that supp. A(t; 1) is gcnerally a function of

tm+1 [tm+ls b 'tM] and T

Lemma 3: Let 7 be a random vector with support = €
J= X J. Assume that A = {A(; 1): t€ I, 1€ J )} is an
mlensny funcuon which satisfies the energy and condi-
tional entropy invariance propemes Property 1, and Prop-
erty 2, with respect to 7. Let t¥ | be the maximal set of
7,-insensitive components of 7. Assume that

suppA(t;7) € X [-T,/2, T, /2]
i=1

for all t¥,,& X [-T,/2,T,/2) and all 7 € J. Then

C* has the upper bhound

Cr<C**2 f I:fdth(f T)ln%]

(82)

=E[f]d£l(£;:r)ln1\(£;x)
—j;dzi*(f::rf)lﬂi*(z:sf)}

where A* is the virtually uniform intensity over the maxi-

(83)

mal ¢{"support, denoted as X I of A:
(e 2)
1 m
T Mozyay, ge XK
A X Ii' bR /4 i=1 (84)
i=1
0, otherwise
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In 84) X7 1/ -U,c_,lsupp,...?\(t 1) and | X7

i=17% |_
Sxp dif is thc volume of

I
=1%F"

Proof: After some mampuiations, Lemma 3 gives the
following form for C*:

C*=F l:sup{ f)\{ ln?\g )dg

Pryisf
+f,?\(£; )InA(s1) dg}], (85)

Since, by Property 2, the second integral in (85) is indepen-
dent of =, the “sup” in (85) only affects the first term.
Furthermore, this first term depends on p, ;. only through
the quantity A= | 1, 7y A py s Hence

L) d{}]

C*=E [sup{ f?\ A (4
B[ fsnma@ ] 60

AEY”

where @ is the set:

g & {X: X(;44)

=fd'r)\
5

An upper bound is to be established on the {irst term in
(86). To do this we generate a set of functions % such that
%°C ¥, i.e., ¥ contains A for arbitrary density Prgei- The
upper bound will [ollow by the obvious inequality:

[sup{ fdm YInk (g )H

ey
< E[ﬁsup {—j;dgi(z;'_r%)lni(z;:rf)}]. (88)

Ay

(5 1) Py (nlTE )5 Pyper = pdf}. (87)

Define Q-
Q(t'.::!+1; Izl.) éfﬂ/l dtl .

f ™/ A (51). (89)
-7 /2 T/

@ is independent of " and, by the m-insensitivity as-
sumption, also independent of 7,. Define the set of non-
negative functions ¥:

ga {5\: supp,l-.ic X 1 f'r,/z df,
) =1 -n/2

/2 ¥
S5 M) ~0(utizt)] 60
~Tas2

where X I} is the f™set defined in the lemma. The
claim is that ?\G.‘ﬁ First observe that A has a supporl
which is contained in the union of the supports of A(z; 1)
as 7, ranges over J,. Specifically,

supppAC U supppA(t; 1) = >< 1.

ned;

(o1)
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Therefore, A satisfies the first condition in the definition
of  (90). As for the second condition in %, apply the
assumption (82) to (91) to obtain

L]

T, T,
Supp,m?tC X —? '?2— (92)
f=l

so that A is wholly supported in the observation interval 1.
Next consider the sequence of equalities:

[ dyoe [ a M)
-T2 -7, /2

=fr'/2 dy - fT"'/z dt, E[M(t; 7, 1)

-T/2 -~/
/2 Tn/2
=F . L
[f_n/zdtl f_T /zdfm}‘(!- 1)
=E[o(tM, i o)) = ot i 1), (93)

where the exchange in order of integration and expectation
in (93) is justified by (92) and Tonelli’s theorem for iter-
ated integration of nonnegative functions [10]. Hence A
also satisfies the second condition in the definition of ¥
(90) and is thus contained in % as claimed. _

It is straightforward to verify that the function A €%,
which maximizes the bound on C* in (88) is a function
that is uniform over the (finite} maximal support set
ire XTIy X7 (—T,/2,T,/2). This foliows from the
fact that the dlfferenual entropy of a support limited
density function is maximized by the uniform density [14].
Application of the constraint (89) to this uniform function
gives A* (84). Finally, substitution of A =2A* into (88)
gives the bound C** in (83). This finishes the proof of
Lemma 5. ‘

