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Lower Bounds For Parametric Estimation
with Constraints

JOHN D. GORMAN, STUDENT MEMBER, 1EEE, AND ALFRED O. HERO, MEMBER 1EEE

Abstract —A Chapman~Robbins form of the Barankin bound is used
to derive a multiparameter Cramér-Rao (CR) type lower bound on
estimator errer covariance when the parameter 8 =R° is constrained to
lie in a subset of the parameter space. A simple form for the constrained
CR bound is obtained when the constraint set ®, can be expressed as a
smooth functional inequality constraint, - ={8: &, < (). We show that
the constrained CR bound is identical to the uncenstrained CR bound at
the regular points of G, i.e. where no equality constraints are active,
On the other hand, al those points 8 €@, where pure equality con-
straints are active the full-rank Fisher information matrix in the uncon-
strained CR bound must be replaced by a rank-reduced Fisher informa-
tion matrix obtained as a projection of the full-rank Fisher matrix anto
the tangent hyperplane of the consiraint set at 9. A necessary and
sufficient condition involving the forms of the constraint and the likeli-
hood function is given for the bound to be achievable, and examples for
which the bound is achieved are presenied. In addition to providing a
usecful generalization of the CR bound, our results permit analysis of the
gain in achievable mse performance due to the imposition of particular
consiraints on the parameler space without the need for a global
reparanmteterization. For the purpose of illustration, we apply the con-
strained bound to problems invelving linear consiraints and quadratic
constraints. Specific examples considered include: linear constraints for
Gaussian lincar models, ohject support constraints in image reconstruc-
tion, signal subspace constraints in sensor array processing, and aver-
age puwer constraints in spectral estimation and signal extraction.

Index Terms —Constrained cslimation, Cramér—Rao bounds, multiple
parameter estimation, spectrum estimation.

I. InTRODUCTION

HE MULTIPLE PARAMETER Cramér-Rao (CR}

lower bound is widely used to investigate the funda-
mental limits on estimator performance in multidimen-
sional parameter estimation problems, and in single pa-
rameter estimation problems involving unknown nuisance
parameters. The CR bound on estimator error covariance
is computed as the inverse of the Fisher information
matrix premultiplied and postmultiplied by the gradient
of the mean vector of the estimator. Although elementary
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derivations, for instance [27, Section 2.4], may not explic-
itly make the assumption, the CR bound is typically
derived under the assumption that the parameter space is
an open subset of R™ [13, Section 1.7]. Frequently, how-
ever, the parameter is constrained to lie in a proper
non-open subset of the original parameter space. Some
examples are: bandwidth, support, and positivity con-
straints in phase retrieval [5], (9] and tomographic recon-
struction [24], [29]; kernel-sieve constraints in probability-
density estimation [25]; array geometry constraints in
estimation of coupled times-of-arrival across multiple-
sensor arrays [28); and auto-correlation lag constraints in
maximum-entropy spectral analysis and image reconstruc-
tion [23]. Constraints restrict the allowable parameter
variations and hence the local structure of the log-likeli-
hood function over the constrained parameter space may
be changed. Specifically, the average curvature of the
log-likelihood function, and in particular the Fisher infor-
mation matrix, may be affected, thereby invalidating the
unconstrained CR bound.

We present a multiparameter CR type bound for para-
metric estimators when the vector parameter 9 is con-
strained to lie in a subset @ of R". We refer to this
bound as a constrained CR bound. The constrained CR
bound is derived directly from a version of the Barankin
bound: the multiple parameter Chapman—Raobbins bound.
The tightest such Barankin bound is nonincreasing as O,
decreases. Thus, in general, a bound reduction occurs as a
result of incorporating constraints. When @ is a noniso-
lated point in a locally convex region of @, and the
log-likelihood function is smooth, the constrained CR
bound depends on ©. only through the linear span of a
set of basis vectors for the region. When the constraints
on the parameter take the form of smooth functional
inequality constraints <, <0 more explicit resulis are
obtained. Specificaily, let the inequality constraint be
decomposced into a finite vector of equality constraints
G, =10 and a finite vector of pure inequality constraints
H, <0 (defined in Section 1I-C). Then the constrained
CR bound is obtained by implementing the classical un-
constrained CR bound with a different “constrained”
Fisher matrix. The structure of the constrained Fisher
matrix depends on whether or not 8 is a regular point of
®,., where a regular point is a point where no equality
constraints are active. As examples, points on the interior
and points on the boundary of open regions in @, are
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regular points. It is shown that if @ is a regular point then
the constrained Fisher matrix is identical to the uncon-
strained Fisher matrix for that point. Conversely, if 0 is
not a regular point, the constrained Fisher matrix is the
product of the unconstrained Fisher matrix and a 9-de-
pendent, . rank-deficient, idempotent matrix whose
columns span a hyperplane that is tangent to the con-
straint set at 9.

The constrained CR bound presented here has the
following attributes.

* For range constraints, orthant constraints, positivity
constraints, and any other constraint sets ©, with no
isolated boundaries, the constrained CR bound is
identical to the unconstrained CR bound restricted to
.. Hence the incorporation of these types of con-
straints provides no CR bound reduction.

* For constraints which restrict  to a lower-dimen-
sional manifold of parameter space, e.g., through
active equality constraints of the form G,=90, the
unconstrained CR bound is invalid and a reduced-
rank Fisher matrix must be used.

* While an equivalent lower-dimensional uncon-
strained parameter estimation problem can some-
times be specified via a reparameterization of param-
eter space, such a global reparameterization is not
necessary for the computation of the constrained CR
bound. Rather, the constrained CR bound only de-
pends on the local properties of the constraint set
through its tangent hyperplanes. Since the tangent
hyperplanes can typically be computed much more
easily than can a global reparameterization of param-
eter space, the amount of bound reduction due to
particular constraints is more ecasily analyzed.

* Conditions under which the constrained CR bound is
achieved are similar to those required for achieve-
ment of the unconstrained CR bound. Examples are
provided for which the constrained CR bound is
achievable.

The following geometrical interpretation is helpful in
interpreting the effect of constraints on the CR bound.
The Fisher information matrix J, being the expected
value of the Hessian matrix of the (n-dimensional) log-
likelihood surface at 8, can be related to the average
curvature of the log-likelihood surface at 6 along » differ-
ent directions in R". Thus the unconstrained CR bound is
a function of the variation of the likelihood surface over
an n-dimensional neighborhood of 8. When the parame-
ter constraint G, =0, » €R”, is introduced, local parame-
ter variations will generally be restricted to lie in a lower
dimensional neighborhood. This neighborhood is con-
tained in the linear vector space which is tangent to the
constraint set {u: G,=0} at the point u=60. As the
parameter varies over the lower-dimensional neighbor-
hood, only certain “constrained” trajectories are tra-
versed on the likelihood surface. Thus the average curva-
ture of the surface appears different for the constrained

parameter, as compared to the unconstrained parameter
for which all local trajectories are allowed. This results in
a change in the associated Fisher information matrix and
a different CR bound. This constrained CR bound de-
pends on the constraint set only through its tangent space
at the point 6.

It is interesting to note that tangent space approxima-
tions to subsets of parameter space arise in general
asymptotic statistical theory [15], (19] and specific applica-
tions have appeared in the statistical literature. For exam-
ple tangent spaces arise in: the study [7] of the asymptotic
distribution of the likelihood ratio for testing composite
hypotheses involving smooth boundaries; the study [18] of
the asymptotic distribution of a specific estimator arising
in a composite detection problem with inequality con-
straints on the unknown parameter; the study [4] of
asympiotic efficiency of estimators in partially parametric
models; the study [1] of the asymptotic distribution of
maximum likelihood estimators subject to equality con-
straints. While the study of finite sample CR bounds and
the study of asymptotic properties of estimators have
points in common, it is important to distinguish between
the results of this paper and the aforementioned refer-
ences. First, our result is a general finite sample CR lower
bound on estimator covariance for fully parametric mod-
els. Second, the bound is of 2 simple and explicit form
which is useful for studying the impact of particular
parameter constraints on estimation error covariance.
Third, while the CR bound holds for any estimator whose
mean is smooth, the CR bound is not applicable to cases
where the estimator has a nondifferentiable mean, such
as the estimator considered in [18]. Furthermore, since
the bound is a finite sample bound on covariance, meth-
ods of large sample theory are not needed for our deriva-
tion permitting a more elementary, and therefore more
accessible, presentation.

To illustrate the utility of the constrained CR bound,
we investigate the effect of constraints on the achievable
estimator error for several representative probiems in
signal processing. First we consider the problem of esti-
mation of parameters subject to linear constraints in the
general linear Gaussian model. For this problem the
tangent hyperplanes of the constraint set are functionally
indepcndent of the parameter 8, and hence the con-
strained CR lower bound can be achieved by projecting
the unconstrained minimum variance unbiased (MVU)}
estimator onto the tangent hyperplane. The amount of
bound reduction depends or the rank of the projection of
the covariance matrix of the unconstrained MVU onto
the linear constraint subspace.

