1026

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 40, NO. 4, AUGUST 1993

Least Squares Arrival Time Estimators for Single and Piled
Up Scintillation Pulses

Nicholas Petrick] Alfred 0. Hero III, Neal H. Clinthorne, W. Leslic Rogers and Jeffrey M. Slosar
The University of Michigan, Department of Electrical Engineering

and Computer Science and Division of Nuclear Medicine.
Ann Arbor, MI 48109-0552

ABSTRACT

‘The ability to accurately determine the detection time
of gamma rays has impottant applications in nuclear sei-
ence, For gamma ray imaging systems, improvements in
detector timing resolution can substantially reduce the sig-
nal to noise ratio of the images. This paper will develop a
new arrival time estimator for the detection of gamma rays
using scintillation detectors. The estimator structure re-
duces to a weighted least squares (WLS) estimate of the ar-
rival time and has been found to be the optimal estimator
for scintillation pulses. This WLS estimator was applied
to scintillation type pulses with fast rise times and expo-
nential decays. The timing resclution was calculated and
compared to the resolution of leading edge and constant
fraction triggers for a Burle 8850 photomultiplier tube, and
to the Cramér-Rao lower bound on estimator performance.
The WLS estimator has out performed these conventional
arrival time estimators and has the added ability of simul-
taneously estimating the arrival times of multiple overlap-
ping pulses. This allows for piled up pulses to be effectively
separated permitting their individual energies to be estim-
ated.

1. INTRCDUCTION

Typical arrival time estimators employed with scintilla-
tion detectors, such as leading edge [1] and constant frac-
tion [2] timers do not take into account any of the statist-
ical correlation, covariance and higher order moments, of
the scintillation counter’s output waveform. The approach
taken in this work is to improve timing estimation by in-
corporating both first and second order statistics into an
arrival time estimator structure. This is accomplished by
applying a WLS technique. Petrick ef ol [3] developed
a general WLS estimator that was applied to the output
signal of a Burle 8850 photomultiplier (PM) tube stimu-
lated by either a single photon or a pair of photons. The
approach taken in this work directly applies the general
WLS estimators developed in [3] to scintillator type optical
pulses having a fast rise and a longer exponential decay.
Each stimulating pulse produces between 100 and 1500
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photo-electrons in the PM tube’s photocathode which is a
range congistent with the optical signals produced by com-
men scintillation crystals such as BGO and Nal(Tl) when
stimulated by 511 KeV gammarays. As the photo-electron
intensity increases, the output can be approximated by a
Glaussian random process and the WLS estimator becomes
identical to the maximum likelihood arrival time estimator
developed by Tomitani [4] and Hero et al. [5).

II. SINGLE PULSE WEIGHTED LEAST
SQUARES TIMING ESTIMATOR

A. Estimator Structure

The general form for the single pulse WLS timing estim-
ator is derived in [3] and takes on the form:

Tan = srgmin(X — D)) KX - fr)), (1)
where:

fry = E{X(m)} (2)

K(r) = E{(X(r)-B)(X()— )T}, (3)

denote the estimated mean and covariance functions, re-
spectively, of the vector X of digitized time samples for a
particular gamma ray photon arrival time, r.

B. Digitization of the PM Tubes Response

The single pulse WLS estimator was applied to the di-
gitized output signals produced by a Burle 8850 PM tube
in response to a single optical pulse, The experimental ap-
paratus for digitizing the Burle 8850 PM tube's response
to single optical pulses is depicted in Figure 1. The op-
tical pulses were exponentially shaped having a 20 nsec
rise time and a 50 nsec decay time. The rise and fall times
are measured as the time between 10% and 90% of the
mean signal peak. The optical intensity along with a typ-
ical photo-electron distribution is shown in Figure 2 for an
optical pulse impinging on the PM tube at time 7.