Lemma 5 can be modified to handle smoothed tailed
intensity functions with infinite support by replacing the
support set (81) by an “e-support set” containing all but a
factor € of the mass of the intensity function. The details
are omitted,

Theorem 2: Let N be a conditionally Poisson process
with almost everywhere bounded intensity function A =
{A(t; T): t €1}, given the random parameter vector 7=
r & J. Assumne that A is an intensity function which satis-
fies the energy and conditional entropy invariance proper-
ties, Properties 1 and 2, with respect to 7. Then a lower
bound on the mse of an estimator £, of 7 is

2H(11rh)

exp( zg[fm(: )i sor ((: ,))]]

where A* is the function given in (84) of Lemma 5.

1
mse > g
2me

Proof: From Proposition 2, mse > exp(2H(7|7")—
2C%)/(2we) (37). On the other hand, combination of Lem-
mas 3 and 3 gives C° < C* £ C**. This establishes Theo-
rem 2.

Authorized licensed use limited to: Universily of Michigan Library. Downloaded on July 28, 2009 at 13:04 from IEEE Xplore. Restrictions apply.
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The following comments are useful. Observe that the bound
in Theorem 2 is an exponentially decreasing function of
the quantity:

fdtﬁ 5 T)lnf\*((; ;).)] (94)

where A 2\ /A(zf) and A*2%*/A(z}) are normalized
functions of ¢; i.c., density functions over ¢ € I. The inte-
gral in (94) is known as the information discrimination
between the pdf's A and A* [14]. The discrimination is a
measure of the dissimilarity between iwo pdf's in the sense
that it is equal 1o zero if and only if the two pdf's are
identical, and it is positive otherwise. In view of the fact
that A* (84) is constant over its ¢™support set X r,
Theorem 2 asserts that the closer the intensity of the
conditionally Poisson observations is to a uniform function
over the 7,-sensitive components of ¢, the more difficult it
becomes to estimate t, with low mse. This is consistent
with the inherent difficulty in estimating a parameter for
which the conditional observation density is not a sharp
function of the unknown parameter of interest.

(A, A2 E|A

V1. APPLICATIONS

For energy invariant processes, e.g., processes for which
A is shift or scale invariant with respect to 7,, Theorem 1
can in principle be applied to develop lower bounds. In the
case of shift invariance, the additional property of condi-
tional entropy invariance holds, so that the simpler bound
of Theorem 2 can be applied. In this section we specialize
Theorem 2 to shift and relative shift estimation.

A. Shift Estimation

The following Theorem follows directly from Theo-
rem 2.

Theorem 3: Let N be a conditionally Poisson process
with almost everywhere bounded intensity function A =
{A(s; 7): t €1}, given the random parameter vector 1 =
7 & J. Assume

* I=[-T/2,T/AX X1y, J=[-T, /2T, /2]
Sy X X Ty

¢ AETY=A{t—7,0;0,1F) for all =T and all
reJ;

* 3 TA—TA(rz ) =< exists such that
supp, A%y, 1550, 1) € [— J\/2 T, /2], and T, <
1_Tr,-

Then a lower bound on the mse of an estimator 4, of T, is
the bound of Theorem 2 with A* given by

1
fr'/zh(t 0,74 dr,,

Tvl'}'Tl\ n/2
M) = T, +T, T, +T, - (%)
- t
2 =hE=T

0, otherwise
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Proof: First it is shown that ¢ is the only 7;-sensitive
component of {. To this end consider the simple change of
variable /=1 — 7 in the integral on the right of the
foliowing:

f’ﬁ/?. dyA(t; 1)
-T/2
= (17 A (- 7, 18450,58)
-N"/2
- 2
={f‘n/z "'f /2 _f'fl/ }dzly\(;l,gf;ﬂ,'!z'“)
=N/t Y- (h+n)/2 (f-n)/2
Ti/2 M L
= d, A, 1350,
f—?’,/z 1 (1 iz "'_z) (96)

where in going from line two to line three of (96) we have
used the assumption Ty, s T,~T,, which ensures that, of
the three integrals inside the braces, only the first is
nonzero. Recalling Definition 1, since the integral (96) is
functionally independent of 7, £37 can be identified as the
maximal set of 7, insensitive components. Since A is
supported on a f,-interval, the maximal #-support, I =
U, e supp, A, of A, (84) of Lemma 5, referenced in
Theorem 2, is the interval: [ (7, +T1,)/2,(T, +T,)/2]).

