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ABSTRACT

A new technique for modelling biclogical signals a3 2 linear
combination of nen-orthogonal Gabor logons is described,
The technique has heen applied to two types of signals,
Event-Related Potentials (ERP&) and temporomandibular
Joint (TMJ) clicks. Examination of iime-frequency repre-
sentations of theas signals revealed that they appear to con-
sist of 2 small number of localized energy concentrations,
Attempts to capture this apparent Jow dirnensionality with
the standard orthogonal Gabor expansion and the stan-
dard wavelet transform were unsuccessfnl, However, the
non-orthogonal Gabor decomposition method described in
this paper provides a compact, accurate signal represen-
tation and the parameters provide a good basis for ERP
category and TMJ click classification,

1. INTRODUCTION

Signal processing techniques based on a stationary or time-
invarant signal model are frequenily inadequate for the
analysis of biological signals. However, such techniques
are often applied io Event-Related Potentials (ERPs). Sig-
nal averaging methods discard potentially useful individual
record variation under the inaccurate assumption that the
ERP is composed of a stationary deterministic signal in
uncorrelated additive noise. Fonrier analysis, often applied
in EEG analysis, cannot capture in a meaningful way the
transient nature of an ERP.

Time-frequency analysis, particularly the Exponential
Distribution (ED), has been successfully employed by Choi,
Williams and Zaveri[i] to gain an understanding of ERPs.
An improved and generalized version of the ED, the Re-
duced Interference Distribution (RID)[2] continues to be
used in these studies. Features of the time-frequency rep-
resentation of these signals have been identified which dis-
tinguish ERPs according to stimulus category. They were
able to discriminate categories on the basis of energy val-
ues at five points in the time-frequency representation of an
ERP. Details of the experimental methods and significance
of the categories will be given in the pext section.

While the technigues employed by Choi, Williams and
Zaveri provide good sigual classification, they do not pro-
vide a good signal representation since there are an infi-
pite number of signals with the required energy values at
the five locations in time-frequency space, Thus, the fea-
tures of the ERP which distinguish category provide only a
glimpse of the over-all time and frequency structure of the
ERP. What we now seek is a compact signal representa-
tion which retains the information necessary to reconstruct
the entire signal and which contains the category specific
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Figure 1. Lower plat shows an ERP (solid) line and the model fit

dashed fire). The correlation coefficient between the model and
ata is .98. The upper plot shows the time and fraquency location,
chirp rate and spread of the § logons composing the model, The
contours are located at 1/2 the peak valus of tha logon.

information mecessary for pattern classification. It is ex-
pected that greater insight into the underlying dynamics
of the generaling system will be achjeved with this new
representation.

In cbaerving time-frequency representations of the ERPs,
we noticed that the ERPs appeared to be composed of a
small number of high energy features localized in time and
frequency. We decided that an ERP might be efficiently
represented as a linear combination of time and frequency
shifted Gabor logons. A parzmetric technique such as this
has the advantage over the non-parametric time-frequency
methods of decreasing noise sensitivity at the expense of
increased bias. The non-orthogonal Gabor representation
method that has resulted is accomplishing the goals of mod-
elling the data well and characterizing the ERP categories.
Figure 1 {llustrates how well the data are modelled.

Temporomandibular joint (TMJ) sounds were recorded
during examination of subjecls with suspected pathologi-
cal conditions. The sounds recorded are indicative of the
type and severity of the pathology. Recent work on the
analysis of these sounds by Widmalm, Williams and Zheng
[3] has involved the use of lime-frequency distributions
(TFDs). The TFDs reveal a time-frequency energy dis-
iribution which is compact in time and frequency, the type
of signal efficiently represenied by Gabor logons. Type 1,
2 and 3 joint clicks are easily modelled with a linear com-
bination of one, two or three Jogons. Figure 2 shows a type
1 joint click with the model fit and its TFD.
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Figure 2. Lower plot shows a type 1 click TMJ round (solid hne)
and the model fit using a single logon (dashed line). The correlation

coefficient between the model and data is .99. The upper plot shows
the TFD of this joint click.

2. EXPERIMENTAL METHODS

The ERP data for Lhis study were collected from clinical
patients at the Riverview Psychiatric Out-patient Clinic[4].
Patients in the study suffered from phobias or pathological
grief reactions. Words presented at a 3-40 ms exposure via
tachistoscope were selected from 4 categories: Category
1 words were chosen from words used by the patient to
describe his/her symptom; Category 2 words were chosen
by clinicians to be related to the emotional causes of the
complaint; Category 3 words were selected from Osgood’s
list of pleasant words and Category 4 words were selected
from Osgood’s list of unpleasant words. 32 words, 8 from
each category, were presented in random order 6 times each
to the patient. Data from six electrodes were digitized at
250 Hz and filtered from 0.1 to 70 Hz. Only data recorded
from a midline electrode one third of the distance from Cz
to Pz have been used to date for this study. Each ERP
consists of 256 data samples, 100 ms pre-stimulus and 300
ms post-stimulus.

