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On Achievable Accuracy in Edge Localization

Ramakrishna Kakarala and Alfred O. Hero

Abstrace—Edge localization occors when an edge detector determines
the location of an edge in an image. In this note, we use statistical
parameter estimation techniques to derive bounds on achievable accuracy
in edge localization. These bounds, known as the Cramer-Rao bounds,
reveal the effect on localization of factors such as signal-to-noise ratio
(SNR), extent of edge observed, scale of smoothing filter, and a priori
uncertainty about edge intensity. By using continuous values for hoth
image coordinates and intensity, we focus on the effect of these factors
prior to sampling and quantization.

We analyze the Canny algorithm and show that for high SNR, its
mean squared ecror is only a factor of two higher than the lower limit
established by the Cramer-Rao bound. Although this is very good, we
show that for high SNR, the maximum-likelibood estimator, which is also
derived here, virtually achieves the lower bound.

Index Terms—Cramer-Rao lower bound, edge detection, edge localiza-
tion, maximum-likelihood estimator, mean squared error.
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Fig. 1. Typical edge profile: A plot of S{x; @) = J&{ ’_')
along the zaxis with f = 2, £ = 0, and &, = 0.6.

1. INTRODUCTION

For machine vision applications in mensuration [1], cartography
[2], and range finding [3], the ability of edge detection algorithms to
accurately determine locations of edges is erucial, These applications
are more successful, in fact, if edges can be located to values
in between pixel boundaries because this allows great accuracy
with existing equipment. Algorithms that provide such “subpixel”
localization capability have recently become available; we now
review some examples briefly.

Tabatabai and Mitchell [4] propose a method that estimates sub-
pixel edge locations by fitting ideal step edges, with estimated grey
level moments, to image data, Huertas and Medioni [5] propose
to filter the image with the Marr-Hildreth [6] V3G operator and
then to use a parametric polynomial model to estimate subpixel
edge locations. Hyde and Davis [7] form least-squares estimates
of subpixel edge locations bascd only on pixel locations—and not
intensities—of edge pixels, on the assumption that locations are more
reliable if noise is present.

In this correspondence, we derive fundamental limits on localiza-
tion accuracy that are imposed by the following factors: signal-to-
noise ratio (SNR), extent of edge observed, scale of smoothing filter,
and a priori uncertainty about edge intensity. Qur analysis measures
the effect of these factors prior to sampling and quantization by using
continuous values for both coordinates and intensity, In particular,
we focus on the minimum achievable mean squared error (MSE) in
cstimating an edge’s location. To do so, we derive the Cramer-Rao
lower bound (CRLB) on the MSE, which applies to all edge detectors
with known “bias.” The lower bound is then used {o pauge the degree
to which the popular Canny algorithm approaches the best achievable
edge localization accuracy. The results of our analysis pravide a
theoretical basis for explaining several intuitive observations about
localization that have previously appeared in the literature.

Specifically, we analyze localization error for the class of continu-
ous edges that can be described by a 2-D blurred step edge obtained
by convolving a unit step with a gaussian filter. Although our analysis
allows for any orientation, for convenience, we choose x and ¥ to
be coordinate axes aligned so that the x axis goes perpendicularly
across the step, and the y axis goes parallel 1o the step. We define the
cross section in the 2 direction, for any fixed y, to be =X}, where
1 is the intensity of the edge, ¢ is the location of the cdgc . is the
amount of blur, and @ is the step response of a Gaussian filter:

blr) = — : e_%zd:.

T Jamoo
A typical edge profile is shown in Fig. 1.
We choose the Gaussian step edge profile for several reasons. First,
step edges are the most commonly encountered edges [8]. Other
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kinds of profiles, such as roofs or pulses, are either far less common
or can be made from linear combinations of step cdges. Second,
in many cases, the blurring caused hy an imaging system’s optics
is deseribed reasonably well by Gaussian filtering, The parameter
@, represents, quantitatively, the amount of blur; a typical value is
o = 0.6 pixels [10]. Third, we do not restrict the extent of the edge
in either the x or y directions; this allows us to study the effects of
various observation windows without fixing arbitrary cutoffs. Other
researchers have proposed similar models, such as the tanh profile
[10], thus making our resulls comparable,

We model the received edge {x,y) to be the edge described
above corrupted by additive white gaussian noise (AWGN), ie.,
rlz.y) = I®{ %) +n(z, y), where n{z.y) is a sample of AWGN,
We do not claim that AWGN is physically realized in imaging
sysiems, but rather, we use AWGN because it is a tractable modet that
does not assume any local structure to the noisc. The AWGN model
has also been used by many other researchers [1], [8], [10], which
makes our results comparable. We define N2 to be the variance of
the AWGN process, i.e., E{n*(z,y)] = Nj. Finally, we define SNR

.2 . .

to be the ratio ;i—,-; of the square of edge amplitude to the variance
o

of noise.

