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Abstract

A new lower bound on the mean-squared error of post-
detection v-ray time-of-flight estimators has been derived.
Previously, the Cramer-Rao bound has been applied, but
for nearly exponentially decaying scintillation pulses it
gives an extremely optimistic picture of the achievable per-
formance, depending critically on the dark current and
photomultiplier characteristics.

The new bound has been derived under the assumption
that excited states in the scintillator leading to the emis-
sion of scintillation photons have an exponential lifetime
density. The bound is a function of the mean state life-
time, the spectrum of energy deposited, and the energy
conversion efficiency of the scintillator, and is exact for
the observation of 2 mono-expenentially decaying photo-

electron rate at the first dynode of the PMT given the
-ray arrival time.

I. INTRODUCTION

Recent investigations have focused on improving the
timing performance of scintillation detectors with the goals
of both improving the resolution of PET time-of-flight
scanners and reducing the accidental coincidence rate in
conventional PET tomographs. Tomitani investigated
the performance of maximum-likelihood time-of-flight es-
timates, assuming that the point-process of photoelectron
arrivals at the first dynode could be directly observed [1].
More recently, Hero, et al. have expanded a model used
in optical communications, which includes PMT statistics
and have derived approximately optimal time-of-flight es-
timators [2].

A possible disadvantage of these more optimal timing
estimators is that they may greatly increase the process-
ing requirements for each scintillation while only result-
ing in marginal performance gains over present methods.
Lower bounds on the ultimate timing performance can be
useful in assessing the degree of suboptimality of present
timing techniques and in identifying regimes where a con-
siderable gain may be realized using an optimized method.
The Cramer-Rao (CR) bound has been employed to assess
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timing performance, but in situations where the scintilla-
tion pulse is rapidly varying, such as a mono-exponential
pulse, the CR bound tends to exaggerate the achievable
performance by stating that the mean-squared error must
be greater than or equal to zero.

Recognizing this deficiency of the CR bound, we derive
a lower bound on the post-detection mean-squared timing
error, assuming that the prior uncertainty in v-ray arrival
time is much greater than the post-detection uncertainty.
Since PMT statistics are difficult to meaningfully deseribe
thoeretically, the bound assumes direct observation of the
point-process of photoelectrons at the first dynode and uses
the model that the excited states in the scintillator lead-
ing to luminescence have an exponential lifetime density.
The bound is the exact mean-squared error for a mono-
exponentially decaying scintillation with no dark current.

II. SCINTILLATOR / PMT MODEL

Timing degradations in scintillation detectors arise from
many sources including (1) the time required for a +-ray
to transfer its energy to the scintillator lattice and pop-
ulate excited states, (2) the random lifetime of these ex-
cited states leading to release of scintillation photons, (3)
the optical collection statistics of scintillation photons at
the photocathode, (4) conversion of photons to photoelec-
trons, (5) transit time jitter preceding collection at the
first dynode, and (6) PMT multiplication statistics. In

- the subsequent development, we assume that the photo-

electron arrival times at the first dynode can be directly
observed and that their statistics can be represented by a
Poisson point-process model [3]. It is instructive at this
point to review the assumptions inherent in this model.
When a +v-ray crosses the fiducial or timing plane of a
scintillator, its energy is instantaneously converted into a
number of equivalent quanta which are Poisson distributed
with mean Ag(he), where hv is the energy deposiled by
the v-ray. These hypothetical quanta then travel through
a cascade of degradation processes independently and at
each stage experience the same random effects in which (1)
a quantum may be absorbed with probability (1—) or (2)
the quantum may be successfully transferred to the next
stage with probability n; after being held for a random
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time in accordance with the probability density function
(pdf) fi(tilti-1). Accounting for n stages of degradations,
the mean rate of photoelectron arrivals at the first dynode
given the v-ray arrival time 7 and deposited energy is given
by the (r — 1)-fold convolution,

As(t~7)= Mo(hv)m -+ -1 % (1)
/; fo Ja—on-1)--filoy ~7)doy - den_y,

where the overall conversion of energy to mean number
of photoelectrons is given by A = A¢(hv)ry -+ -5, and the
timing effects are described by the convolution of the pdfs,
fi(t; — tio1), which are assumed to be causal and time-
invariant. This model describes all degradation effects ex-
cept the photomultiplication statistics. Note that if this
model truly applied, the number of photoelectrons ob-
served due to a sciutillation would be a Poisson random
variable with mean A, conditioned on the deposited en-
ergy. Although there is a good deal of evidence suggesting
that this is not the case [4], the expressions developed in
Section 1V can still be applied as lower bounds.

