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ADBSTRACT

‘We present a method for quantifying the impact of count
correction side information on the capability of 2 SPECT
projective tomography system to perform image (emitter)
reconstruction and feature classification, The method in-
volves computing the image or feature related information
gain which results from the presence of count correction
side information at the detector. For image reconstruction
this information gain is computed using Shannon’s mutual
information (MI) as in [1}, while for feature classification
we use the cut-off rate of the SPECT information channel.
For reconstruction the gain is proportional to the informa-
tion divergence between the spatially dependent probabil-
ity of deletion of a y-ray originating at a particular emit-
ter location and the spatially independent average deletion
probability. For classification the gain is proportional to
the difference between the arithmetic mean and the geo-
metric mean of the average number of y-ray deletions for
each of the image classes. Results of analysis and numeri-
cal study are presented which indicate that the information
gain associated with using count correction data is much
more significant for reconstruction of the emitters than for
classification of the emitter density when the total detected
fluence is low.

L INTRODUCTION

In SPECT systems, the projection data is acquired by re-
stricting the y-rays of a radicactive source into certain
paths. This is accomplished by a collimation device, such
as a parallel-hole collimator or a coded aperture, to im-
prove the system resolution. However, collimation results
in the elimination of many 4-rays paths and thus negatively
affects system sensitivity. For example, for a parallel-hole
collimator the -ray detection efficiency is on the order of
10~* for a spatial resclution of lem [2]. Generally, the
lost or deleted v-rays are due to such factors as absorp-
tion into the aperture septa and non-interaction with the
detector scintillator. A natural question is: if some form
of count correction side information could be used at the
detector what performance gains are possible? In particu-
lar, since the mean number of deletions generally depends
on the particular source distribution, it is reasonable to
expect that count correction side information consisting of
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the number of deleted v-rays can improve the estimation
capabilities of the system. It is the purpose of this paper
to study the impact of this count correction side informa-
tion on the image reconstruction and feature classification
performance of SPECT.

To quantify the effect of count deletions on image re-
construction and classification, we will give expressions for
the gain in source-to-detector information transfer which
occurs as a result of incorperating count corrections at the
detector. We use information transfer as a performance
criterion since it enables us to characterize the intrinsic
task specific Information content of the projections data
without having to specify a particular decoding algorithm
to reconstruet or classify the image. Since low informa-
tion conient necessarily implies poor performance of the
decoding algorithm, the information transfer is a funda-
mental quantity determining the estimation capabilities of
the overal] system [3, 4]. For image reconstruction Shan-
non’s measure of mutual information between the emitter
locations and the detector data with and without count
corrections side information will be compared. A result
of [1] is that the impact of this side information is signif-
icant when the detected count rate is relatively low and
the probability that a y-ray is deleted, called the deletion
probability, is highly dependent on the location of the -
ray emitter. This can be 2 relevant regime for dynamic
tracer studies where image features can be assumed to be
stationary only over short time intervals. For the classifi-
cation problem, we introduce a cutoff rate approximation
to mutual information developed in [4]. For the special
case of Poisson noise limited tumeor detection we oblain
numerical results which indicate that, unlike the image re-
construction problem, the classification information gain
due to count corrections is small and is relatively insensi-
tive to the mean count rate.

II. MATHEMATICAL MODEL

There are many kinds of y-ray detector geometries and
collimation configurations, but the basic configuration is
shown in Fig. 1. It consisis of an object containing ra-
dicactive v-ray emitters, a set of detector surfaces, and
a collimation device. The y-rays which pass through the
collimation device are registered on the detector surfaces
to form projections from which an image or image feature
can be estimated.
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2D Detector (Projection)