Other researchers have studied localization performance, and we
now summarize their contributions. Berzins [11] studies errors caused
by corners, curves, and nonlinear illumination on laplacian-based
edge operators but does not consider effects of quantization or noise.
Havelock [12] considers quantization effecis on localization error
but does not consider noise-induced errors. Gonsalves [13) uses the
Cramer-Rao approach to determine limits on accuracy in estimating
the width of a 1-D pulse. These results proved useful for Burrett and
Huang [2], who use them 10 evaluate their algorithm’s performance
in mensuration tasks.

We take a Cramcr-Rac approach similar to Gonsalves, but for
the problem of estimating the location of a 2-D step edge. What
distinguishes our results from previous work is that we use the CRLB
to answer the following questions about edge localization:

1. What is the impact on achievable MSE due to varying SNR, ex-

tent of edge observed, and & priori uncertainty about intensity?

2. How close to optimal are the Canny [8] and the maximum-

likelihood (ML) edge localization algorithms in the sense of
achieving the CRI.B?
We consider the first question in Section IL. In Section {11, we show
that for high SNR, the MSE of the Canny algorithm is only a factor
of two higher than the CRLB. Finally, in Section IV, we show that
for high SNR, the ML estimate of edge location actually achieves
the CRLB.

In what follows, we omit details of our calculations. These can be

found elsewhere [14].

II. Toe CRLB

Qur cdge prefile I@(%) has three parameters: I, §, and o,.
In what follows, we assume that ¢,, which is the amount of blur
imposed by the lens, has been measured and is thus known 4
priori We combine the remaining unknown parameters into a vector

== [y, 82) = [¢. 11T, where the superscript T denotes transpose, and
deﬁne s{r.y:0) = IQ("_‘) Then { is the infleciion point of any r

cross section as —-73(1' y:9) = 0 when 2 = £. In our analysis, we
treat £ and I as nonranc[om variables {17), which means simply that
they are unknown quantities about which we do not have sufficient
information to give probability distributions.

For the observed blurred and noise-corrupted edge r{z,y} =
s(r, g @Y+ nlr.y), let f(r) be any cstimator of the edge location
{. Although edge deteclors that give position estimates [6], [8], [10]
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give both » and y coordinates to the edges that they mark, in what
follows, we use only the . component at some fixed y position, and
we interpret this component as an estimate of {, This makes sense as
we have defined the » and y coordinate axes in such a way that the
intensity transition occurs only in the a direction.

We now derive the Cramer-Rao bound. Let m = m(0) = E[i(r)]
be the mean function for an estimator £, given that the true values of
the unknown parameters are @ = [¢,I]7. Define the (row} gradient

= [g%.g%;] a}nd ©Tm its transpose. Then, the Cramer-Rao
bound on MSE of ¢ is [17]

Ellfir)— 671 2 ¥mI 'S 4 (m — 1) §y)

where J! is the inverse of the 2 x 2 Fisher information matrix J.
The clements Ji; of J are {17]

1 dslr. 1 O) | [Fsle. i @) ]
=[] [P35 2] 25 e @

where A = [=T,,Ty] % [~T;.T;] is the region of the image that
is searched by the edge detector known as the observation window
in the sequel.