Second, we consider the problem of image reconstruc-
tion subject to support constraints on the imape. The
constrained CR bound is equal to the pseudo-inverse of a
constrained Fisher matrix, obtained by zeroing out the
rows and columns of the uncenstrained. Fisher informa-
tion matrix which are associated with estimator errors
outside of the region of support. It is significant that this
is not generally the same as zeroing out rows and columns
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of the unconstrained CR bound, unless the image pixels
are statistically independent. This establishes that, if an
efficient estimator of the unconstrained image exists, ze-
roing the unconstrained efficient estimator outside of the
support région does not, in general, provide an efficient
constrained estimator.

Third, power spectral density (PSD) estimation subject
to average power constraints over disjoint frequency in-
tervals, called frequency bands, is considered. For the
case where the unconstrained Fisher information matrix
is diagonal, corresponding to large observation time, il is
shown that the constrained Fisher matrix is block diago-
nal, This means that average power constraints effectively
couple the PSD estimation errors over a particular fre-
quency band, but do not couple errors across different
frequency bands. Within a particular frequency band
where average power consiraints are active, our results
indicate that bound reduction is greatest over frequency
bands where there are highly resolved spectral peaks,
while there is virtually no reducticn over bands where the
true spectrum is smooth. This suggests that average power
constraints make peaks easier to estimate but have little
impact on the estimation of the rest of the spectrum.

Fourth, the estimation of the eigenvalues of a struc-
tured covariance matrix subject to signal subspace con-
straints is considered. We put this problem in the context
of estimating the eigenvalues and eigenvectors of the
array covariance matrix when it is known a priori that p
of the eigenvalues, the “signal dependent eigenvalues,”
are larger than the remaining eigenvalues, the “noise
cigenvalues,” and that these latter eigenvalues are identi-
cal. When the unconstrained Fisher matrix is block diago-
nal, the constrained CR bound can be achieved by averag-
ing the noise cigenvalues of an efficient unconstrained
estimator, if one exists,

Finally, we consider the problem of estimation of a
deterministic time varying signal, and its Fourier trans-
form, subject to average power constraints applied to its
spectrum {squared Fourier magnitudes). Unlike the PSD
estirnation problem previously mentioned, here the con-
straints on the parameters (the signal) are nonlinear.
Nonetheless, it is shown that if the unconstrained Fisher
information is an identity matrix, e.g., corresponding to
observation of the signal in additive-white-Gaussian noise,
the structure of the constrained Fisher matrix is identical
to the structure found in the PSD estimation problem,
with the signal spectrum taking the place of the PSD.

An outline of the paper is as follows. Section Il is
divided into several subsections. In Section II-A a
Barankin lower bound on the estimator covariance is
given for general constrained parameters. In Section II-B
the constrained CR bound is derived from this Barankin
bound for locally convex regions of the constrained pa-
tameter space ©.. In Section 1I-C the constrained CR
bound of Section I1-B is extended to the case of smooth
nonlinear functional inequality constraints. In Section I1I,
examples of the implementation of the constrained CR
bound are presented.

II. Lower Bounps oN THE ErRROR COVARIANCE

Throughout the paper the notation 6 and [8,];..,.., , will
denote a column vector, [8,,* -+, 6,1, of unknown param-
eters contained in the unconstrained parameter space
© =R". For a particular value of the vector B we specify a
probability distribution P, governing the observations X,
taking values x in a sample space (2. The collection of
probability spaces & ={(Q, 5, Pyllycq defines a 0-
indexed set of possible models for X, and is called a
statistical experiment over O, If it is known that 6 is
restricted to a subset of @, cailed the constrained param-
cter space @, the relevant statistical experiment becomes
the reduced set of models &~ ={(2, %, Pe)}aE(-},-- In this
context, the constrained parameter estimation problem
can be stated as follows: given a staltistical experiment &%,
a random variable X {s observed which has distribution
Py; the objective is to specify an estimator § =8(X)e @
ford tfhc parameter vector 8. Define the vecior mean
g = E{8} of 8, where £, denotes expectation with re-
spect to the distribution Py. The objective of this paper is
to investigate the impact of parameter constraints on
bounds for the minimum estimation error, where error is
measured by the covariance matrix

def

2y = Ea{(é_ma)(ﬁ_ma)T}- (1)

We say that a matrix B is a lower bound on a matrix A4 if
A= B in the sense that A — B is nonnegative definite.

A. A Muliple Parameter Barankin Bound

We first present a Chapman-Robbins version of the
multiple parameter Barankin lower bound on the covari-
ance matrix Z, for the case where 8 € @. Unlike the CR
bound, the Barankin bound requires no regularity condi-
tions on the distribution P,. To achieve a unified treat-
ment of the cases of continuous and discrete random
variables X, we let P, have a density function fy= fo(x)
with respect to some reference measure p: Fo(A)=
Jufodu, where Py(A) is the probability that X € A,
Ae %, For a continuous sample space {2 the previous
integral can be interpreted as the standard (Lebesgue)
integral over A, while for discrete {2, p is the counting
measure and the integral can be interpreted as a sum over
elements x € A.

For arbitrary vectors w,,--,v, €R" and scalars
A, -, A, €R, define the scalar and vector finite differ-
ences, §;f, and 8,m,, of the density function and of the
mean vector for 8, respectively, which are produced by a
change in the underlying parameter from the point 6 to
the point 8 + A

deffe d;v, _fe
8ifo= ":"—A'"""— (2)
5.m del Mgsa,0, — Mo

ity T A (3)

i

These finite differences are the variations in f, and m,
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along the directions of the vectors w,,-,v,; a set of
vectors which are henceforth referred to as direction
vectors. Define the row vector of k finite differences,

def
‘ 8.f0=[81fnv'”:8kfl3]! (4)
and the 2 X &k matrix of finite differences
def
Sy = [8,mg, * .8, 11,). (5)

With these definitions we have the following multiple
parameter Chapman-Robbins version of the Barankin
bound [6], [17] when 8 is constrained to lic in the set O

Proposition 1: Let the k +1 vectors 0,0+ App,,- -+, 0+
Ayv, be arbitrary points contained in the constrained
parameter set @, CR". Then for any estimator 6 having
mean my, the estimator error covariance matrix X, satis-
fies the matrix inequality

342 B, (6)

+
5fo ]T[ﬁf.} T
Efl—=1 111 [8m]", (D
°[ follhe ’
and the plus sign denotes pseudo-inverse. Equality holds

in (6) if and only if there cxists a nonrandom 7 X & matrix
T such that the estimator 9 satisfies

T
b—mg= r[%’] (w.p.1).

In Proposition 1, the pseudo-inverse of a mairix A4 is
defined as the unique matrix A* that satisfies the
Moore—Penrose conditions [2, Ch. 3], [21, Section 1.b3]:

1) AA* and A7 A are symmetric,
2) AA*A= A,
3) AYAA* = A+, (9)

The conditions 1)-3) are a statement of the fact that
AA™* and A*A are projection operators onto the range of
A and A, respectively. Pseudo-inverses always exist, are
continuous under certain conditions [26], and if A is
invertible A= A"".

Before proving Proposition 1, we make the following
observations. Since only a pseudo-inverse is required for
the bound B, of Proposition 1, the covariance matrix,
EJ8f, /foF1f, / f,), of the finite difference vector- does
not have to be invertible. This general form is necessary
for the present application since parameter constraints
can reduce the rank of the covariance matrix. In view of
the definition (4) of the finite difference vector §f, the
bound (6) is a measure of the variation of the probability
density f, relative to the set of “test” points @+
Ay, 0+ Ay, which are arbitrarily specified in the
constrained parameter space ©.. On the other hand,
since O, € ©, it is obvious that

where

B, =[3m,]

(8)

max B, = max B,
) [

where each maximization is performed over the set of
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admissible test points in the parameter space. Hence
constraining the parameter space can only reduce the
{greatest) lower bound of the form (6). Thus it is clear
that some bound reduction can occur due to incorpora-
tion of parameter constraints. Due to the difficulty in
finding the best test vectors for (6), however, the amount
of bound reduction is difficult to quantify in general. In
the next section we will derive a constrained CR bound as
a limiting form of the bound (6) for which the impact of
constraints will be much easier to evaluate,

The proof of Proposition 1 depends on the following
generalized version of the Cauchy—Schwarz inequality.

Lemma I Let U R" and V €R* be random column
vectors. Then

EUU"} 2 EUPTY[E(w¥T)] " EvuTy, (10)

where the plus sign denotes pseudo-inverse. Moreover,
equality holds if and ooly if there is an # X k nonrandom
matrix I" such that I =TV w.p.1.

Note that if the & X k matrix E{F¥ 7} is nonsingular,
the matrix inequality (10) is the standard Cauchy-Schwarz
inequality for random vectors.

Proof of Lemma I: Define the R"™* vector Z=
[UTVT]". Then E{ZZT}> 0 implies the matrix inequality

vyt wvT
EG{ZZT}=E,,{[VUT WT]};O.