3D Object

Figure 1: A general 3-D y-ray delecior system

Assume that the system has no scattering, no atten-
uation and the emibter distribution does not vary over
tirme. The relevant statistical quantities which character-
ize the process of acquiring detector data during a finite
interval of time [0,7] are: 1) the emitter spatial posi-
tions, Xy, ..., Xp, € &', from which gamma-rays are emitted
over [0,T}; 2) the emission times {i¥}2, of gamma-rays,
which are specified by the points of increase of the emis-
siori counting process Ny = {Nx(t) : t € [0,T]}; 3) the
positions on the detector, ¥3,...,¥:, € ¥,m < n, of inci-
dent gamma-rays which criginate at spatial positions in A’
and are transmitted through the aperture; 4) the detection
times {t¥}™, at which the incident y-rays are detected,
which are specified by the point of increase of the detec-
tion counting process Ny = {N,(t) : t € [0,77}; 6) the
failure, denoted F, of a gamma-ray generated at position
z to be detected. The sequence of detected v-ray positions
Y; and deletions F is denoted by W, Wa, ..., W, the ideal
detection process. Unlike the detection process ¥i, ..., ¥m,
the ideal detection process includes the count correction
side information related to the number of deletions.

II. INFORMATION GAINS

A. Mutual Information and Cutoff Rate

The general formula for the mutual information between
two random quantities I/ and V is:

dPyy(U,V) ] )
dPy(0)dPy(V)}"
where dPy/dp,, dPy/dp,, and dPyy /(dp. x du,)} are
marginal and joint densities relative to measures p, gy,
and iy X pty, respectively. The mutual information (1) can
also be expressed in terms of entropies:

IU;Vy=HU)-H{U/V) = H(V)- HV|U). (2)

HU;VAE [1:;
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where H(V) and H(U) are the entropies of V and U, re-
spectively, and H(V|U) and H(U|V) are conditional en-
tropies. A useful measure of the fidelity of the information
carrying channel is the channel capacity C which is the
maximum achievable rate of information transmission:

I3 .
C-l}}%’xl(U, V). {3)

For image reconstruction the mutual information satisfies
the following properties [3]: 1} it provides a lower bound
on the minimum achievable mean square error; and 2} it is
a composite measure of system resolution and sensitivity.

A quantity related to the channel capacity is the channel
cutoff rate [5]:

1y 2
A dPy(u) { dPy{v|u)\?
Ro=mpgx _lnj;dp”(u dpzy ( dit, ))
®

For many digital communications channels the cutofl rate
provides a practical limit on the information transfer
through the channel while the channel capacity is a theo-
retical limit [8]. The relation between these measures is

0<Ro<sC.

In many problems the cutoff rate is simpler to calculate
than either the mutual information or the channel capacity.

In (1) U and V could be any source and measure-
ment random variables in which we are interested. In
particular, for image reconstruction without count correc-
tions: I = (X,n) are the positions of the n emitters and
V = (Y, N,) ate the detected y-ray positions Y; and de-
tection times t{, i = 1, ..., m; while when count correction
side information is available V = (W, N.). On the other
hand, for the classification problem I/ is a random vari-
able with values in {Ay, ...,k } where ki denotes the k-th
possible image ¢lass. To evalnate (1) we need to find the
associated conditional distribution and marginal distribu-
tion dPy)y and dPy. For the system shown in Fig. 1 and
stationary Poisson counting statistics, dPy |y and dPy are
functions of the following quantities [1]: the source prob-
ability density fx(x) which is the density of emitter loca-
tions; the fluence or projection probability density fy-(v)
which is the density of vy-ray locations incident on the de-

‘tector; the conditional probability density of ¥; given X,

fr1x(y|z); the probability of deletion of a y-ray emitted
at position z, pp(x)éP(F[X.- = z}; the average proba-
bility of deletion fF = fx pr(z) fo(x)dz; the detector flu-
ence density [1 — 5p]fy(y) which integrates to the aver-
age detector fluence per emission, i.e. the detector effi-
ciency [1—pp]; the mean number A of ernissions over [0, T];
the distributions of the Poisson distributed total number
of emissions and detections: Pn_(1y(n) = A™/nle™* and
Prry(m) = ([1 = priAY™ fmle~(1=P#IA | regpectively.