Four different sets of complete Burle 8850 PM tube de-
tector responses were digitized and stored with a Tektronix
RTD720 real time digitizer using a 0.5 nsec sampling inter-
val. The different sets correspond to different magnitudes
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Figure 1: The experimental apparatus used to digitize the
Buile 8850 PM tube’s response to single optical pulse stim-
ulation.
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Figure 2: The exponentially shaped optical intensity and
photo-electron distribution used to stimulate the Burle
8850 PM tube. The intensity has 20 nsec rise and 50 nsec
decay components.

of the optical intensity shown in Figure 2. Mean mag-
nitudes of 100, 500, 1000 and 1500 photo-electron per op-
fical pulses were used in this experiment. Note that the
exponential shape (i.e. the rise and fall times) of the stim-
vlating pulses shown in Figure 2 changes only slightly as
the magnitude increases.

C. Cramér-Rao Lower Bound on Timing Error

In order to compare the WLS estimator’s timing per-
formance with an optimal minimum mean squared error
estimator, the Cramér-Rao (CR) lower bound over a range
of large photo-electron intensities is formulated. The gen-
eral form of the unbiased CR lower bound has been derived
in many texts [6],[7] and states if # = #{X) is any unbiased
estimator of v (i.e. E(F) = 7) then:

E{(r - #X)?} > I @
where J~* is the Fisher information associated with the
p.df. p(X]r) given by either of the following equivalent

definitions:
d 2
J = E{[E;lnp(XIT)] }

{ : 2 lnp(Xl‘r)}

(5}

(6)
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Using the assumption that the detector response becomes
Gaussian as the number of photo-electrons increases, it
ie possible to to develop an expression for the CR. lower
bound based solely on the mean and covariance of the de-
tector response. This CR lower bound for single pulses is
given as:

CR Bound = [%{ K-1{(7) df‘i!(:)}

-1
2K
Iy T ] .o
i=1j=1

where fi(r) and K(r) correspond to the mean and covari-
ance of the detector response.

D. Comparison of Timing Estimators

Using the sets of digital PM tube responses, the mean
and covariance for the different magnitude optical in-
tensities were estimated based on 2092 respomses. Fig-
ures 3 and 4 depict the mean response and covariance of
the Burle 8850 PM tube when stimulated by exponential
pulses containing an average of 500 photo-electrons. Once
the means and covariances were found, the single pulse
WLS estimator of Equation (1) was applied to four sets
of 523 PM tube responses. The standard deviation (SD),
V E{{F = p(¥))?}, of the WLS estimates was then calcu-
lated and compared to the SD of both leading edge and
true constant fraction timing, Unlike the WLS arrival time
estimator with a bias of less than 0.5 nsecs, both the lead-
ing edge and constant fraction timers are severely biased
necessitating the use of the standard deviations for com-
parison. The resulting timing resolutions for single optical
pulse detection obtained using the WLS, leading edge and
constant fraction estimators are summarized in Table 1
along with the single pulse CR lower bound on timing er-
ror.

HI.WEIGHTED LEAST SQUARES TIMING
ESTIMATOR FOR PILED UP PULSES

A. Estimator Structure

A WLS estimator for the detection of a pair of optical
pulses which have piled up detector responses was also in-
vestigated. This situation corresponds to a pair of gamma
rays being detected at nearly the same time and their ar-
rival times, 7, and 72, must be estimated. The double pulse

WLS estimator was also derived in {3] and is approximated
by:

o = argmin{(X — fi(n) - fi(m2))" -
(K(n)+ K (m))"* -

(X = fi(m) — fil(m2)), ®
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Figure 3: The estimated mean responge of the Buzle 8850
PM tube to an exponential optical intensity with a mag-
nitude of 500 photo-electrons,
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Figure 4: The estimated covariance of the Burle 8850 PM
tube output in response to an exponential optical intensity
with & magnitude of 500 photo-electrons.