The quantity B({(r)) = E[f(r) — ) = m(©) — { is called the
“bias” of the estimator { [17]. In the following, we focus on the
class of estimators that are unbiased, Le., those estimators for which
B(£({r)) = 0. There are several reasons why this class is particularly
interesting. First, as we show in the Appendix, for high SNR, any
linear filter-based algorithm that has zero systematic bias, such as the
Canny [8] or the Marr-Hildreth [6], is approximately unbiased. By

“systematic bias,” we mean the error {(r) — £ when there is no noise
in the input, i.e., when r(x,y) = IS(=" 0y, In partticular, Nalwa and
Binford [10] show that for estimators lhat use either the maxima of
the first derivative [8] or the zero crossings of the second derivative
[6], the systematic bias is zero for our edge profile I®(Z= f) (sec
their Appendix I with ky = ke = 0). Second, the ML esumutor
that we derive in Section IV has zero systematic bias, and since it
is based on a linear filter, it also is approximately unbiased for high
SNR. Third, for some algorithms, known systematic biases can be
removed by using a stored look-up table [1]. In this case, the edge
detector after correction is actually unbiased.

For unbiased estimators, we have B{f(r)} = 0, or equivalently,
E[f(r}] = ¢ Then Ve[m] = [1.0] and (1) becomes

Eltér) - 0] > [J_I]n =Tln-"—l‘;2_ 3
[1 - Jn-’z‘z]

where the right-hand side is the first diagonal element of J~'. By
inspectirég (2) and applying the Schwarz inequality, the strict bounds

0< T'?jz—; < 1.0 are easily seen. Thus, we always have

Eléiry — 67 > . @
Jl].

We now derive a particularly simple form of this equation and
subsequently show that for T, 3 ., the fraction T;zjﬁz 2 0.

To evaluate J;3, we insert s(v. ;1 Q) = I¢I>{’U;‘) into (2), and
after simplifying, we obtain

Bl(ir) - (] 2 — = eV !

P, [a(vEtazt) - oV

)

Notice that the term in [..] on the right is at most 1.0 and, in fact, is
nearly 1.0 if T 3> 0. For any T, we have

1> N /o,

El(ftry - ¢ T

&

The quantity on the right of (6) is a lower bound on the minimum
achievable MSE for any unbiased estimator of £. It is shown to be
nearly achievable in Section [V, This prowdes a simple and direct
relationship between achievable MSE, SNR 4 W' blur constant ¢, and
window lengths T, and T),. Since the righi- -hand side of (6), which
is independent of T, is always less than the right side of (5), which
includes T, we see that increasing T, beyond a certain point docs not
improve achievable MSE. In contrast, increasing T, always improves
achievable MSE. In this sense, extending the observation window
to obtain additional information across the edge—is measured by
Tr—is of limited value in improving localization accuracy, whereas
cxtending the window to obtain additional information afong the
edge—as measured by T,,—significantly improves localization. Thus,
to maximnize edge localization accuracy for fixed total window area, a
rotationally symmetric edge detection operator, for which T = T,
should not be used. Rather, one should implement an operator for
which T, >» T Indeed, the minimum T, required to perform
accurate edge localization can be quite small. For example, 7, = 0.6
pixels for typical images [10], and thus, T, = 3 pixels makes (5)
approximately equal to its limiting form (6). Canny [8] observed
this same asymmetry between T, and ¥, by using a different
argument and thus chose elengated edge-oriented filters as opposed
to rotationally symmetric operators for his algorithm.

We can also show, on substituting for s{x. y:©), that if T 3 o4,
then

121 \/_0', .
Jude T 8T o

and hence, (3} reduces to (4). (A proof of this is easy but tedious;
see [14] for details.} This result simply asserts that given enough
observation area across the edge, uncertainty about I does not
increase uncertainty about £. In this case, there is enough information
available to estimate both I and f separately without incurring
additional error.

HII. THE CANNY OPERATOR

Canny [8) presents an ecdge operator based on a linear filter
helr.y), whese the filter is chosen to optimize simultaneously output
SNR and localization performance. For edges oriented parallel to the
i axis, hi-(x.y) is roughly the product dJ',,n(T)fH(y) of the first
derivative of a Gaussian function o with scale ¢ and the Hanning
window fx{y). For a Hanning window fi; () of width T, [16], we

have

h Y . = "ff 1.1 ( )
dryy=¢, (@ fulyl= \/_ 3¢ 2+2cos ¥

for |} < T and |y| € Ty, and h-{e. y) = O otherwise.