B. Information Gain for Reconstruction
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By using the definition (1), the mutual information with

count corrections and without count corrections can be

obtained by setting U = (X,n),V = (W, N,) and U =
(X,n),V = (¥, N;), respectively:

dP(X, n|N; W)

LEI(X, n); (N, W) = E | S8R )

) ((-- ) ( T —)) n dP(X,n (5)

dP(X, n|N,.Y)
L2I((X,n); (N, Y)) = in—S e
@1 = B LD
where I.4 denotes mutual information between emitter and
detector data. To evaluate and compare Iy and I,g the
following relations have been derived [1]:

Io = H{n) + A(1 ~ pr)I{X:; Y3) + AD(pr(2)|lBF)  (7)

Lg < hEH(m) +A(1 - Pr)I(XY5). (8

where I{X{;¥;) is the mutual information for a single
entission-detection pair:

1065 = [ auftw) [ dafay(alyyn 22 A
9

and D(pr(z)||pr) is the information divergence between
the conditional probability of deletion pp(z) and the aver-
age probability of deletion fip:

D(pr(z)lpr) = f fx(=z) [pp(:c) In ppf(z—)] dz.  (10)
X PF
In (7) H(n) = hpoisson(A) is the entropy of the Poisson-
A number of emissions; and in {8) H{m)} = hp,isson([l —
Pr]A) is the entropy of the number of detections.
Using (7) and (8) we have a Iower bound on absolute
information gain due to the count corrections:

To=1I.a 2 Io— I = H(n) - H(m)+ AD(pr()|1pr). (11)

Define the relative gain per emission Gainé[I, — L)/A.
Then:

Gain > I—°'AF—II
> HCLI® | pipr(alipe)  (12)
=z 0

Consider the lower bound (12) on the gain. The lower
bound is composed of the sum of two terms: 1) the scaled
difference [H(n) — H{m)]/A between the entropies of the
number of emissions and number of detections; and 2) the
information divergence D{pr(z)||fr), giver in (10). While
each of these terms are non-negative, /(n) and H(m) are
at most logarithmic functions of A [1] and therefore for
large A the information divergence term dominates the
gain lower bound. The information divergence term can
be interpreted as an (asymmetric) measure of the dis-
tance between the conditional failure probability pr(z)
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and the average failure probability fr in the scnse that
{10) is zero if the two probabilities are equal while {10)
increases as [ pp{x)|pr(z) — Pr|de increases (7). Further-
more, D{pr(z)||fr) has the interpretation of information,
I(X;; ), between the failure event “F” and the emitter lo-
cation X;. Therefore, if “F” conveys no infermation about
emitter position, in the sense that D(pp(z)|ipr) = 0, the
resultant information gain bound reduces to the diflerence
[H(n) - H(m)|/A.

C. Information Gain for Classification

Let U = {h1,...,hps} denote M image classes, each hav-
ing probability Py, ..., Pss, respectively, where 3, P = 1.
The mutual information I{U, V) can be interpreted as the
information transfer from the object class in I/ to the ob-
servations in V. For a more suggestive notation we use
I to denote the random variable U € {hy,..., Ay }. Using
dPyy = dPyydPy, from (1) the mutual information is:

dPyjyr (V[h) ]
T dPop (VIR P |

For no count corrections V = (¥, N,;) and (13) is [4):

IhV)=E {m (13)

P(m =0) (14)

M
> P [P(m = 0he)In
k=1

[m (112, 7 C0)] Phyry(m) ] |
T P [TIE £ ()] x PRy (m)

where P,{‘,’:(T)(m) is the probability that the m detected
emissions come from the k-th image class by € W. An
analogous expression can be derived for the case where
count corrections are available. Note that the denominator
of (14) contains the non-commuting ¥ and [] operators
which makes the analytic computation of (14} intractable
even for the case of detection (M = 2). In the seque]
we use the cutoff rate to characterize information transfer
fromU=~htoV.

‘The cutoff rate can be approximately related to the min-
imum achievable probability of classification error through
the Fano bound [4]. Fano's lemma states that if I/ is a dis-
crete source with an alphabet of M symbols {hy, ..., hx},
then any decision rule choosing elements of I based on ob-
serving a random variable V has total probability of error
P. which satisfies:

B(P,)+ Pn(M - 1) > H(k) — I(h; V}, (15)
where B(p) is the binary entropy function:
B(p)= —plnp~ (1—p)in(1-p), pe0,1.  (16)

In (15) H(h) is the entropy of h = U. It easily seen by
evaluating the second derivative that B(p) + pln{M - 1}
is strictly concave downward over p € [0, 1], and there-
fore (15) can be turned into simultaneous upper and lower
bounds on P, [4].