Inspection of (1) reveals that since the timing degrada-
tion pdfs are time-invariant, we can represent the intensity
in a more convenient fashion by rearranging orders of inte-
gration and making appropriate changes in variables. The
following representation will be used in the sequel although
others are certainly possible.

As(t -r).-_/omg(a)z(t p— @)

Here the intensity A(Z — 7) is the product of A and the pdf
deseribing the lifetime of the excited states whose decay
leads to the production of scintillation photons and g(e)} is
a pdf comnbining the effects of all other degradations, Note
that (2) represents an cnergy-constrained smoothing of the
intensity A(t - 7).

In addition to the photoelectron arrivals due to a scin-
tillation, there is often a background process of photoelec-
trons arriving independently of the current scintillation.
This possibly time-varying background is added to (2} to
obtain the observed rate of photoelectron arrivals at the
first dynode,

AC(tl'r) = AS(t* T)+J‘D(t)» (3)

where Ap(?) is the mean background rate.

The conditional pdf or likelikood of observing a given
sequence of arrival times, {#;}{%, and number of photo-
electrons, Nz, on the interval [0,T] is given by

N
f({t,-]‘?_l‘_"l, Nrlr) = e~Aellin) H Ae(ti7), (4

i=1

where Ac(T, 7} is (3) integrated over the interval [0, T].
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III, MINIMUM MEAN-SQUARED ERROR
ESTIMATION

The MSE, defined as the average loss or error associated
with the estimaior # = #({t;}'%,, Nr) and the pdf defined
in (4), can be written as:

E((r—#%) = s~ L 5
((r—#?) N%NT!X 5)

T T T
j dt,.../ dtn, | (r = #)2F({t:35,, Nplr)f(r)dr,
1] 4] 0

where 7 is the true arrival time, f(7) is the prior pdf of
this arrival time and the scintillation is observed on the
interval [0, 7.

The minimum mean-squared error (MMSE) estimator
of the arrival time, r, is the conditional mean of T given
the direct observation of the point-process of photoelectron
arrivals at the first dynode

Tomse = E[Tl{ti}?:isNT] (6)
[T remAcGM [T 2o (ty, 7) f(r)dr

izl

Jo e=AetM I Ac(t, ) f(r)dr

In principle, the best-case MSE performance can be cal-
culated by evaluating (6) using the optimal estimate de-
fined by (7). Unfortunately, for all bui the simplest in-
tensity functions, this can be exceedingly difficult—even
numerically. To develop a lower bound on the MSE we
first state two rather intuitive propositions omitting proofs
which follow directly from the above definitions.

Prepostion 1:

The mean-squared error using the intensity, Ac(f,T)
defined above, is lower bounded by the minimum mean-
squared error attainable with the intensity having no dark
current, As(t — 7).

Proposition 2:

The mean-squared timing error using the energy-
constrained, smoothed intensity Ag(t—r) is lower bounded
by the minimum mean-squared error with the unsmoothed
intensity A(f — 7).

In the next section, we combine these results with the
decompostion of the intensity allowed by (2) to derive an
easy to evaluate lower bound on the mean-squared timing
error for any scintillator having excited states leading to
luminescence which have an exponential lifetime density.

1V. LOWER BOUNT} ON TIMING MSE

Single siale lifetime
A common model for the unsmoothed scintillation in-
tensity is the monoexponentially decaying pulse,

_ [ Amte =T it >y
Mp—-7)= { ) otherwise.
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where 7y is the mean state lifetime or decay constant,
Assuming that f{r), the prior pdf of the v-ray arrival

time, is uniform over an interval, [0, T}, much longer than

the mean lifetime, y, the MMSE estimator takes the form,

Tmmse — min{ie];l’i - %. (7)

or the arrival time of the first electron corrected for a bias
depending on the mean lifetime and observed number of
photoelectrons, Np. This result was fitst derived by Bar-
David [5].