It remains to show that Properties 1 and 2 are satisfied.
By (96), f;A =/, --- [iA must also be independent of =
so that Property 1 holds. Property 2 follows from the same
change of variable argument as used in (36), #{ =1, — 7,
applied to the innermost integral:

j;dg}\({;'_r)lﬂ)\(!;z)

T
=j’ dIM"'f 1/2
-n/2

Ty

dy Al 1) A5 7). (97)

Hence the assumptions of Theorem 2 hold and the proof is
complete.

B. Time Delay Estimation

A special case of Theorem 3 of interest is the time delay
estimation problem for which A is a one-dimensional pulse
as a function of 1. To simplify the notation, we assume
that the sum of the length of the prior uncertainty interval
on 7, and the pulsewidth is equal to the length of the
observation interval: 7, + T, =17,.

We first consider the case for which there are no nui-
sance parameters:

¢ Mo =MAH—n)

® 7 is a random variable with support contained in
{ T,/ T, /2

. 1(i‘) isa known function with t-width (pulsewidth)
Tyand T, + T, =T,.
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For this case Theorem 3 gives the result:

1
mse > —— 2Htnlzl)
2

me
Ay /2

-exp 2A11n—-——2f MN{D)Ind(¢) dt
n Jenp

- _1 e 2H(nlad)
2e

1 . .
-exp (21\1 [m 7 fj‘:;}\l(t)ln () dt]), (98)

where A, 2 JrA(#;) dty is the energy of the pulse and the
normalized intensity (density) 5\, has been defined:

M et

The bound (98) has several notable characteristics. The
leading exponential term is independent of the observation
statistics. This term is determined by the a priori uncer-
tainty in the time delay . The exponential factor in
brackets is a channel capacity C** that is always negative,
Hence the mse lower bound is an exponentially decreasing
function of the total energy of the pulse A;. The exponen-
tial rate of decay is determined by the information diserim-
ination between the conditionally Poisson inhomogeneous
process & and an equal energy homogeneous Poisson
process. This is, equivalently, the difference between the
differential entropy of the normalized intensity A and the
entropy of a uniform density over the cbservation interval.
Thus the lower bound on the error in estimating 7, de-
creases very rapidly as either the pulse energy is increased
or as the intensity function becomes more concentrated
over a small subset of the observation interval,

It is instructive to consider representative extreme cases
of the rate distortion bound (98) as a function of the pulse
shape A. It is easily seen that the bound is mirimized by
minimizing the differential entropy of A. The differential
entropy can be made to approach —cc by letting A ap-
proach a delta function, corresponding to the case of
perfect observation of =, in which case the error bound is
zero. On the Aother hand, the maximum of the bound is
achieved for A equal to a uniform density over the obser-
vation interval, corresponding to useless observations, in
which case the error bound is only a function of the prior
distribution on +,: the “entropy power” exp( H(m))/(27e).
In particular, for Gaussian =, the entropy power is simply
the a priori variance of 7, which is achievablé by using the
trivial estimator %, = E[r,].

Finally, a comparison between the lower bound (98) and
the approximate lower bound in [3] (30) can be made. Let
A be a narrow rectangular intensity of the form (29),
T=<T,=T, and let 7, be uniformly distributed over
[(T-T)/2,(T-T)/21=[—T/2,T/2). Then (98) re-
duces to the form:

(99)

mse 2z —
T

TZ T‘\ 2A
2W( ] (100)
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where subscripts on A, and 7} found in (98) have been
suppressed. The lower bound (100} and the approximate
lower bound (30) have quite different behavior over the
majority of values of A. In particular as A — 0, the bound
(100) goes to the a priori entropy power of 7, while (30)
goes to a much smaller quantity which is a fraction of the
pulsewidth T,. On the other hand, as A — o, (100) de-
creases exponentially while (30) has only quadratic de-
crease, Hence, generally speaking, the bound (100) is tighter
in the small A region while (30) is tighter in the large A
region.

We next consider the case of time delay estimation in
the presence of uncertainty in pulsewidth 7,7 and uncer-
tainty in pulse amplitude ,. Specifically, we assume the
following:

* A 1) = (/)M — 1)/ 7
(-0/2,71,/2];

* 1,7, T are independent random variables with sup-
ports contained in the sets [~ 7, /2, T, /2], [0,1] and
[0, oo), respectively;

® Ay(t) is a known function with t-width T, and T, +
T,=T,.