Case of Detection (M = 2)

For M = 2, the function B(p) + pln(M ~ 1) = B(p) is
strictly concave and symmetric about its maximum at p =
1/2. Therefore the left hand side of {15) has an inverse
over P, € [0,1/2). Define the inverse function B~(c) of
B(p) over p£[0,1/2], 0 < ¢ < max, B(p):

B~ o)2{p e0,1/2]): B(p) = c}. a7
With this we have the lower bound:
P. > B~Y(B(P.) — I(h;V)). (18)

Now, recall from the previous section that the cutoff rate
Rp is a lower bound on the capacity ¢ of any commu-
nication channel: Ry < C. Tt has been observed [6, 5)
that for some channels Rp can be interpreted as an up-
per bound on the mutual information I(#, V) for low com-
plexity encoding of source %, that is, Ry is the maximum
mutual information which can be achieved by any practi-
cal coding of the source symbols. In the case of SPECT,
the coding of the source symbols Ay =normal scan versus
hy =abnormel scan is determined by the emitter distribu-
tions under by and £1. While it is not possible to justify
using fly in SPECT as an upper bound on I{k, V) on theo-
retical grounds, numerical studies performed in [4] indicate
that Ry Is close to an achievable upper bound on I{h; V)
in the sense that:

Pmin o B-Y(B(P) — Ro). (19)

where P™" is the, minimum probability of detection error
achieved by implementing a MAP detection algorithm.
Using methods in [4, Chapter 6] and Appendix it can
be shown that the detection cutoff rates with count loss
corrections and without count loss corrections are:

Ry = -—1n~1- (1+ —akrpahe L goahogho L pb gt )+K;) .

2
20
1 FUEILL] VAPOARL azht ( )
Y A

(21)
respectively, where:

Kz =1/(1 - pio)Ako(1 - )A‘**fdy\/;“(y)f

and A%, f,’i", and ﬁ'}." are the emitter count rate, the flu-
ence density, and the average deletion probability for image
class Ay, k = 0,1. The integral in Ky is inversely propor-
tional to the Hellinger distance and it is equal to one if and
only if the two densities fi' and f3° are identical. It fol-
lows that Ry and R, are measures of the distance between
the overall fluence densities (1 — ﬁ‘}" JAR f#", k=01 K
these two fluence densities are identical then Ro = By = 0;
the observations contain no information which would per-
mit distinguishing between object classes hp and k;. On
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Figure 2: Ring geometry and brain phanlom with tumor

the other hand, if these densities are distinct then Rp and
Ry increase to In2 as A; and Ap get large; perfect dis-
crimination becomes possible when there is In2 = 1 bit of
information available. The information gain in terms of
cutoff rate for detection js:

Gain = Rp — R1. (22)

Note from (20) and (21) that Rp and Ry differ only in
the middle term of the exponential. For Ry this term is
the arithmetic mean (AP + AP 551)/2, while for Ry this

term is the geometric mean 1/ Abo ﬁ;';-“ Abr it of the average
number of deletions for image classes kg and hy. Since the
geometric mean is always less than the arithmetic mean,
unless the average number of deletions are identical under
ko and ki, generally Gain > 0 as expected. The magni-
tude of Gain is increasing in the differcnce between the
arithmetic and geometric means. Hence informalion gain
due to count corrections depends on the degree to which
the average number of deletions differ and can therefore be
used to discriminate between hgp and hi.

IV. NUMERICAL RESULTS

We present results for the 2-D ring geometry shown in Fig 2
to illustrate the effect of count rate A on the reconstruction
and classification information gains (12) and (22).