Let D be the n X (n + k) partitioned matrix
D=1~ Efur [ EfvrTy] "],

where [ is the n X » identity. Since EJ{ZZT} is symmetric
and nonnegative-definite, it has a nonnegative square
root: EJ{ZZT}= EVZZT)E!/42Z7). Thus, DE{ZZ"}
DT=[DEZZ"DEY*ZZT}]" >0, and use of prop-
erty 3) of (9) results in
EfUUT} = EUVT) [ EvTY] " EfvUT) 2 0,

This equation can be reexpressed as Eg{(U—-TFXV -
TV)7} = 0, where TS EJUV T E{/¥ T}]*. Equality holds
if and only if the eigenvalues, A;, of the matrix Ef{(U -
TVYU—TV)T} are zero. Furthermore, the nonnegative
definiteness of this matrix implies that A;= -+ =4, =0
if and only if 0=3A,=tlE{U—-TVXV-TV) )=
Ef(U—TV)(U-TV). Hence, equality holds in (10) if
and only if U=TV¥ wp.l. O

Using the previous Lemma, Proposition 1 is proven
next.

Proof of Proposition I: Define the n-vector U and the
k-vector V

def »
U=08—-m,,

def 8]
V‘[fo]’

where m, is the mean vector of 8 and 85, is the vector of
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finite differences defined in (4). With these definitions,
application of Lemma 1 gives a lower bound involving the
pseudo-inverse of the k Xk matrix EJVF'} and the
kx n and n >k matrices E{VUT} and EJUVT), respec-
tively. If it ¢an be shown that E{UV 7} = 8m, Proposition
1 would bé established. Consider the jth column of
E UV T} and recall the definition (4) of &f,,
8,fa }
fs

[EfuPrT)] 4= EB{[ﬁ — my]

~ fB+Av _fﬁ

=El|[d—m, | —L
B{[ ﬂ] A}fa ]
B EB+AI-v,-{A “‘me}_ Es{é _mo}
Ly

- Mysnw — M

AJ'
=8&;m,. O

B. The Constrained CR bound

We first obtain a constrained CR bound for locally
convex O directly from the bound (6). We then show
that the same bound holds for points # € O, at which 8,
can be approximated by a union of locally convex sets.
These results are then used in Section 11-C to construct
CR bounds when @, is specified by continuously differ-
entiable functional constraints.

Let 8 and the % linearly independent test vectors
6+ A, -+,0+A,v, be contained in the reduced pa-
rameler space O for all sufficiently small A, i=1,---,k.
Such test vectors can always be found for points 6 that
are in locally convex regions of . with dimension at
least k. Assuming the exchange of limiting and expecta-
tion operations is valid, the limit of the bound B8, (6) of
Proposition 1, as 4; = 0, i =1, - -, k, pives a bound which
depends only on the directional derivatives, lim, _, §; fy
and limy, Lo 8;mg, of f and the mean vector, m,, along
the directions of the vectors v, i =1,- - -, k, at the point 6.
Specifically, by the chain rule we would have:
limy ..a,08fe=VfeK and limy, . 5, _.q8ms=YmK,
where K=fv1,-- ',va is the a1 X k& matrix of direction
vectors; Vf, is the 1X a (row-vector) gradient of f,; and
Vm, is the nXn matrix whose rows are the gradient
vectors associated with each scalar component of mg. If
we could substitute the above limiting expressions into
the right-hand side of (6) we would obtain

3,2 [Vimg)K[KTL K] KT [Vm, 7, (11)
where
BT
"‘E"{[fe] [fa ]}
= E{[Vin £,)7[Vinfy]} (12)

is the n X n Fisher information matrix. Under appropriate

1289

regularity conditions [13, Lemma 8.1], [27, Section 2.4),
the Fisher matrix is equivalent to

Iy=—E{V¥infy}, (13)

where V*1n f, is the Hessian matrix of partial derivatives
of In fy with respect to elements of 8. This motivates the
following lemma.

Lemma 2: Let the vector 8 be "in the constrained
parameter space O CR”, and let {v}5, be k linearly
independent vectors such that 8 + A.v, € @, for all suffi-
ciently small A;>0,i=1,:--, k. Then for any estimator 8
having mean m,, the estimator error covariance matrix
2, satisfies the matrix inequality

defl .
2= B.= limsup &8,
A, AL —0

(14)

where B, is the beund (6) of Proposition 1. If in addition
the following four regularity conditions hold:

* O has finite variance: var {8;} <o»; (15)

* fo has continuous partial derivatives; (16)_
dln f dln f,

. E _ ; 17

(I( (39‘ aﬂj <°°v ( )

* the matrix E,{[ VIn £,]7[V In f,]} is positive definite;
(18)

then
B.=[Vmg)A[ ATI, A] " AT[Vim,], (19)

where Jy is the positive definite # X n Fisher matrix (12),
and A is any nXnr matrix whose column space equals
spanfv,,- - -,¥.}. Under these regularity conditions, equal-
ity is achieved in the lower bound (14} if and only if there
exists a non-random # X n matrix T’ such that:

b—my,=TA[VInf,]" (wp.1). (20}

If such an estimator 8 exists, this estimator is called an
efficient constrained estimator,

Proof of Lemma 2: By assumption, 8 + Ayw,, -, 0+
A,v, are contained in ®; for all A; sufficiently small,
i=1,"*-.k, and the bound (14) follows directly from the
Barankin bound of Proposition 1.

The regularity conditions (15-(17) ensure that the
Fisher matrix J, (12) exists and has bounded elements
{13, Section 1.7}, and condition (18} says that Jf, is positive
definite.

We first derive the limits as Aj,--<,4, -0 of the

dfa || 8fs

matrices EQ[T] [f—] and 8m, under the stated regular-
L] k-]

def
ity conditions of Lemma 2. Define A p max; A4 Let K
be the n X k matrix with columns v,,* - -, v,. By condition
{16) and the chajn rule

8fy 1
lim =F~Vf0K
dude=0 fy o fy
=Vinf,K.
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From this, and the stated continuity of V1n f,, condition matrix and [K 1K1 =[K TrK1™L Since the marrix
(16), the iith element of [%] [fﬁ] is dominated by KTJ,K is symmetric and posnwe definite the eigenvalues

fa fa of the perturbed matrix K'J,K + E are positive for a
Bln fo 3lnfy K,,; + O(A), which has finitc ex- Sufficiently small matrix perturbation E [12, Corollary

) &, 2 6.3.4]. This implies that the inverse of K7J,X is continu-
pectation by condition (17). Hence, by dominated conver- q¢ in perturbgtions of its elements )

gence [3, Theorem 16.4], we have the finite limit

1
El,m=1 it

8y T[Sfe 5f, 171 6f *
lim E, —_ Ofs | | 9o (T +
A (AT e
~ORlTR ATV IALC = [KUK] "o, (23)
=K7T =
. Kk . 2D where 0O(A) and g(1) are matrices whose elements are of
Next consider the n X  matrix order O(A) and of order o(1), respectively. In view of (21)
[meﬂ‘v_ - ms] we therefore have
dmy= | —1 0 . o
A, =Lk limsup B, = Al,"l'].rgk—-u[smn]
|:ED+A}|'J{6} - Eﬂ{é} af Bf
= . T 0 0
) Af J=1pk A,'...l,rgk—)(l{Ea[ fa ] |:f0 ])
= Ee{ﬁm } .A _Il'il"[al q(-‘)1:6‘,"19]1"
Aj fe ok 1By . )
138 5f, =~[Vm K[ KTI K] KT[Vm,)". (24)
; “{ fo } e le ek ~E { fo ) It remains to show that the bound (24) depends only on

the range space of K =[v,,---,v,]. Let 4 be an nXn

- E {(6—m ) 8y } matrix whose column span is identical to the span of

6 8 ’ vy, v Since the column spaces of 4 and K are
. i . 5 identical, there exists an invertible # X n matrix T such
where the last equality results from the identity E, —fa—" = that
0. Now from condition (16) the elements of the nXk [K 0,|T =4,
matrix (0 my)sfy/ fo are equal to the elements of
(8 — mg)V In fuK to order O(A). The Schwarz inequality Where @, is an nX(n — k) matrix of zeros. Let O, and
and the regularity conditions (15) and (17) can be used to O3 be (n — k)X (n— k) and k X(n — k) matrices of zeros,
establish that the elements of the latter matrix have finite  respectively. Then,

absolute expectation Al A7, 4] T
) )
N dln f,
Ea{(af_[mﬂ]i) a6 }

R

fE,,{(ﬁ - mB)V In fﬂ}i.f] =

2
. dln f, +
12fgygiel| 18 KT KT
< var'/2 {9 )F} ( ) } =[k 0] [[OT]JD[K 0, ]] [OT]
1 1
<o,
Hence, by dominated convergence, the limit [ K O ] K JaK 03 KT
lim  &m, 0, [of
Ay, oA, 0
exists and is equal to the finite matrix KT T
“[K 0] [ .k]" o, KT
: Vfa o5
Hm  dmy=E 0 K o3 2
Ayt 8,0 fo . + .
= K[KTTIL,K] KT,
= VEG{G}K
—Vm,K. (22) ?vhere the secqnd equality follows from (65) of Lemma 5
in the Appendix.
Since the columns, {v}},, of K are linearly indepen- The condition for equality in the bound (14), under the

dent, by condition (18) K™J,K is a full rank invertible regularity conditions (15)-(17), can be obtained by mak-
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ing the identifications U=(8—0), ¥V=K"[ViInf,]” in
Lemma 1, verifying that the right side of the resultant
bound (10) is identical to the right side of the bound (14)
and invoking the necessary and sufficient condition for
equality irr (10): U=TV for some k X »n matrix I'. This
gives:

8—me=TK"[VInf,]" (w.p.1).