Theorem 3 and a straightforward computation show that
under the above assumptions the mse of 7 is bounded by

nel=

mse > '2—7;92”(1”“}’ (2E[73][A1 In T f—;ﬁﬂ)\[([)

Aln (e} de+ E[ln-rz]]) (101)

where A, = [Tig2 A (1) dt.

Observe that the mse bound (101) is similar to (98) as a
function of A and T). Since 7, €[0,1], the mse bound
decreases exponentially in the mean pulse amplitude. It is
significant that the bound is not directly dependent on the
variance of the amplitude scale factor 7. On the other
hand, it is to be noted that the mean and variance of 7, are
not independent parameters due to the positivity of ;. The
role of uncertainty in the pulsewidth =, is to increase the
mse bound as a function of the mean logarithmic value of
pulsewidth uncertainty. Hence a Taylor expansion shows
that, unlike the pulse amplitude uncertainty, the variance
of the pulsewidth, is directly implicated in the mse bound.

C. Relative Shift Estimation

When an estimate of the relative shift 7, between two

‘separately observed conditionally independent Poisson

processes is to be estimated, Theorem 2 is applicable. For
relative shift estimation, the absolute time delays of the
individual point processes are not of direct interest. Thus it
is appropriate for this problem to model the midpoint =,
between the arrival times as an unknown nuisance parame-
ter.

Theorem 4: Let [V}, N;] be a vector of two condition-
ally independent Poisson processes with almost everywhere
bounded intensity functions: A, = {A(f;7): tET}, Ay=
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{A,(t; 7): t €1}, given the random parameter vector =
T & J. Assume

o I=[-T,/2,T/21X I, % - - X Ly, =
[T, /2.7, /AX[-T, /2T, /2X JyX -+ X J;

* AfnT)= A {4 72+(¢1/2) 12,0 e, ) for all rer
and all 1€ J;

¢ ML T)=h(1—
and all re J;

* the A; have finite #;-widths: T, (f,, 7) <7 such that:
S“ppqhicll'

7 — (1 /2. 15,0,0,x ) forall r e 1

Then a lower bound on mse of an estimator 7, of = is

2 X

E fdf (25 m, 0,7
i=12 1

A,-({', '1'1,0, ESL)
In (60, 2) (102)

1
mse > — 23 exp | —
2me

where the A* are given by

! = [ 0 (1:0,0,5 s,

DD 07—
L +T,/2 Th +T,/2
IIE _ i ¥ 3

2 ’ 2
Q, otherwise

Ar{nof) &

T

(103)

Proof: Since the t,-supports of the A; are contained in
the finite interval I,=(-T,/2, T, /2], the trajectories of
N, and N, can be concatenated to form the equivalent
scalar process N(1), 1 €[-T, TIX LX -+« XTI, with
intensity '

A1) =A1(‘1+_1,5;%1')‘*‘}\2([1_"1‘,!;’”)- (104)

The rest of the preof is analogous to the proof of Theorem
3. It is easily verified that ¢, is the 7-sensitive component
of ¢ and that Properiy 1 is satisfied. Furthermore, N
satisfies Property 2 since, by conditional independence,
H(N,, Ny|7) = H(N7)+ H(N,jr); and N, and N, indi-
vidually satisfy Property 2 with respect to 7. Next we
identify the maximal #-support of A, namely:

m
_><11'=Il'= U supp, A
i=1 nel
T, T n Ty n Ty
= U '__l+—_72 ‘_| __,7-2__
ned 2 2 22 2 2
[ TAZ 1 n Ty I T
. e e e e e
UL 1 2 T T Ty
O L N ) W L PO B
2 2 2% 472 2 o4
[ T T, T T T T,
yl-2 b B B A
2 2 4 2 2 4
{105)
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Hence I of (105) is a disjoint unicn of intervals of lengths
T?n +7,/2 and T, +T, /2. Application of Theorem 2
gives a bound with the exponenual factor:

C*e= E[ Jarre(s; o
!