The reconstruction gain for the 2-D ring geometry is
shown in Fig. 3. For this geometry, a 10-siit single width
aperture ring was investigated with 340mamn ring diameter,
slit width 3.4mm, and field of view 220mm in diameter.
The tumor in the brain phantom at the center of the ring
in Fig. 2 has a 2cm diameter and its intensity is twice the
level of the dark elliptical regions indicated. The average
detector efficiency for this example is 1 — pr = 1.45x 10-1
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and therefore the actual mean detected count rate is 4 or-
ders of magnitude less than the values of A indicated on
the abscissa of Fig. 3. Also shown are the two additive
components D(F)2D(5r(x)||pr) and [H(n) ~ H(m)|/A
which compose the curve for Gain. When A is small re-
construction Gain is dominated by the latter component
while when A is large Gain is dominated by the former
component. It is evident that as A increases we have a di-
minisking return on the incorporation of count corrections
in the sense that the reconstruction gain curve falls from
about 2.4% of the ideal detection mutual information Ip/A
for A = 47dB down to less than 0.1% of Iy for A = 97dB.

In Fig. 4 we consider the reconstruction and classi-
fication information quantities Iy and Ry, respectively,
for the example of Fig. 2. Recall that for reconstruc-
tion the source to be estimated is the emission process
X1,... X, while for ¢lassification the source is the image
class i. Therefore, in order to perform a meaningful com-
parison between these information quantities, what is ac-
tually plotted in Fig. 4 are the source entropy normal-
ized quantities To/[AH(X;) + H(n)] and RofH (k) which
each have the interpretation of information transfer per
bit of source entropy. Note that the source entropy in-
creases with A for the reconstruction problemn, while the
source entropy is independent of A for the classification
problem. This accounts for the monotonic decrease versus
monotonic increase of the reconstruction versus classifica-
tion information quantities. The normalized cutoff rate for
classification increases to 1 and is almost 5 orders of mag-
nitude greater than the normalized mutual information for
reconstruction. This behavior reflects the property that it
is easier to accurately detect localized features of an im-
age than it is to perform an accurate global reconstruction.
As contrasted with the relative reconstruction gain, which
can be as high as 0.5% over this region of A, for A > 80dB
the classification gain as a proportion of the ideal detec-
tion cutoff rate Ry was not observed to be greater than
0.0001%.

V. CONCLUSION

Emitter image reconstruction suffers in performance
when count rate A is small and there is much to be gained
from count corrections, For large count rate, the informa-
tion gain decreases as a proportion of the mutual informa-
tion obtainable using count corrections. For classification,
the information gain alsc decreases as the count rate in-
creases but the gain is a much lower proportion of the mu-
tual information (cutoff rate) as compared to the case of
reconstruction. This is due to the fact that there is inher-
ently higher image-class information content in the projec-
tions than there is emitter-locations information content.
It is concluded that for sufficiently high count rates, count
corrections have less potential for improving classification
performance as compared to reconstruction performance.
Future work will include extending these results to clas-
sification problems more general than binary detection;
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joint classification/reconstruction; and reconstruction of
the fixed (static) mean emitter distribution.

APPENDIX

The following is the derivation of cutoff rate for classifi-
cation with count correction. From [4, Eqn. 6.54], we have
the simplified general cutoff rate expression:

apP1yy <Ph0 ()
dpy dyy

Rp - ._.]n.;. (1 +8-A :A'n"l'\/a‘hi\o fv dpy,

23
where dP{}" Jdu, is a density with respect to measure(u,,),
and A; is the detected photon rate, i = (), 1. Now, for the
cutoff rate with count correction, ¥ becomes W and Ay
becomes A%, A; becomes A*'. Since dBy (w) consists of
continuous part dPy (y) and discrete part dPr(f), (23) can
be written as:

hypah 4Pl uy amh0u)
PR (1 PR e e
(24)

and
dP} (w) dPhs (w)
dptut [ 48w (w) a5 (w)
fw # due  dpy
[ /R wRew+ Vo

jy di/(L— B) 5 ()1~ ) Flo () + \fole e
(25)

n

where f{'r' () is a non-normalized fluence distribution, i =
0,1 [4]. Substitute (24) and (25) into (23) to obtain (21).
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