LE CF WLS | CR Lower
Photons | Error | Error | Error Bound
per Pulse | (psec) | (nsec) | (nsec) (nsec)
100 3.03 2.96 1.99 0.117
500 1.98 1.92 1.40 0.109
1000 1.67 1.68 0.36 0.089
1500 1.53 1.51 0.19 0.083

Table 1: The performance of the ieading edge, constant
fraction and WLS arrival time estimators in the detection
of single optical pulses having 20 nsec rises and 50 nsec
decays along with the Cramér-Rao lower bound.

where fi(7;) and K(7;) correspond to the estimated single
pulse mean and covariance described in Section II shifted
by 7;. Note, Equation (4) is valid when:

1
=] >> —, (9)
fser
where fsrpg is the bandwidth of the Burle 8850 PM tube’s
single electron response.
B. Cramér-Rao Lower Bound on Timing Error

For double pulses, there are two unknown primary
photon arrival times, 73 and r;. The Cramér-Rao lower
bound on the 2 x 2 covariance matrix of unbiased estim-
ator errors £ — 7 1= [7(X) — 1, 2(X) — =7 is given by:

(o)

where J is the 2 x 2 Fisher information matrix [6). The
elements of J can be written as:

2 T:
—

E{g-nE-nT}=237,

(11)

and the CR bound on the variance of unbiased estimators
for one of the arrival times, 7; say, is
E{(n—#(X)'} 25 (12)
where [T1]; ; is the 7, i** element of the Fisher information
matrix J [6].
Again using the assumption that the detector response
becomes Gaussian as the number of photo-electrons in-
creases, it is possible to to develop an expression for the
high intensity CR lower bound based solely on the mean
and covariance of the detector response. This dounble pulse
CR bound reduces to the form:

CR, Bound = /[T~ + [T-1)z2,

(13)

where:

opT

- a,u 1au”
1
K a * 395

FKim
222 61',61-' (Kim -

I=1 m=

K- Qﬁ

1
[J]*IJ - § an

(14)

The parameters {4 and K in Equation (14) corresponds to
the double pulse mean and covariance function, and were
approximated using:

(15)
(16)

A(m) + fn)
K(n) + K(r2).

H(r, ) =
K(Tl ) 72)

B. Timing Error for the Piled Up Responses

The piled up Burle 8850 PM tube responses were con-
structed by adding pairs of shifted single pulse responses of
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Figure 5: The exponentially shaped optical intensity and
photo-electron distribution for a pair of overlapping optical
pulses. Each of the single pulse intensities has a 20 nsec
rise and a 50 nsec decay component.
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Figure 6: The estimated mean response of the Burle §850
PM tube to a pair of exponential optical pulses with a
magnitude of 500 photo-electtons and overlap of 29.7%.

Photons per | Overlap WLS CR Lower
Pulge SD Error Bound

100 48.9% | 5.71 nsec | 0.297 nsec

500 50.9% | 3.61 nsec | 0.269 msec

1000 50,7% | 1.44 nsec | 0.228 nsec

1500 50.4% | 2.47 nsec | 0.209 nsec

Table 2: The performance of the WLS arrival time estim-
ator and the Cramér-Rao lower bound for the detection of
50% piled up optical pulse having 20 nsec rises and 50 nsec
decays.
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Figure T: The estimated covariance of the Burle 8850 PM
tube output in response to a pair of exponential optical
pulses with a magnitude of 500 photo-electrons and overlap
of 29.7%.

the same intensity magnitude together. The offset between
the two pulses was selected so that the overlapping area
would be approximately 50%. Using this technique, four
complete sets of piled up pulses having optical intensity
magnitudes of 100, 500, 1000 and 1500 photo-electrons per
optical pulse were constructed. Figure 5 depicts the optical
intensity for two piled up optical pulses. Note that the op-
tical intensity of each incident pulse is still exponentially
shaped with 20 nsec rise and 50 nsec decay components.
Figures 6 and 7 contain the estimated mean and covariance
of the PM tube’s response to a pair of exponential optical
pulses with a mean magnitude of 500 photo-electrons and
26.7% pulse overlap. An overlap of 29.7% was depicted
because the 50% overlap case forms only a single peak.