The TMJ sounds were recorded with a heart sound mi-
crophone fastened to the subject’s forehead while the sub-
ject opened and closed his mouth. The recordings were
performed at the University of Michigan School of Den-
tistry. The sounds were sampled at 7200 Hz, -

3. NON-PARAMETRIC SIGNAL
REPRESENTATION

Numerous techniques exist for representing well-behaved
signals in different domains, Many of these techniques,
such as wavelets, principal components, Karhunen-Loeve,
etc., can give insight into the signal which is often not ob-
vicus when viewing the signal in the time-amplitude do-
main, Most of these techniques involve representing the
signal as & weighted linear combination of vecters from an
appropriately chosen orthonormal basis. The weights then
form the representation of the signal in the new domain.
The basis is usnally chosen to highlight features of the sig-
ral and perhaps o separate a desirable part of the signal

from an undesirable part of the signal (such as to sepa-
rate signal from noise). If successful, this results in groups
of large-valged weights separated by small-valued weighis.
That is, the resulting representation localizes signal fea-
tures, The most familiar representation or transformation
is the Fourier transform which provides a frequency rep-
resentation of the signal. When the spectral content of a
sigual stays relatively constant and when different compo-
nents of the signal are well separated by spectral compost-
tion, the Foarier transform is a powerful tool of analysis.
When the spectral content of the signal varies apprecia-
bly in the observation window, the Fourier transform fails
to captnre this dynamic. Time-frequency and time-scale
tepresentations have been developed to provide 2 mean-
ingful picture of the spectral dynamics of a time-varying
signal. The basis functions for these representations are lo-
calized in time-frequency or time-scale space, respectively.
A number of desirable properties for these representations
have been identified, among them time support, frequency
support and prescrvation of the marginals. Also desirable
is completencas of the basis so that all signals in the vector
space of admissable signals, usually Lz or Iz, can be fully
represented 88 & linear combination of these vectors.

One such representation is the standard orthogonal Ga-
bor transform. Gabor[5] showed that any signal in La
cotld be represented zs the weighted sum of modulated
and shifted Gaussian functions (logons) centered on a rect-
angnlar Jattice in time and frequency under the consiraint
that T} < 2x where T ia the time sampling interval and 2
is the frequency sampling interval. That is,

)= 3" Crnhmalt) 43
where
G = [ strintesa @)
b = g @
Amalt) = Aft — mT)?™ (4)
Yemn(8) = (1 = mT)eI" ®)

+() is derived from h() such that

% B ) = 6(m)8(o). ©)

The standaxrd orthogonal Gabor bransform appeared to be a
good candidate for representing XRPs because of the com-
pact structure of the logons in timefrequency space and
because of the similarity in appearance of the logons to
components of the ERP signal. Figure 3 shows the result-
ing representation for an ERP. We desire a signal represen-
tation for ERPs that needs only a small number of terms
io describe the signal so that further analysts of category-
apecific signal features is simplified. As figure 3 demon-
strates, this representation does not meet our requirement
for describing the signal with a small number of terms. Ap-
parently, this basis does not adequately describe this signal
for our purpose.

Friedlander and Porat[] provide some insight into what
is wrong with the standard orthogonal Gabor transform
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Figure 3. Standard orthogonal Gabor transform of an ERP showing
the magnitudes of Cm .

method for representing ERPs. They have developed an
algorithm which uses the orthogenal Gabor expansion for
detecting transient signals. They showed that when the an-
alyzing window, a damped sinnsold in their work, matches
the signal well, and the time-frequency lattice points match
the time of occurrence and central frequency of the signal,
the standaxd orthogonal Gabor representation does an ex-
cellent job of localizing the signal at these lattice points.
However, when the shape of the analysis window is not
parsimonious with the signal or the signal events do not
occur at discrete points on the time-frequency grid, many
more terms may be required o adequately zepresent the
signal with this technique. Looking at figure 1 we see that
the shape of the logon which best fits (he ERP data is
different at different points in the time-frequency plane.
In consideration of the work of Friedlander and Porat, it
seems reasonable to account for the large number of signif-
icant terms in the standard orthogonal Gabor transform,
observed in figure 2, as a result of a mismaich between the
signal and the analysis window in addition to a mismatch
between the position of the analysis grid points and the
signal,

The standard wavelet transform provides a similar time-
{frequency description to that of the Gabor transform with
an imporiant difference in the way in which the time-
frequency plane is tiled or covered by the basis functions.
Equations (1) and (2) which describe the Gabor transform
are equally desriplive of ihe standard wavelet {zansform.
However, the subscripts m, n desribe not the time and fre-
quency shifts, but the time and scale shifts of the analysis
window.
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Figure 4 provides a schematic description of the tiling of
the time-frequency plane by the standard wavelet trans-
form when ap = 2, which is & common implementation.
As scale of the wavelet increases, the frequency increases
and the duration decreases. Comparing the shape of the
Gabor logons depicted in figure 1 to the tiing of the time-
frequency plane by the standard wavelet transform as de-
picted in fignre 4, we see that the pattern of scaling in ERPs
does not match well with the standard wavelet transform,
For example, the logon centered at t=.36 sec, f=5 Hz in
figure 1 has a shorter duration and wider bandwidth than
the logon centered at £=.35 sec, {=12.5 Hz. A signal com-
posed of scaled and shifted components which is efficiently

Frequency

Time

Figure 4, Schematic of the tiling of the time-frequency plane by
the standard wavelet transform,

represented by the standard wavelet transform would have
just the opposite trend.