Since A has the identical column span as K, the above is
equivalent to condition {(20). ]

The constrained CR bound (19) of Lemma 2 is in 2
general form that is applicable to nonisolated points @ in
locally convex regions of the parameter space ©p. It is
significant that, unlike the Barankin bound of Proposition
1, the constrained CR bound (19) only depends on the
test points through the span of the set {v,---,v.}. In
particular, when ®, is only p-dimensional in the neigh-
borhood of 8, and p <n, all p-dimensional sets of test
points are equivalent in the sense that the limit (19) of the
Barankin bound is the same.

The construction of Lemma 2 requires that ©, be
locally convex or star-shaped in the neighborhood of 6.
Lemma 2 can be extended to include nonisolated points
in regions of ©. that have the property that local neigh-
borhoods can be approximated to order o(A) by locally
convex neighborhoods. The result is the following lemma.

Lemma 3: Let the vector 8 be in the constrained
parameter space O CR”, and let {»}t, be k lincarly
independent vectors such that 0+ A,v;+ o(A;) € O, for
all A; sufficiently small, i=1,---,k, where ¢{A,) is a R”
vectoy whose length is of order o(4A;). Then the conclu-
sions of Lemma 2 remain valid when the vectors 0+ Ay,
are replaced by 0+ Ap +o(A), i=1,- -,k

Proof of Lemma 3: Similarly to (2), let 8'f, denote

the k-length wvector of scalar differences 8'f, =
(8] fa, - " 64 fy] where
det foramraay = [
51, = 8ramtaldy T8 (25)

4,
Define 8'm, similarly. Let B} denote the Barankin bound
of Proposition 1 formed with the k test points {8 + A, -+
oA, 0+ Av, +0(AL )l We need to establish that
the limits imsup, ... 5, o Bf and limsup, .. s o B, (14)
are identical.

By assumption (16) f, is continuous and thercfore:
fazapmrony= forap, o(A,). In view of (25) this implies

5fy 1 [fm,.v;fa . o(A,-)]
j=1 k

fo fl A Y
_afe +l o(4;)
B fﬂ fﬂ Aj f=1 k

=VInfK +a(1).

Using the definition of the Fisher matrix and the continu-

ity of the inverse of the full rank matrix K7/ K,

3’fo ’ S'fe +_ *
(L5 e

=[KK] " +o(1), (26)

where o(1) is a matrix that has o(1) entries that go to zero
as the A;’s go to zero. In a similar manner it can be shown
that &'m, = VmyK + o(1), which, when taken with
(26), implies B} = B_+ o(1). This establishes the lemma.

0

C. Functional Constrainis

Often the constrained parameter space @, can be
defined in terms of an implicit functional inequality con-
straint of the form

Fy <0, (27

where & =[#),--+, # is a vector function on R”,
#: R" = RY, and the inequality is to be interpreted ele-
ment by element. We will assume that the inequality
constraints are consistent, i.e., there exists at least one
8 R" that satisfies {27), and that # is continuously
differentiable in the sense that the g X n gradient matrix

[ 0.2 8.9,

V.4, a8, 4o,
va=| =] ¢ L@

vai| | ey 95

|98, %,

exists and has continuous elements.

With the parameterization (27) of 8, the boundary of
®. is defined as the set of points where at least one
component, £, of the vector function #, is equal to
zero. The interior of ®, is defined as the set {8: &, <0},
where the strict inequality means #° <0, for each i=
‘[’. c,q.

Note that equality constraints can be imbedded in (27)
by letting £ = — #§ for some i,j, i # j. It is customary
to extract the equality constraints from the inequality
constraints (27), denoting what remains as pure inequality
constraints. This yields the equivalent description of ©,

Gy =0, (29
H,<0, (30)

where G =[G',---,G*I" and H=[H', -, H'T are vec-
tor functions of 8,G: R"— R*, H: R"— R’ We will say
that the equality constraint (29) is active if it restricts 0 to
a lower dimensional subset of R”. Otherwise the equality
constraint is said to be inactive.

The decomposition (29) and (30) is accomplished by
partitioning the constraint set ®. into a set of regular
points and nonregular points.
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Definition {16, Section 9.4]: The point 8, =R" is called
a regular point of the inequality &, < 0 (a regular point of
the constraint set @) if: £, <0 and if there exists a
veR" such that & + VS, v <0.

There can be no active equality constraints at a regular
point 8,. Specifically, it can be shown that 8, is a regular
point of Q. if and only if £, , ., <0 for some v cR"
and all sufficiently small A > 0 (see proof of Lemma 4).
This implies that there exits a sequence of interior points
(e.g., {8, + 1v},) that converge to 6. Hence regular points
are points that are in the closure of the interior of @.. In
particular, all interior points of ®, are regular points and
points on the boundary of pure inequality constraints
Hy < ( are regular points. See Figs. 1 and 2 for graphical
illustrations.

Fig. 1. Equality constraint God:(ﬂl —89) +(8, - 921 — a* = 0. Here
8 can only vary along boundary of disk. Set of admissible directions,
{w}, in which parameter can move must lie on tangent hyperplane
. Since @ has no interior points, there are no regular points of
constraint set.

13
Fig. 2. Inequality-constraint H, <0, where H',“== 0, -0 +(g, -
82)* —~ a?, Here 8 can move into interior of disk. Set of admissible
directions is contained in half-space 11, that is supported by tangent
hyperplane .#,. Since any point 8 € @, can be represented as a limit
of interior poims, all points in ©.are regular points.

The following Lemma shows that if 8 is a regular point
of @, the constrained CR bound is identical to the
uncenstraingd CR bound.

Lemma 4: Assume that the conditions (15)-(18) of
Lemma 2 hold. Let the parameter space @ be defined by
the general inequality constraint &, <0 where the vector
function & =[.€1,---, £91 is differentiable. Let @ be a
regular point of ®.. Then for any estimator 8 having
mean m,, the estimator error covariance matrix ¥, satis-
fies the classical unconstrained CR matrix inequality

20 = Bu! (31)

where

B, = [Vmg U5 [V, ', (32)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 36, NO. 6, NOVEMBER 1990

and J, is the Fisher matrix (12). Equality holds in (31) if
and only if there exists an n X n matrix [’ such that

8~my=T[AInf,]". (33)

If such an estimator @ exists, it is called an efficient
unconstrained estimator.

Proof of Lemima 4: Since 8 is a regular point, there
exists a ¥ & R” such that for all A, 0 <A <1, we have:
(1- A)#, <0 and Al#, + VF,v] < 0. Hence (1—-A)F, +
Al F, + VFpv] = £, + VFrA < 0. Since for fixed v

”‘:¢B+Av - ‘:é,ﬂ "V%DA” = O(A)a

it follows that for all sufficiently small A, &4, ,, <0.Ina
similar manner, it can be verified that there exists an
€ > 0 such that for all £ € R* with length [&li<1

Fosawren) <0s for all sufficiently small A >0, (34)

that is, 8+ Av is an interior point of ®.. Choose n
lincarly independent umit length vectors £,,---,§,, and
define v; = v+ €§;, i =1, - -, n. Then, using (34} it is seen
that {8 + Aw,}{.| is a set of » linearly independent vectors
contained @ for all sufficiently small A > 0. Application
of Lemma 2 thus gives the lower bound on the covariance
matrix

B, =[Vmg)A| AT, A] " AT[Vm,]7,

where A is any # X n matrix with identical column space
as [vy,* -+, v,]. But the column space of this latter matrix
is identical to R", by linear independence of the v;’s, 50
taking A =7 in the previous equation for B, we obtain

B,=B,=[Vm,}3; '[Vm,]". o

The bound (31) of Lemma 4 is identical to the classical
multiparameter unconstrained CR bound {21}, [27]. Since
no equality constraints can be active at the regular points
of O, the Lemma establishes that pure inequality con-
straints on 8 do not affect the CR bound on the error
covariance of estimators having a given mean gradient
Vm,. A number of parameter estimation problems have
parameter constraint sets for which all of the points are
regular, Examples include: orthant constraints, e.g., posi-
tivity of each of the elements 8; in the parameter vector
#; range constraints, e.g., magnitude of 4; less than 1;
length constraints, e.g., 7,82 <1. For these types of
constraints the classical unconstrained CR bound applies
to all points in @..