The MSE performance of this estimator can be calcu-
lated using the first photoelectron arrival pdf,

fltmin|Np, 7) = I:_r_lTe-Nr(t—-f)/n‘ t>r (8)

and since the post-detection timing performance is desired,
we condition on the event that we have collected at least
one photoelectron. The resulting MSE, also_ conditioned
on the y-ray energy, hv, is

D7 > E[(r - fmmee)?| N7 > 1, h0)
= fE(Ng3 Ny 2 1, hy), (9)

where D7 represents the MSE with the actual inten-
sity, Ac{f), and the expectation on the second line is
taken over the Poisson distribution having mean, A(hv) =
Ao(ht)ny -« nn, defined in Section II. If there is a broad
spectrum of incident energies, {(9) can also be averaged over
this spectrum to obtain a lower bound on the unconditional
MSE.

It is interesting to note that for moderate mean photo-
electron numbers (A(hr)} > 120), this expression is within
1% of the approximation developed by Post and Schiff
based on the mean rate of first photoelectron arrivals [6].

— 2
D? > El(T — frmae)?[Nr > 1, hv] » I\‘(ZIT)z (10)

Extension to Multiple Lifetimes

The expression developed zbove assumes that all pho-
toelectrons reaching the first dynode are sequestered in
excited states having a single mean lifetime. Commonly,
the scintillator output is more accurately described by a
mixture of exponentially decaying pulses due to excited
states having multiple decay constants,

For a scintillator with two characteristic decay con-

stants, 7y and 72, we can write the unsmoothed intensity
as,

Lo (t—1)n | A=@) (t-rYm| >
3(5—7)={3L‘e R ] t;:

where o describes the average relative mixture of states
and 0 <1,

Solving directly for the MMSE estimator for the above
intensity is difficult. However, suppose that for each scin-
tillation, we can additionally chserve the number of states
populated having each mean lifetime. HRepresenting the
number of excited states with lifetime = by Lz and with
lifetime 72 by My, we can write the likelihood function as
the sum of (L + Myp)! terms of the form,

FLEHZMT Ly, M, Ox, 7) = (1)

ir Sl Mr 53
T;LTT{A{T He-—(ii -T)/Ty H e-—-(t,- —r)fr2 ,
i=1 i=1

where Oy represents one of the (Ly + Mg)! permutations
of the arrival times among the states and where {t7!}57,
and {tfz}f;’i are the sequences of arrival times assigned to
states with decay constants 7 and - respectively.

Substituting this new likelihcod into (7) and teking the
prior density, f(7), to be uniform as above, results in the
desired MMSE estimator,

Lr  Mr]™

T Te (12)

- . LM
Tmmase = mln{il.}"=rl+ T [

Calculating the MSE conditioned on Mt and Ly using the
the first photoelectron pdf,

f(tmin[LTy My, T) = (13)
[+ e - (55 2], e
T T2 T T2

results in the expression,

Ly Mr

E[(T = fmmae)ziLT: MTrhV] = [ - 2

-2
] . (14)
Averaging over the Poisson distributed random variables
Ly and My having means aA(hv) and {1 — o)A(hr), and
conditioning on the event that Lz + My > 1 yields the
desired lower bound. Again, for moderate values of A(hv),
the following approximation is quite reasonable

D? > B[t — fmmee)?llr + My > k]  (15)

= A Hhe e __(1_a)]'2
~ AT ){T1+ =

Cramer-Reo Lower Bound

The global Cramer-Rao (CR) bound on the MSE was
introduced by VanTrees and for the likelihood function {4)
and prior pdf of y-ray arrival time, f(r), takes the form,

~1

— T(ax(r))or)? 8n f(r)\?

where Ap is assumed to be a constant dark current [7].
We see that this bound requires that both the intensity
and prior density be differentiable. However even if these
conditions are satisfied, the bound tends to be overly op-
timistic for any intensity which changes abruptly where
A(t) + Ap is small.
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V. COMPARISONS WITH MONTE-CARLOC

We compared the bounds of Section IV with bias-
corrected “first-photoelectron” timing (FPET) resuits ob-
tained from Monte-Carlo simulations incorporating a PMT
model. We chose an unsmoothed intensity function having
two exponenetially decaying components with parameters
typical of BGO {m; = 60ns, & = 300ns, « = 0.1, [8]).
To assess the effecis of additional timing degradations and
to allow evaluation of the CR, bound, we also performed
simnulations using the above intensity smoothed with a 2ns
fwhm gaussian,

The output current of the PMT was modeled by the su-
perposition of “impulse responses” having constant shape,
p(t), but randomly scaled by the gain for each photoelec-
tron, §;. The expression relating the output current, i(t),
to the point-process of photoelectrons, {¢; }ﬁ—Tx: is

N
i) = Bip(t —t;) + w(2), (17)
i=1

where w(f) is an additive white noise term modeling the
thermal electronic noise. We assume that the random
gains f§; are independent, identically distributed (i.i.d.),
and drawn from a known pdf. This model, excluding the
white noise term, has been successfully applied to model-
ing the observed pulse-height distribution from phototubes
[91.