Canny’s algorithm first filters an image r{x. y) with several filters
of the form o, (&) fr(y), cach with a different orientation, and
subsequently locates the maximum by thresholding, We now analyze
the localization performance of the Canny operator on the blurred
and noise-corrupted step edge r{r.y) = I@('T__g} 4 n(r.y). For
simplicity, we do not consider the effect of orientation mismatch.
I hele.y) = &', (zhfuly) (whu:h is properly oriented for our
edge), we lake the locallon estimate {. to be where a—z(hf(.a y) *
rir.y)} = 0, or because k. is smooth, we can use the condition
(arh {r. y)yxr{x. y) = 0. To analyze the error . —f{,weset{=0
without Joss of generality; then, the error is simply e As shown in

the Appendix, high SNR approximate values for E{f.] and E[(f)™
are

E[f] = 0.
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Fig. 2. MSE of the Canny estimate from (9) as the scale factor o varies.
The line indicates the Cramer-Rao lower bound () for the same values of
No, I, Ty, and o,.
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The variance E[(fe)Q] can be simplified through straightforward
integration [14]. We omit the intermediate steps, notmg only that if for
T: ¥ max(o.,0,), we use the approximation f_T "o (x)dr =
E[r"], then

E[(f.)] =

9 N3 (.2 + a2y .

16 IT, PEREE ©

When compared with the lower bound (6), this relation shows the

effect on MSE of smoothing—as measured by o.—prior lo edge

estimation. Fig. 2 shows how E[( (. ] varies as a function of a..

Dxfferentlatlon shows that the minimum of E[({.)?] cccurs when
= v/30,. For this value of o, (9) yields

Nd /e,
I*T,
which is 2.2 times the CRLB in (6). Thus, for any value of o, (9)
is greater than the CRLB, and for the optimal value of e = v/5o,,
(9) is 2.2 times (6). This is very good performance, but we show
below that for high SNR, the ML estimator actually achieves the

lower bound.

E[tf)?] ~

E[(f.P] ~ 2220 (10)

IV. MAXIMUM LIKELIHOOD ESTIMATES

The edge model s(r. y: ©) = IB( =) has two unknown param-
eters: #y = I and 82 = L. The mammum-llkehhood {ML) estimates
of both parameters satisfy the pair of equations [17]

s{a.y:© .
p f[ ) — sta,y: ©) 5("‘ b Do dady=0. =12
a1
Substituting for s(.r.y:©) yields the pair

—f/ [r(r,y)—f@(r—a——[):\fo,_,(.r-f)d.rdy =0: (12)

A e

Both equations can be solved for I; cquating the two solutions yields
[faria y)@,_ (x — H)dady ffq (e, y)B( ==L L)dedy
S @500, (x - Odrdy Jr et )d dy
Let n(E) be the ratio of denominators
Sl ®=he., (2 - Ddrdy
17, #*(=Dardy

)drdy =0. (13)

{14)

n(f) =
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Fig. 3. Plot of maximum-likelihood filer
fmit along x axis when { = 0 and o, = 0.6.

bty - on 2]

= = - . 15
5 B o
Then, {14) can be rewritten as a single integral equation:
// r{r.y) [a,,(.r— i — n(f)fI)('ra;()} dedy=0.  (16)
A s

Let fu(f.2) represent the term in [..); it is a linear shift variant
filter whose . cross section is shown in Fig. 3. Some intuition
about the operation of this filter can be obtained by _examining the
approximate behavior of n(C } when T is large and £ is small:

(1] L1

n(f) ~ = = —.
J5 ety AT - D

{7

Under these conditions, we have n(f) =
Fra varies very little with £,

We now calculate the performance of the ML estimator. By
teplacing v{z, y) with I®( == £=£3 it is easy to show that £ = { satisfies
{16), and thus, the ML estunator has zero systematic bias. To calculate
bias and variance, we can set { = 0 without loss of generality and use

the results in the Appendix, which show that for high SNR, Eff] = 0
and

n{0), and consequently,

N3 Jf, [#.la) = miOye(2)] drdy

E[(5] = (18)
I, ”’(%1(—;%éa,(ll"'"'(olq'(-f;)
T
+1{0)da, (r)) drdy}
We use the approximation »'(0) = FE =5 0 and n{0) = T =0

for Iz » max{o,, 1.0); see (15} and (17) Then, (18} can be written
as

N[5, 62, ()dz] 2T3)
IZ[2T,)2 [ 15 ®(Z)6h, (.r)d.r]2 .