On the other hand, many estimation problems are
formulated with parameter constraint sets for which some
or all of the points are not regular. In particular, as
previously mentioned, for the case of active equality con-
straints (29), if @ is a k-dimensional surface, & < n, then
@, contains no regular points. Examples of these prob-
lems are provided in Section III of this paper. For this
case, the classical CR bound is invalid and bound reduc-
tion occurs due to the constraints,

We now consider the construction of a CR bound
under continuously differentiable equality constraints. As-
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sume the equality constraint G, =0 (29) is active at 8.
Define the k X n gradient matrix, VG,, of the function G.
Also define the hyperplane, ., tangent to the constraint
set @ at the point 6:

) Hy={yER":VG,y =0}. (33)

If G is a linear function, e.g., G,= F6 for some nXk
matrix F, .#; = 0.. Otherwise, when G is a continuously
differentiable function, any set of points in ®, that are in
the local A-neighborhood of the point 8 € @ are approx-
imated to of{A) by a set of points in the tangent hy-
perplane .#,. Using Lemma 3 this implies that the
constrained CR bound B (#) depends on the equality-
constraint function G only through its associated tangent
hyperplane at the point 0.

The constrained CR bound for smooth inequality con-
straints is given in the following theorem.

Theorem 1: Let the regularity conditions (15)-(18) of
Lemma 2 be satisfied. Let the parameter space O, CR"
be defined by the consistent set of equality and pure
inequality constraints: G, =0, Hy <0, where the vector
functions G =[G,--+,G*} and H=[H!, -, H]" are
continuously differentiable. Assume that the & X n gradi-
ent matrix VG, has rank p, p < k. Then for any estimator
§ having mean m,, the estimator error covariance matrix
Z, satisfies the matrix inequality

3.2 B,
B, = [Vmo]Qo-Il[vme]T:

and @, is the n X n, idempotent, rank » — p matrix

(36)
(37)

where

I,
0= {r-—f;l[vcar{[vcam‘[vce]’"l*[vaal,

Furthermore, equality holds in (36) if and only if there
exists an n X n matrix T’ such that

=TQIVInf)" (wp.l). (39)

If such an cstimator 8 exists, it is called an efficient
constrained estimator.

Proof of Theorem 1: For the case that @ is a regular
point, in view of Lemma 4, there is nothing left to prove.
Conversely, suppose that 8 is not a regular point. We will
show that any sequence of test points in ©, that con-
verges to B approximates an equivalent sequence in .#,.
Then, for 0 <k <n—p, we define k& sequences of test
points in @, whose associated approximating sequences
in .#, converge to 0 along linearly independent line
paths 0+ A, 0+ A, p AL+ AL =0, 7, .4, Fi-
nally, with B, the Barankin bound (7), we show that
limsup B, is equal to the expression (37) for B,, where
the “limsup” is taken over all such sequences of test
points.

Let &= £(A) be a vector such that [[E(A) < A— 0 and
assume that 8-+ & is a vector in @, that converges to

1293

6 € ®.. By the assumed continuous differentiability of
Gy, VG & = o(A):

0= Ge+§ — Gy
=VG,& + o( [i£l)
=VG,E+o(A), (40)

where g(A) is a vector of length o{A). Now define P,
I1-YG{[VGYG1" VG,. P, is an orthogonal- pm]ectlon
operator onto the null space of VG, ie., onto £, [21,
Section 1c.4). This induces an orthogonal decomposition
of §= £(A) relative to &y =P E+[I— P, J&. From
40), [1- P le= VGT[VGQ GT1* VG, = o(A) so that

§=P 5 +o0(a). (41)
Hence to order A, £ is equal to the vector P £ that is
contained in ..

Now let {8 + £(A}E, | be k sequences in . mdexed
by Ap,-- Ak such that P E{A)=Aw, i=1,- "k,
where »,,-«, v, are fixed lmearly independent vectors
and 0 <k < n - p. Since G, is continuously differentiable
and .#; has dimension n — p, such sequences exist [8,
Prop. 26.1]. Hence, in view of (41), for fixed &,,---, 4,
the & test points 8+ E,(A ), -, 0+ £.(A,) are equal to -
0-+Ap +o(A), -0 A,v, +0o(A,) Define B0+
E(Ay),--,8+£,(A,)) the Barankin bound of Proposi-
tion 1 evaluated at these test points and define
B(v,,*++,v,} the CR bound of Lemma 2 evaluated with

if 8 is a regnlar point of O,
(38)
otherwise.

the direction vectors v,- -

By(0+£,(A), -
=Bc(v1" )

v, Lemma 3 implies
O +E.(A0))
) +o(1)

= [Vmg)A[ 475, A] " AT[Vm, )T + 0(1), (42)
where o(1) is a matrix of (1) elements that go to zero as
the A;’S go to zero, and A is an 2 X » matrix with column
space equal to the span of v, -, v,. ’

Next we show that if w,,---,v, and v{,---,v] are sets
of vectors in , such that span{w,,---, ¥} >
span{v{, -+, wl} then A[ATJ,A)*AT = B[B7J,B]* BT,
where 4 and B are n X n matrices which have identical
column spaces as span{w," -, v} and span{v{,---, v},
respectively, Since by definition v, €.4, i=1, -+, %, this
will establish that the matrix [V, 1A4{ A7, A1* AT Vm, 1"
on the right of (42) is maximized when the column space
of A is equal to .4, With J; /% the positive square root
matrix corresponding to Ji !, the previous relation be-
tween the two spans holds if and only if span {J“Vzv,,

, J5V*uw}ospan{sy V2w, -+, I 2}, Hence it is
sufficient to show that A[A74]747> B[BTB]"BT when
the column space of 4 contains the column space of B.
Now A[AT4]*AT and I- B[BTB]*B” are idempolent,
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symmetric, orthogonal-projection matrices onto the col-
umn space of A4 and the null space of B [21, Section
1c.4], respectively. Therefore, since the column space of
A contains the column space of B: A[A741*A7B= B and
B74[ AT4}* AT = B”. Since idempotent matrices are non-
negative  definite, it follows that A[AT4}7A47 —
BIBTB1* BT = A[A’AT*AT\I — BIBTB]*B7] = A[A%4T*
AT[I— B[BTB]*B"]A[ A"4])*A7, which is nonnegative-
definite, Therefore we have from (42)
limsup B, = [Vmy ) A[ 47T, A} AT[Vm,)", (43)
where A4 is a matrix whose column span equals ..
Finally we show that the column span of (0, (38) is
equal to £, and that, setting A= @, in (43), we obtain
(37). Since VG, has rank p, there exists a row-echelon

representation
B
vo,1] 2]

where T is a nonsingular kK Xk matrix, B is a pxn
full-row-rank matrix, and O, is a (k£ — p) X #n matrix of
zeros. Let 0,, O, and 0, denote matrices of zeros having
dimensions (k — p)x (k- p), (k— p}x p and k X n, re-
spectively. Use of (38) and (65) of Lemma 5 in the
Appendix results in

_gl] -7 o7

8t e g]
o8-8t on

.{[gl]J;‘_[BT Of]}Téi”
a5
[ o] 2]
BRI

=0y, .
where the invertibility of the full rank p X p matrix
BJ;'BT has been used on the third line of this equation.
This establishes that the columns of {J, arc contained in
the hyperplane .#;. A straightforward calculation shows

that QaQp =0, and QIOT =07, ie., both Q, and QT
are idempotent. Hence the rank of Q, is equal to its trace

rank {Qe}
=tr{Qe}

=t {1 = 73 '[V6,1{[V6, 175 ' [VG, 1"} [V6,])

VGoQy=T

=7

= n=tr{[VG 105 {VG,]"{[VG,10; '[V6G, ")} )

=n-pn,

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 30, NG, 6, NOVEMBER 1990

and O, has n— p linearly independent columns. Since
these columns are contained in 4, and since n—
rank{VG,}=n — p is the dimension of .#,, this estab-
lishes that the column space of Qg is identical to .#.
Hence, using A=, in Lemma 2, we obtain the bound

+ .
Bc=[vme]Qa[QgJaQeI Q{[Vme]r.
Now it is evident from symmetry that QuJ; !=J;'0f.

Define JGdif 0171,0,. One can verify that the matrix
QoJs ' = Jo 'QF satisfies the Penrose conditions (9) for
the pseudo-inverse, J;:, of J;. Using these results and the
fact that Q, and Q] are idempotent results in

O Q11,04 " 0T = 00J2 0F
=@l QJs] 0
= Q507
= QeQa-’e_I

=0
Hence (37) is established. m}

In reference to Theorem 1 we make the following
remarks,

Remark 1: I the set of constraints Gy = 0 is defined so
that the rows of VG, are linearly independent, the &k X k
matrix [VG,)J; '[VG,I" will be of full rank and Q, (38)
will only involve the more familiar inverse matrix
{[¥G,1J; '[VG,]7} 1. Although a reformulation eliminat-
ing redundant constraints can always be accomplished,
frequently the most natural description of a constraint
involves a rank-deficient VG, e.g., sec Example 4 of
Section IIL In this case the general result of Theorem 1 is
applicable.