4. NON-ORTHOGONAL GABOR
DECOMPOSITION

In the orthogonal Gabor transform, orthogonality is
achieved by restricting scale and translation parameters to
the integers, i.e. to a discrete rectangular lattice. This re-
striction prevents a parsimonious representation of signals
whose major components lie between latlice points. As a
particularly extreme example consider the case of figure 2
where the signal can be represented by a single logon with
fractional translation and scale parameters while an infi-
nite number of logons would be required in the orthogonal
Gabor transform.

We sought a parsimonious representation for the ERPs
that was compact in time and frequency and requnired only
a small number of terms to represent the ERP. The best
non-parametric techniques described in the previous sec-
tion did not meet the requirement of a compact represen-
tation. Thus, we began to investigate parametric time-
frequency representations. The Gabor logon [5] defined in
equation (3) was used as the basis signal for our represen-
tation. As previously siated, any signal in Lz can be com-
pletely represented as a sum of {ime- and frequency-shifted
logons. Therefore, this representation will possess many of
the desirable properties for time-frequency distributions in-
cluding satisfying the time and frequency marginals. Cur
goal is 1o use a smaller set of logons each parameterized
in such a way as to maitch the signal characteristics at dif-
ferent parts of time-frequency space. Thus, we reduce the
dimension of the space needed Lo represent the signal, but
with the assurance that we can completely represent any
signal with enough logons., Our expectation was that a
small number of non-orthogonal logons would adequately
represent ERPs and TMJ sounds. Consequently, we began
to explore a method of fitting the data with a linear combi-
natjon of 4 ar 5 Gabor non-orthogonal logons each parame-
terized by € values: central time, central frequency, spread,
amplitude, chirp rate and phase. Figure 5 shows the TFD
of an ERP which displays a very distinctive Gabor logon
shape. Figure 6 shows the time domain and time-frequency
description of 2 Gabor logon with increasing frequency.
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Figure 6. Upper plot shows a Gabor logon with increasing fre-
quency in the time-domain. The lower plot shows the time-
frequency description of the same Gabor logon,

4.1. Implementation

The following algorithm was developed to demonstrate the
effecliveness of the Gabor decomposition. The algarithm
is implemented as follows:

1. Normalize the signal(ERP or TMJ sound) to zero
mean, unit energy.

2. For each logon (up to 5 total) exhaustively search the
parameter space for the five parameters: center time,
center frequency, phase, spread, chirp rate. Amplitude
is then found using linear least squares. The parame-
tezs are chosen to minimize the sum of square residu-
als. Thus, the first logon fits to the largest energy con-
centration in the signal, the second to the next largest
concentration and so on.

3. As each logon is identified, it is added to the model
signal which is initially zeroed. The model signal is
nsed in the computation of the sum of square residuals,

4. The resulting parameters from the above steps are then
used as the starting point of a gradient search fit in an
attempt to find a globzal minimum.

5. RESULTS AND DISCUSSION

ERP data sets from 10 subjects have been fit using the
non-orthogonal Gabor representation. The first data fits
did not use chirp rate as & parameter, nor was the gradient
search phase of the slgorithm implemented. However, for 8
of the 10 data sets, the mean correlation coefficient between
the data and the model waa in the range .85-.90. Exami-
nation of the data sets which were not well £t by the model
revealed a more complicated time-frequency representation
for these subjects. In order to fit the data of these subjects
the additional parameter for the logons, chirp rate, is re-
quired. Preliminary work with this model indicates that
the additional parameter will allow fits for these subjecis
which are comparable to the other 8.

In addition to evaluating the quality of the fit using the
carrelation coeflicient, the ability to discriminate categories
on the basis of the parameters was evaluated. We at-
tempted to measure the ability to discriminate stimulus
category by forming a linear discriminant function uvaing
odd numbered records of a data set and applying the dis-
criminant function {o the remaining data records. Thi
resulted in a classification success as good as that achieved
by Chei, Williams and Zaveri indicating that indeed the
Gabor decomposition has captured the category character-
istics. Classification success was significantly better than
chance (p< .05) for 4 of the 8 data zets that were well-fit
by the fitting algorithm.

The TMJ work is quite recent. Qood data fits nsing a
amall number of non-orthogonal logons has been achieved
as scen in figure 2 and it appears nearly certain that highly
reliable automated TMJ sound classification will be pos-
sible at Ieast in part on the basis of the logon parameter
space.
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