To wuse realistic parameters in (17), the single-
photoelectron gain distribution was measured for a
Burle/RCA 8850 PMT using the technique described in
[10] and is shown in figure 1. The impulse response shape
for this PMT was measured using full photocathode illurni-
nation with an Antel Optronics PL-670 diode laser pulser
(67ps fwhm, 670nm) and the cutput current was sampled
with a Stanford Research Systems SR255 sampler using
a 100 ps gate width. The measured impulse response is
shown in figure 2. Since full photocathode illumination
was employed we expect that this is somewhat broader
than the true time response to a single-photoelectron.

First photoelectron timing was simulated by generating
a +y-ray arrival time from the prior density, f(), and then
the point-process of photoelectron arrivals initiated by the
v-ray. Random gains were were drawn from the pdf in
figure 1 and (17) was applied to simulate the phototube
output current. The simulated current was applied to a
threshold detector and the first threshold-crossing in the
interval [0, T] was taken as the arrival time estimate. Two
photoelectron detection thresholds were used and are illus-
trated in figure 1. To create an ideal situation for FPET,
the white noise texm in (17} was set to zero and there was
no dark current.

The results for the unsmoothed intensity are presented
in figure 3 where the RMS timing error in nanoseconds
is plotted against the base 10 log of the mean number of
photons in a scintillation.. The prior density of y-ray ar-
rival time was chosen to be gaussian with a variance much
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Figure 1: Single photoelectron gain distribution for
Burle/RCA 8850 PMT. The two FPET discriminator
thresholds are also shown.

0.0 —
0.1
~
2
%
=
e 024
[}
[
-]
=
]
£ 03+
[]
o
H
o
-
< 04+
8.5 v i T T T T
10 .20 30 40 50 50

Dalay Tima {nsec})

Figure 2: Impulse response for Burle/RCA 8850 PMT
measured with full photocathode illumination.
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Figure 3: Hesults of Monte-Carlo FPET simulationa plot-
ted against lower bound for unsmoothed intensity

larger than 13 so that the MMSE estimator (12) was opti-
mal, The CR bound cannot be evaluated for this intensity
and is not shown. The new lower bound is plotted along
with the resulte of the Monte-Carle FPET simulations ua-
ing two discriminator settings for detection. Note that the
FPET performance with increasing A follows the bound
very well for the lower diseriminator setting at low photo-
electron rates. At higher rates, the broader range of pulse
heights resuiting from this threshold actually degrades per-
formance and the higher detection threshold approaches
the limiting time resolution. For the FPET method to
perform as well as this predicts requires that the additive
white noise and dark current be nearly absent.

The situation for the same intensity smoothed by a 2 ns
{whm gaussian is shown in figure 4. Here the CR bound
can be evaluated and is plotted along with the new bound
and FPET simulations with the same discriminator set~
tings as above. At low photoelectron levels the new bound
is a better performance indicator than the CR, bound, but
at higher levels the CR bound eventually dominates be-
cause its rate of improvement is only O(A/%). In this low
background noise situation, FPET still performs remark-
ably well relative to the limits.

VI. CONCLUSION

A new lower bound on the achievable mean-squared
timing error has been presented. The bound overcomes
the deficiencies of the Cramer-Rao bound for both low
photoelectron rates and exponentially decaying scintilla-
tion pulses. However, in cases where additional smooth-
ing may be present in the scintillation, the Cramer-Rao

FPET [Thresh 2)

FPET [Thresh 1]

AMS Error (nesc)

o T T r— r v
1.4 1.6 1.8 2.0 2.2 2.4 2.6
Log(Mumber of Photonsa}

Figura 4: Resulta of FPET simulationa using Intennity
smoothed by 2 ns fwhm gaussian. The CR bound is plotted
along with the new bound.

bound eventually dominates as the photoeleciron rate is
increased. This additional smoothing may arise from PMT
transit-time jitter or optical collection time dispersion in
long scintillators, However, results from simulations of
first photoelectron timing, using a PMT and scintillator
model suggest that these fundamental limits can be nearly
achieved with present timing methods at moderate mean
photoelectron rates such as those that might be observed
with BGO at 511 keV.
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