Remark 2: Comparison between the bound of Lemma 4
and the bound of Theorem 1 indicates that the presence
of constraints on the parameter space has the effect of
reducing the rank of the Fisher information matrix. In
particular if the k equality constraints G4 =0 reduce the
dimension of the parameter space from » to n— p then
the rank n inverse Fisher information J;! becomes the
rank n — p inverse constrained Fisher information QuJy .
Hence active equality constraints have the effect of reduc-
ing the rank of the Fisher information matrix. In the
proof of Theorem 1 it was shown that the column span of
Q, is the tangent hyperplane .#,, and that Q,J;'=
QlQIr,0,1* O. Furthermore, by Lemma 2,

+ +
Qo[Qg-poa] Q§=A[ATJGA] AT
it A has the same column span as Q,. Using these facts
we have

Quls' =P [ PLJPL] PL,

where P, = I—[VGJ{IVGIIVGe") " [VG,lis the n X n
orthogonal-projection matrix that projects vectors in R”
onto .#,. Hence the inverse constrained Fisher matrix
Q,Jy " is obtained from a projection of the rows and
columns of the unconstrained Fisher matrix J, onto the
tangent hyperplanes of the constraint set.
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Remark 3: The matrix B_ (37) in Theorem 1 can be
represented as the quantity

B = E‘{[Vmﬂl’_‘,a]}(E{[Vln foPa ][V ln.ng_f,]})*_

E{[Vm,P,]"},

where P, is the projection operator defined in Remark
2. The vectors Vm,P, and VInf, P, are the projec-
tions of the unconstrained gradients of the mean and
log-likelihood (score) functions onto the constraint tan-
gent hyperplane .#,, that is, these vectors correspond to
constrained gradient vectors. In [10] these constrained
gradient vectors were used along with Lemma 1 to give an
alternative derivation of the inequality 24 = B,.

Remark 4: Theorem 1 indicates that a certain bound
reduction is induced by adding constraints on 6. In partic-
ular, it is easy to show that the constrained CR bound B,
of Theorem 1 is always less than the unconstrained CR
bound B, in the sense that B, — B, is nonnegative defi-
nite. This follows from: 1) the idempotence of [—Q;
2) the symmetry of J;' and Q.J; ', which imply that
(I — QM5! =171 — Q,)7; and 3) the nonnegative defi-
niteness of J; !, In particular, for unbiased estimators
Vmy= I and

Bc=QaJa_l
=I5 = (1= Q)"
=-Ia_l"(I_Qa)(I_Qo)Jn_]
= U7 = (1= Q) (1= Q)
<Ji'=B,. - (49)

An iraportant implication of (44) is that the incorporation
of constraints can only reduce the CR bound on the
component error variances.

Remark 5: In many examples of interest (2, is nondiag-
onal, accounting for the functional relationships between
individual components of 8 introduced by the constraint.
Thus even if Jy is diagonal, suggesting uncorrelated un-
constrained estimator errors, the rank-reduced inverse
Fisher information Q,J; ' in Theorem 1 can have off-
diagonal terms, suggesting correlated constrained estima-
tor errors.

Remark 6: A result of Lemma 4 and Theorem 1 is that
pure inequality constaints Hy, <0 do not affect the CR
bound on error covariance of estimators with a given
mean gradient Vm,. This is true even when 8 is on the
boundary of this set. An interpretation of this fact is
obtained by recalling that the Fisher information matrix
Jy (12) is a function of the gradient of the likelihood
surface at 6. For a smooth surface, the gradient of the
surface at 9§ is completely determined by the set of
directional derivatives along directions contained in a
convex cone with vertex at 8, e.g., the half-space indicated
in Fig. 2. In the case of one-dimensional differentiable
functions, this simply reflects the equivalence of right and
left derivatives. Therefore, the restriction of allowable

local variations of a parameter at the boundary of H, <0
does not affect the CR bound.

Remark 7: While Theorem 1 is stated as a lower bound
on the estimator error covariance matrix, it can be used to
specify a bound on the mean-§quare error (mse) matrix,

E{(8—eXd—e)T). Spec1f1cally, since the mse matrix is
equal to %, +(m, — 8)(m, — 8)", application of the theo-
rem gives a constrained CR bound on mse:

Ef(8=~0)(8=8)")= B +(my—0)(me—8)",

where B, is given by (37).

Remark 8: Remarks 6 and 7 notwithstanding, when @,
corresponds to a pure inequality constraint Theorem 1
does not imply that improvement in mse is impossible.
Indeed the minimum-distance projection of an uncon-
strained estimator 9 onto O, can yield an estimator with
lower mse than that of ﬂ Such an estimator arises in the
example studied in [18L. Howcver if the estimators differ
the projected estimator may have a different mean from
that of 8, which generally is not differentiable, whereas
Theorem l applies to classes of estimators with identical
differentiable means m,.

Remark 9: In the course of proof of Theorem 1 it was
established that the lower bound B_ (36} is the tightest
bound of the form (14) in the sense that B, =
lim supy ...s, —o B8 + E(A) -, 0 + £,(A.)) where
{6+ EL4,; )} , are k arbitrary sequences converging to 0
along pa[hs whose projections onto the tangent plane .
are k linearly independent line segments, 0 <k <n— p.
For linear constraints and exponential families of f; more
can be proven; B, is the “limsup” of the Barankin bound
B, (7) with tespect to arbitrary sequences of test points
converging to 0, ie., B, is the tightest local Barankin
bound,

IIl. APPLICATIONS

In this section we illustrate the application of the
constrained CR bound (37) by specializing to the cases of
linear and quadratic constraints.

Exampile 1) Linearly Constrained Gauss-Markov Prob-
lem: Let F be an m X n matrix of rankn, n<m, and
suppose that one cbserves the vector X €R”,

X=Fb+m,
where 0 eR”, n€R™ and n is a zero-mean Gaussian

vector with nonsingular m X m covariance matrix K=
E{nn"). Since the model is linear and Gaussuan, the

Fisher information matrix is simply calculated as J’ Je
FTK™'F, which is independent of 8. Furthermore, by the
Gauss-Markov theorem [21, Ch 4], the minimum variance
unbiased (MVU) estimator 8, is a linear function of X,

0,=J"'"FTK"'x.
The error covariance of 8, is
Se=J-1

Thus é,, achieves the unconstrained CR bound, (31) of
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Lemma 2, for unbiased estimators. (Recall that for unbi-
ased estimators, Vmy = 1)

Consider, however, the problem of estimating @ subject
to the k linear equality constraints G, = 40 =0, where A
is a & Xn matrix, k <n. Using the fact that VG, = 4,
Theorem -1 gives the constrained CR bound: B,=
[V, ]QT [V, |7, where

QEQo=1~ AT AI"AT)" 4.
Since the matrix  is independent of 8, one can define
the estimator

0= QI 'FTK-1X
=Q8,.
Due to the constraint 48 =0, § is unbiased

Ef8y={I-J"'aT[ar4T]" 4)o=s.

(45)

The error covariance of 8 can be calculated directly from
(45) using the idempotence of Q-

3,=0J-'07
=QQr!
=Q_]-1
=B,

where B, is the constrained CR bound, (37) of Theorem
1, for unbiﬁased estimation. This establishes that: 1) the
estimator 8 of (45) is the MVU constrained estimator,
and 2) the constrained CR bound of Theorem 1 is achiev-
able for the Gaussian linear model with linear constraints.

Example 2) Imuage Reconstruction with a Support Con-
straint: Support constraints are frequently used in image
reconstruction problems such as those arising in tomo-
graphic imaging [24], [29] and phase retrieval [5], [9].
Suppose that the parameter vector of interest consists of
a sampled two-dimensional image that is represented by a
complex-valued vector with elements G ., ki,&k,=
0,1,---, M —1. We will represent the parameter vector 8
as the R2M*M vector

_[aR I R I ... R I T
9—[9(0.0)’9(0,0)’9(0.1)16(0.1)’ 20031 a1y B — L pr—ny) s

where the superscripts R and ! denote respectively the
real and imaginary parts of 8 .., .

If the support of the object is known, it can be used as
a constraint in the estimation of 8. Let § be the support
of 0,

§={(kyoky): 8 oy # 05 Ky Ky =0,1,0 -, M ~1}.