-)1ni*(z;'_rz")]
—E[f,dﬂ\(z:z)lnk(z;:r)] (106)

where, following (84), A* is the function defined below,
having a rl-support set I{:

A ot) =

'[ | (I;O'Izl’)dtl

1 (5, /2~ U= W1/~ n (T /%)
527 - /- a— T /- = (T, /%)

.;\,.(tl—-(“?l

— Ty, ! ,,00 )dtl

1 f( T, /0T, /4
AV SVl ML) A BTt N

A1, £450,0,57) dry.
Substitution of (107) into (106) gives the following:
Aty 7)
M ___;
E[fxu drzf d:l)\(: 7)in = Toe) | (108)
Observe that A (104) and A* (107) are functions of =, only
through a shift i, — 7,. Therefore, a change of variable
ty =# — 7, in (108) renders the integrand independent of
7. The functions A and A* are each the sum of two
functions with disjoint support sets. Hence the integral
(108) decomposes into the sum of two integrals indicated

in the exponent of (102). This completes the proof of
Theorem 4.

(107)

:2"

D. Relative Time Delay Estimation

We specialize Theorem 4 to the case where ¥, and N,
are one-dimensional conditionally independent Poisson
streams which undergo random relative and absolute time
shifts. Specifically, assume N, and N, are the components
of a vector point process observed over the time interval
I=[-1,/2,T,/2] with intensities A, and A, such that

At )= ‘1\‘1(11 — 7= (7/2));

At 1) = Ayt — 1+ (7 /2

T, T, are independent with supports { —
[-T,/2,T, /2], respectively;

® the h ;(t) are known functions with t-widths T, and
T, (T, /) <max{T\ - T,, T, — T, }.

The last assumption guaraatees that the support of the A,
will be contained in the observation interval I =
[-T7/2,T,/2] for all 7 and . The maximal ¢ -support
for A ; is identical to the general case in Theorem 3, and,
after some manipulation, the following bound on the mse

T,/2T,/2,

Authorized licensed use limited to: University of Michlgan Library, Downloaded on July 28, 2009 at 13:04 from [EEE Xplore. Restrictions apply.




858

of 4 is obtained:

mse = exp|2(A +A))In —————
e n+0,+T,

71/2
-2 ) fl do X (n)n A (1)
/2

i=1,2"-T

where ( 10 9)

T./2
Aléf_mz?\,(t) di

"
Ay® [N, (1) dr.
24 [ Na(0)

Observe that, under the above assumptions on 7, the mse
bound (109) is functionally independent of the absolute
delays of N, and N, since =, does not appear in the
bound.

Consider the special case of identical intensities and
maximal uncertainty in the relative time shift. This is
appropriate for time-of-flight PET and PPM optical com-
munications applications when the observation interval
[=T,/2,T,/2] is known to contain all of the process
energy. For this case we take in (109) A, = A, and T, +
7, /2 =T, to obtain the bound

i
mse > ——e2Mn}
27e

-exp {4A1[1n % - f_T;: jzdzl R,(4)1In X,(rl)]) (110)

where X1= A /A, is the normalized intensity. Comparison
between (110) and (98) indicates that the mse for relative
delay estimation is equal to the mse for (absolute) delay
estimation times a factor exp(—2p(A, A*)) where p is the
discrimination (94) between A and a uniform intensity A*
over [-T,/2,T, /2]. Hence for p>1 the mse bound for
relative time delay is much better than the mse bound for
single stream time delay.

VII.

We derived a general lower bound on the mse of estima-
tors of a random parameter for M-dimensional condition-
ally Poisson point processes using rate-distortion theory.
For the lower bound we assumed that the integral of the
conditional intensity function over the observation inter-
val, or “energy of the process,” is functionally independent
of the parameter of interest. To derive the bound a maxi-
mum entropy property associated with inhomogeneous

CONCLUSION
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Poisson processes was applied to upper bound the capacity
of a channel with nuisance parameter side information.
The general lower bound depends implicitly on an optimiz-
ing conditional source probability density function for
which necessary and sufficient conditions were given. Un-
der the additional assumption that the conditional entropy
of the Poisson process is independent of the parameter of
iinterest an explicit mse bound was derived. The energy
and conditional entropy invariance properties hold for the
problems of shift and relative shift parameter estimation in
the presence of nuisance parameters, The bound was eval-
uated for forms of the intensity function which are appro-
priate for time delay and relative time delay estimation in
conditionally Poisson streams. The form of the lower bound
indicated two important limiting factors of mse perfor-
mance: 1) the energy of the point process; and 2) the
information discrimination between the observed inhomo-
geneous conditionally Poisson process and an equal energy
homogeneous Poisson process over the observation time
interval.
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