Using the single pulse mean and covariance function of
Equations (2) and (3), the double pulse WLS arrival time
estimator of Equation (4) was applied to the piled up de-
tector responses. The standard deviations were again cal-
culated for each of the four intensity magnitudes and are
given in Table 2 along with the pulse overlap and double
pulse CR lower bound on the timiag error.

IV.DISCUSSION

The single pulse arrival time estimator results of Table 1
indicate that WLS arrival time estimation has improved
timing performance over leading edge and constant frac-
tion tirning. The WLS estimator obtains a 30% improve-
ment in timing resolution for 100 photo-electron pulses and
much larger improvements for the 500 and 1500 photo-
electron optical pulses. As one would expect, all of the
estimators perform better as the photo-electron intensity
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increases. However, the WLS estimator’s performance im-
proves more rapidly than the leading edge or constant frac-
tion timers. As the photo-electron intemsity continues to
increase, we would expect the relative improvement associ-
ated with the WLS estimator to again start to decline. The
performance improvement is a consequence of the fact that
the WL5 estimator incorporates the statistical properties
of the detector response into the estimator structure. This
increases the complexity of the estimator but also improves
the overall timing resolution,

The timing errors summarized in Table 2 show that the
WLS estimator has the added advantage of being able
to simultaneously estimate the arrival times of multiple
pulses when the number of incident pulses is known. If
the number of incident pulses is unknown, then they must
be estimated prior to applying the WLS estimator. Good
timing resolution was obtained using the WLS estimator
even when significant pile up (i.e. 50% pulse overlap) was
present and both leading edge and constant fraction timing
proved ineffective. This ability to simultaneously estimate
the arrival times of multiple pulses is the main advantage
of the WLS implementation. ’

However, the WLS does have some limitations. The
main problem being that it is computationally complex,
If the mumber of piled up pulses increases by one, the
computational complexity increase by an order of mag-
nitude. Therefore, the WLS implementation is imprac-
tical for more than a few overlapping pulses. A second
drawback with the WLS implementation is its strong de-
pendence on the covariance estimate. Slight mismatches in
the covariance were found to severely degrade the timing
resolution of the estimator. This indicates that an altern-
ative method for estimating the covariance may be useful.
A possible method may be to derive the general form of
the covariance from the shot noise model for the output
signal of a PM tube developed by Wright [8] and Hero et
al. [5].

The CR lower bounds on the single and double pulse
timing resolution are also summarized in ‘Tables 1 and 2.
The WLS results only start to approach the lower bound
calculations in the single pulse case as the photo-electrons
intensity increases to 1500 per pulse, and is not close at all
for the double pulses. The discrepancy may be due to two
factors. First, the detector response may not be modeled
well by a Gaussian distribution when the photo-electron
intensity is low. In the single pulse case, the timing res-
olution of the WLS estimator approaches the CR bound
as the photo-electron intensity increases. This indicates
that the Gaussian assumption is only valid in the high in-
tensity regime. A second possibility may again be due to
mismatches in the covariance estimate reducing the achiev-
able WLS timing resolution. When the true covariance for
the data was used in the WLS implementation, the results
did approach the CR bound values for all of the photo-
electron intensities with the best results seen at the higher
intensities.

V.CONCLUSION

While the WLS estimator is computationally complex,
it has been shown to out perform the leading edge and
constant fraction timets for detecting single and piled up
optical pulses. This indicates that the WLS estimator can
be used for detecting the arrival times of individual gamma
rays using scintillation type detectors. Further research for
improving implementation speed of the WLS algorithm is
currently under way along with continued investigation of
Jower bounds on arrival time estimator performance.
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