Let 15 denote the 2M? X2M? diagonal matrix with [1];
=1 if the ith element of 8 lies inside the support set §
and [14]); = 0 otherwise, i.e., 1; is the matrix indicator
function of S. The support constraint then has the form
Gy=[I—-14]0=0. From Theorem 1 we have the con-
strained CR bound B, =[VmglQ,Js '[Vm,]". Using
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VG, =[] —1g] it is easy to verify:
Quli =15 = I I -15]"
AU - 1005 L =117} [ =105
et anE et FESH i
{U-117 =151} 1 -15) 777,
(46)

where .7°=T7TJ,T and T is an orthogonal matrix such

that
I o
1,=T 77,
’ [OT 02]

where O, and O, are zero matrices. In other words, T is
a transformation that rearranges the image pixels so that
the support is in the upper left hand corner of the image.
Now let 9 and 27 ~! have the partitions

(47)

y=[£‘r ‘g] (48)

where A and K are matrices of the same dimension as
the identity matrix / on the right-hand side of (47). With
this notation [/ ~1319 ~'[7 - 15]” is the partitioned ma-
oy O . . .
of M| where Oy is a zero matrix of the appropri-
ate dimensions. Therefore the pseudo-inverse on the

right-hand side of (46) is simply | °
i

trix [

Af‘ll . Performing
the rest of the matrix algebra indicated on the right-hand
side of (46) we obtain

QGJJI:T

K—LM™'LT 0O -
of o,

Using identities for the inverse of a partitioned matrix

[t1, Theorem 8.2.1] and the definitions of A4, 8,C and

K,L, M, (48) and (49), the matrix K — LM~ 'LT can be

identified as the inverse of the block matrix 4. Hence,
A7 OI]TT

of 0,

4 o]

=T T7

[0? Oz]

I o4 BI[I o)\ ..,
=T o1 T T r
or o,||BT cl|loT o,

={15J,15}", (50)

where the last equality follows by the orthogonality of T,
the application of (47), (48), and the identification 7.5 T 7
= Jg. For the case of unbiased estimation Vm, =1 and
(50) is the constrained CR bound. Comparing the con-
strained CR bound (50) to the unconsirained CR bound

Qeft;l = T{
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Jy1 it is evident that the incorporation of support con-
straints has the effect of zeroing out those rows and
columns of the Fisher information matrix corresponding
to image pixels 8 for which it is known « priori that the
pixel values are zero.

1t is useful to compare the covariance of the estimator
errors within the support region for the unconstrained
cases. Using the same transformation 7° (47) as before, we
can assume without loss of generality that the support is
in the upper left corner of image, i.e., the support matrix

G,
of o
constrained bound within the support region is (A -
BC~'BT)~!, which is the upper left block element of the
inverse matrix J;'=92""" (48), while the constrained
CR bound for these pixels is A~ If the Fisher matrix is
block diagonal then B is a matrix of zeros in (48), indicat-
ing that the errors of an unbiased efficient estimator of
pixels inside and outside of the support region are uncor-
related; in this case the constrained CR bound is identical
to the unconstrained CR bound. If the Fisher matrix is
not block diagonal, however, there may be substantial
reduction in the constrained CR bound over the support
region. It is also significant that, unless J, is block diago-
nal, setting the pixels of an efficient (CR bound achiev-
ing) unconstrained estimator to zero outside the image
support region does not produce an estimator that
achieves the constrained CR bound. This is in contrast to
the results obtained in [5] for diagonal J,.

Example 3) Spectruin Estimation with Power Consiraints:
When there is prior information on the power of a ran-
dom process over some regions of frequency, it is reason-
able to expect that the achieveable error covariance of
spectral estimators will be affected. This example quanti-
fies the effect of such prior information on the con-
strained CR bound.

Let {X;}%L, be a segment of a real wide sense stationary
random process with power spectral density (PSD)
{9:( W e(=1,2.1,2 The objective is to estimate the PSD,

8; = ZA(f,), at n distinct frequencies f,---,f,. Let the
average power of {X;} be known over P nonoverlapping
frequency bands

YO=E, p=1--,P, (51)
5

indicator function is I;= . In this case the un-

where §, is the index set of the pth frequency band, and
E, is the known average power of {X}} over this frequency
band. The equations (51) correspond to P linear con-
straints on the unknown PSD, known as the P-point
constraint in robust Wiener filtering theory [20]. The
concatenation of the P equalities (51) gives the P equa-
tions

Ge=| : = (52)

where x, is an #X1 column vector with ith clement

equal to 1 if i €5, and 0 otherwise, i.e., x, is the vector
indicator function of §,. The gradient matrix VG, is given

by VG, =Ix," -, x )7, resulting in
Oydg t=J5" _Je_l[)h - Xpl
u +
xido'xo o xide'xe | (x{
'. ' '. Jo'o (53)

Xpy X xily'xe| |XF
The structure of Q,J; ! is considerably simplified when
Jy is the diagonal matrix:

Iy =diag, {672},

which is appropriate for the case of Gaussian observa-
tions {X;}/., and large N. Since the frequency bands {5}
are nonoverlapping the pseudo-inverse on the right-hand
side of (33) becomes the pseudo-inverse of a diagonal
matrix and
P 'IB erTJ !
o=t = Y —. 54
Quls ! =05~ T = (54)
Let e;=[0,--+,0,1,0,--+,0]" denote the /th standard
basis vector in R". Let I be an index in the constraint set
S,. Then for an unbiased estimator, 9, the constrajncd
CR bound on the variance of the Ith component, 8, is
obtained from (54)

[Bc]u = e,TBce,

L by J
=€ {f_ E 0_}( X_ " €
=1 Jﬂ Xi

‘=[J_1] 1_ [JB]EI
o 2 [Ja— |].'.'
lies,)
Using the unconstrained CR bound [B,], =87 = P(f,),
we obtain the relative reduction in the CR bound due to
the constraint
[ BC]H 1
=1- . 56
5], R
udn 1+ Z i
fies,i=l} gz(ff)

Since the term on the right hand side of (56} is between 0
and 1, the average power constraint induces a CR bound
reduction on the component PSD estimation errors, The
bound reduction factor (56) is independent of the other
constraint sets S, k=1,"--, P, k # p, and therefore av-
crage power constraints over S, do not affect PSD esti-
mator errors at frequencies outside of §,. The amount of
bound reduction depends on two factors: 1) the relative
magnitude of the spectral component of interest, 23(f,),
compared to the magnitude of the other frequency com-
ponents within the frequency band ,; and 2) the length,
IS, = number of indices, of §,. In partlcular little or no
reductlon in the variance bound occurs for the case where
2(f,)/éﬁ(f,) is small for all i€ S,,i+ ! However,
when &%(f)) is large compared to the other 9% ),

(55)
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i €5, a substantial reduction in the bound occurs. This
implies that the most bound reduction will be achicved
over those constraint regions S; where the PSD has a high
dynamic range, ie., large peaks. The particular dynamic
range required for a significant bound reduction is pro-
portional.to {S_|. As a rule of thumb, for a reduction in
the CR bound at frequency f, by a factor & or more, the
ratio of Z2(f,) to the root mean-squared value of the
remaining spectral components in S,

—del 1
P =
\/ IS,I-1

must satisfy

Y 2L,

ie 8, i+]

Z(f) -«
ﬁl > 'a_[|Sp|—1].

Example 4) Signal Subspace Constraints: Signal sub-
space constraints are used in semsor array processing
estimation problems to take account of a particular struc-
ture of the array covariance matrix [14]. Specifically, as-
sume that p zero-mean Gaussian signals arrive at differ-
ent angles of incidence on an m-sensor array having a
zero-mean, spatially incoherent array noise of power 2.
Further, assume that p <m. Then the covariance matrix
of the set of sensor outputs has the singular value decom-
position

v m
R=Y Xuwl +o=Y Apof,
i=1 i=1
where {¢}}7 | are the eigenvectors of R and {A,}/" | are the
eigenvalues:

i=1,-,p
o, i=p+1,,m

and {x}}{., denote the signal-dependent eigenvalues of R.
The span of v, --,u, is called the signal subspace.

Consider the problem of estimating the eigenvalues of
R when p is known but all of the other parameters are
unknown. This partial knowledge induces the following
constraints on the A;:

a) Aj>0» ji=1,.m
m
b) A=z A J=1m
1 -
c) A E A=0,  j=p+1,,m (51
p1=p+l

where constraint a) arises from the assumed positive-defi-
niteness of R, constraint b) takes account of the positivity
of the signal eigenvalues {A%)2 Y and constraint c) reflects
the equality of the m — p noise eigenvalues,

Let each unknown eigenvector v; ER” be parameter-
ized by its m — 1 direction cosines, p; =[p; ;" * *, p; - (1"
i=1,"+-,m. The combination of the m unknown eigen-
values and the m(m ~ 1) unknown direction cosines yields
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the n=m? element parameter vector 8=[A,

Aupl,-+-,p71". The constraint c) can be then be ex-
pressed as the (m — p}X n matrix constraint
1 T
GB= m—»p_mll OI 0,

where I, denotes a k X k identity matrix, O, is a (m — p)
X{n —m + p) matrix of zero entrics, and 1 is a (m — p)-
vector of ones. )

Observe that the rows of VG, are not linearly indepen-
dent due to the fact that there is one redundant con-
straint in c) of (57). Observe also that the equality
constraint c) creates a dimension n—m+ p+1 linear
subspace in the unconstrained parameter space R". Hence,
despite the presence of inequality constaints a) and b),
the constrained parameter space ®; contains no regular
points, and, by Theorem 1, the constraints a), b) do not
impact the form of the constrained CR bound.