Integration by parts reveals that for Tr 3 05, the integral in
the denominator is approximately —3 fa Substituting this ap-
proximation, making a similar approximation in the numerator, and
simplifying yields

E(6y]~

{19)

NG JSmo,
I?T,

which is the same as the CRLB specified in (6).
Our primary purpose here is to show that the CRLB can actually be

achieved by a realizable estimator. We do not propose an algorithm

for implementing f,n; because that would properly form the subject

of another paper.

E[(H) =~ (20)
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V. CONCLUSIONS

Our approach treats edge localization as a statistical parameter
estimation problem and derives limits on altainable accuracy such
as (6) or (3). As Section IV shows, for high SNR, the ML estimatar
attains these limits. Consequently, these expressions provide a simple
and direct relationship between achievable MSE and the following
factors: SNR, observation window size, and scale of smoothing filter.

We now consider some ramifications of our results. We chose to
neglect the analysis of bias in our form of the CRLB. An aliemative
approach would be to formulate a lower bound en estimator eror
that makes no assumptions on bias, e.g. the Ziv-Zakai [19] or the
rate-distortion [15] bounds. These bounds are generally tighter than
the CRLE and provide more meaningful results for sharp intensity
functions. The CRLB, however, is much simpler to evalvale and
provides the easily interpreted result in (6), which is why it is used
in this paper.

One might ask how our results, which were abtained in the
continous domain, apply to real images, which are sampled and
quantized. They apply in the sense that actual errors can only be
worse than our error predictions: sampling and quantization errors
necessarily degrade performance, and thus, the inequality on our
CRLB is preserved, Tn a discretized image, 2 CRLB on subpixel edge
localization can be derived using techniques similar to those used in
this paper. It is doubtful, however, that simple analytical forms such
as (6) could be obtained. We expect that numerical evalualion of
the discrete domain bounds would behave similarly to the CRLB
developed here but with higher error limits.

Finally, we note that of the topics left unstudied, perhaps the
most interesting is the effect of orientation mismatch on directional
operators such as Canny’s [8]. If we include an unknown orientation
parameter in our edge model, the Fisher matrix J in Section II
becomes a 3 X 3 matrix. However, this small increase in the size
of J increases considerably the calculations necessary for deriving
analytical forms for the lower bounds. We leave these calculations
for future work.

APPENDIX

We analyze the localization error £ — € of a lincar operator (see
also [8]). Let r{x,gy) = I@(%) + n{x.y) be the received image,
and assume that an estimate £ of ¢ is formed by the condition

([f hiu. !'.a'.y)r(x.y}dxdy) =0,
A u=~

Let Hr(u.v) denote the integral above, After substituting for r, the
condition can be written

1)

Hs(f,v)+ Hnlf,v) =0, (22)
where s is the edge TR(X=%), and n is the AWGN,

We are interested in the error £ — £ at any point v, say o = 0. We
can set £ = 0 without loss of generality, and the error is then simply
{. By expanding Hs({,0) in a Taylor series in u about u = 0, (22)
becomes

Hs(0,0) + Hys(0,00f + O(&) + Hn(£.0) =0 (23)
where H, denotes 2 H. If the cstimate has zero systematic bias,
then Hs(0,0} = {. Furthermore, if we take the error € to be small,

which implicitly assumes high SNR, then we can neglect ). I
addition, we can use the assumption that # is a uniform roise field
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to replace Hu(f.0) by Hn{0.0). On solving the resulting equation

(23) for €, we obtain

e — Hn{0.0) _ - ff_‘ h(0.0, 2, y)nle.y)dedy 4
T Hus(0.0) T ff, k{0,000, g O dudy )
The mean and variance are now easily obtained:
\ NE [T, (R(0.0. 2, y))dzd
Efflm0 B[P m —0 JI4(R(0.0. . y})" drdy 5. (25)

(114 Bat0. 0.0 )18 2 ey

We sce that for high SNR, the bias E[f] = 0. To caleulate the
vatiance, we use 2 (w. v.x,y) = ¢ (w~2)fr{v—y) for the Canny
filter, and h(u, v, 0 y) = g, (v — u) — n(u)‘I’(’;:‘) for the ML
estimator,
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