As in Example 2, partition J, according to

A
JB = [BT g] »

where A is(m— pyX{m—p), B is(m—p)x(n—m+ p),
and C is (n~m-+ p)X(n—m+ p). Then the n X n in-
verse constrained Fisher matrix, QoJy !, of Theorem 1 is
given by

Z+
o7

O,

5L
o,|"°

QaJ;’=J.;'—J;‘[

where O, and O, are zero matrices of dimensions
(n—p)x{n—m+p) and (n — m + p)X{n—m+ p), re-
spectively, and Z is the (i — p)X{m — p) matrix

Z=YG,J;'[vG,]"
=[Im_p———11T][A—BC—'BT]
m-p
1
A1 _ = 1.
["'_" m-—p }

As a simple example, consider the case where the
Fisher information matrix is block dlagondl with: B=0,

(58)

and A =0, . Then Z=0; 41, _ IT] Usmg
condmon 3) of i (9) it is casy to show that t=0ll,_,
o ! n o
Qulit=| " m—p ' (59)
o7 c

Suppose there exists an efficient unbiased estimator 9,
for the eigenvalues and eigenvectors which satisfies con-
straints a) and b}, and assume that the Fisher information
is block diagonal as previously specified. The right-hand
side of (59) is then the covariance matrix of the estimator
obtained by replacing each of the m= p noise eigenvalue
estimates in 8, . by their average X7, 1A, Hence, if
an efficient unconstramcd cstimator of the eigenvalues
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can be found that has positive elements, the estimator
obtained by averaging over the m -- p smallest eigenval-
ues of the efficient estimator achieves the constrained CR
bound.

Examplé 5) Signal Estimation with Power Constraints:
Consider the problem of estimating the discrete-time sig-
nal waveform, 9,,---,8,, subject to constraints on the
squared-modulus of the DFT of 6. Here, the sum of the
squared moduli over each of P nonoverlapping frequency
intervals is constrained to be equal to known constants
E,, p=1,---,P. While similar to the case studied in
Example 3, this problem involves nonlinear quadratic
constraints on the parameters, and tiree rather than fre-
quency domain estimation is performed.

Let W=[W,,---,W,] denote the # X » unitary matrix of
orthonormal discrete Fourier transform columns: W, =
1/@[1, e—jZ-n-I/n’_ .., e—jZ-rr(n—l)l/n]T, | = 1,---,n. Now
suppose that for P < n the constraint takes the form

Y [wel’=E, p=12,-,P. (60)

[A=p1

Here, §, denotes the index set of the pth interval and
[W8); is ith component of the n-point DFT of 0. When
P = n, (60) specifies the modulus Fourier transform of 6.
As in Example 2, we let 1, denote the r X n diagonal
matrix with {1,};=1 if {€5, and [L,]; =0 otherwise.
Then the constraint {60) can be written as the set of P
equations

e w1, we E, 0
Gy = = =1
oTwi,Wwe Ep| LO

where the superscript & denotes hermitian transpose.
The gradient VG, is the P X n matrix

2eTwh LW
VG, = . (61)
200WHLW
We now specialize to the linear observation model:
X;=8+m, i=1,--,n

where 1, is a zero-mean Gaussian white noise with vari-
ance o Recalling Example 1, J, can be seen to be the
scaled identity matrix o~ 2L. Let O denote the n X n zero
matrix. Using (61) and the fact that the intervals S, are
nonoverlapping 1,1;=0, i#j, the inverse constrained
Fisher matrix of Theorem 1 is the n X n matrix
PowenT W,

Ol ' =a?WH|I— E[ WL w. (62)
Since W is the (linear) DFT operator, the matrix o2(7 —
Z(-)] on the right-hand side of (62) is the inverse con-
strained Fisher information matrix for estimation of the
DFT W9. As in Example 3, let the index / be constrained
in §,. Then the ratio between the constrained and uncon-
strained CR bounds on the variance, var{[W@]}=

Efllwel, - EG[WOJIIZ} is obtaincd by evatuating the
quadratic forms e] W Q.15 'We, and e WHI, We,
B 1
[ c]!l =1— = (63)
[Bu]” I[ We]i]
1+

>

ie S, i+l ][WB],|2

This is of identical form to the expression obtained for
constrained PSD estimation, (35) of Example 3, when the
power spectral density, £2(f}), is idcntified with the mag-
nitude spectrum [W9],}, i =1,- - -, n. For unbiased estima-
tors, a bound on the total mean-squared error in estirat-
ing the time domain signal 8,s can be determined from
(63) by using the unitary property of the DFT matrix W
{Parseval’s Theorem):

p e, — éiuz =tr {3}

i=1

2 tr{onn_l)
Po1LweeTw iy,
=o-2tr{W”[I— >z —w——}W}

o eTwHLwe

P 1WeeTWHL,
=ottril= ¥
= TWEL Ve

=g[n-Pl.

Therefore, on the average, the constraints produce a
factor of 1— P/n reduction in the CR bound on the
variances of unbiased estimators of the 8;’s.

IV. CoNCLUSION

A constrained Cramér—Rao (CR) lower bound on the
error covariance of estimators of multidimensional pa-
rameters has been obtained. The constrained CR bound
was derived from a limiting form of a multiparameter
Barankin-type bound. For constraint sets defined by a
general smooth functional inequality constraint of the
form #, <0, the constrained CR bound is equivalent to
the unconstrained CR bound evaluated with a *“con-
strained” Fisher information matrix. This constrained
Fisher matrix was shown to be identical to the classical
unconstrained Fisher matrix at all regular points of the
constraint set, e.g., at interior points. However at nonreg-
ular points, such as points governed by equality con-
straints, the constrained Fisher matrix is a rank-deficient
matrix. This constrained Fisher matrix is equivalent to a
matrix of orthogonal projections of the rows and columns
of the unconstrained Fisher matrix onto the tangent hy-
perplanes of the constraint set. The simple form of the
constrained CR bound allows the effect of particular
equality and inequality constraints to be easily studied
through comparisons between the constrained and uncon-
strained CR bounds. It was shown that the incorporation
of functional constraints necessarily decreases the CR
bound for unbiased estimators. Not surprisingly, the con-
strained bound was shown to be achievable for the lin-
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early-constrained Gauss—Markov problem. To illustrate
the application of the constrained CR bound, several
applications in the area of signal processing were consid-
ered. These included support constraints in image recon-
struction, signal subspace constraints in array processing,
and average power constraints in spectral estimation and
in signal estimation.

In their present form, the results obtained in this paper
only directly apply to a finite dimensional parameter
space and a non-stochastic constraint. A generalization of
these results to infinite dimensional parameter spaces
would be useful for the study of constraints in filtering,
prediction, and smoothing problems. Theorem 1 could
perhaps be applied to complete separable infinite-dimen-
sional parameter spaces, e.g., a separable Hilbert space,
by taking the formal limit of the elements of the matrix
bound (37) as the dimension of the indicated matrices
goes to infinity. Stochastic constraints are of interest
when the constraint depends on the particular realization
of the statistical experiment, and they provide a model for
partially-known constraints. A main difficulty in obtaining
a generalization of the constrained CR bound to differen-
tiable stochastic constraints is that the column space of
the constraint equality gradient matrix, V&, is in general
a random set and therefore Lemma 2 cannot be applied.
On the other hand, a tractible analysis may be possible
for simple stochastic constraints such as constraints ob-
tained from random perturbations of the constraint func-
tion .
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APPENDIX

Lemma 5: Let O be an arbitrary n X m matrix and T be any
m X m invertible matrix. Then
+ +
or[r7g"er] 170"=glo"0] o7, (64)
where the plus sign denotes (Moore—Penrose) pseudo-inverse.
As a consequence, if R is an arbitrary m X n matrix, J is an
m X m positive definite matrix, and T is an invertible n Xn
matrix, then:
RT[TTRURT] TR = RIRTIR] " RT. (65)
Proof of Lemma 5: Let the left and right sides of the
identity (64) be denoted as the nXn matrices P; and P,
respectively. It is casily verified that Py and P, are symmetric
and idempotent. Therefore P, and P, are orthogonal projec-
tions onto respective subsets, .#; and .£; say, of R™ [22,
Section 105], Furthermore, using properties 1)-3) of (9), it is
easily verified that P, P\ P, = P, and P, P, P, = P,. Equivalently,
since P, P, and P, P, are projections onto respective subsets of
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A\ Ay PyPy=P, and PP, =P, However, £P=F; im-
plies P, > P; [22, Prop. d of Section 104], and hence P, = P,.

To show (65), first observe that, duc to positive definiteness,
there exists an invertible matrix J'/2 such that 77/2J1/2, Define
Q= J'2R, Then (65) reads

I I/ZQT[TTQTQT] + TTQT-T/2

=m0l oTe]" QU
which follows directly from (64). This finishes the proof of
Lemma 5. O
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