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ABSTRACT

See Through The Wall (STTW) applications have become of high
importance to law enforcement, homeland security and defense
needs. In this work surface penetrating radar is simulated using
basic physical principles of radar propagation. Wavenumber
migration is employed to form 2D images of objects found behind a
wall. It is shown that this technique cannot properly image with the
wall present because of an unknown phase delay experienced by the
electromagnetic waves as they pass through the wall. Two
approaches are taken to estimate this phase by looking at the direct
backscatter signal from the wall. The first is a dual phase approach,
which uses a non-parametric technique to find the phase at every
frequency. The second method is a dual frequency approach. The
two frequencies are close enough together that the reflection
coefficients are approximately equal. This approximation allows for
more observations than unknown parameters. The surface reflection
coefficient, back wall coefficient, and phase are simultaneously
determined using an iterative, non-linear (Newton-Raphson)
successive approximation algorithm. Comparisons are performed
for a simple scenario of three point scatterers with and without phase
correction.

1. OVERVIEW

Approximations and simulations are used in this work to gain
physical insight into the spatial signatures produced by objects
observed by surface penetrating radar. The radar system is a
receiver/transmitter pair that scans along the outside of a building.
The returns can be used to produce an image (slice) ofthe interior of
the room.

The imaging approach used in this work is wavenumber migration.
It was first introduced in synthetic aperture radar imaging by [1].
The method was first developed for seismology [2,3]. The principal
contribution of this paper is the application ofthis approach to See-
Through-The-Wall radar imaging.

The wavenumber migration algorithm works as follows. The 2D
complex spectrum of the image is constructed by properly
reformatting the plane waves received by the radar system. The
reformatting requires exact knowledge of the phase of the
propagating waves. When a wall of unknown thickness and
permittivity is introduced, the algorithm can no longer focus the
image because the wall imposes an unknown delay on each plane
wave due to the

decreased and unknown propagation speed within the wall. To
properly reformat the waves, the wavenumber migrator must know
the bulk effect of these two parameters (unknown permittivity and
unknown thickness) and remove that phase delay from the recorded
data.

Adding to the complication of this problem is the fact that the
reflection coefficients ofthe wall are unknown. In this work we will
assume that the radar return from the wall is composed of a
reflection from the front surface and a reflection from the back
surface. These two returns sum together to form a signal in noise
with two unknown reflection coefficients and one unknown phase.
Due to the non-linear nature in which these three parameters
manifest themselves in the returned signal, some assumptions will
have to be made in order to estimate them. Two approaches can be
considered.

The first approach assumes that the reflection from the wall
surface has been removed by some other means. This greatly
simplifies the problem and allows for the back ofthe wall reflection
coefficient and the phase at all required frequencies to be removed
using a sine and cosine or dual phase technique. This approach is,
therefore, a non-parametric approach that estimates the phase at all
frequencies. In practice, it may be a significant technical challenge
to eliminate the surface reflection contribution as required by this
method. Therefore, a second technique is proposed.

The second technique is a dual frequency approach. Here it is
assumed that the frequencies are close enough together so that the
reflection coefficients of the wall are nearly constant in frequency.
The phase unknown is reduced to its fundamental unknown part,
which is the product of the wall thickness (X) and the square root of
the wall permittivity (82). By relying on a cross-demodulated signal
(that is a transmitted cosine mixed with a sine on receive) the wall
return is naturally rejected. Two separate soundings are made at the
two frequencies. After the cross-demodulation the reflection
coefficient of the back of the wall and the phase parameter are non-
linearly coupled within the signal. A non-linear iterative maximum
likelihood estimation approach is used to separate these two
parameters via the Newton-Raphson algorithm. When this
algorithm converges, it provides a parametric estimate of the
thickness-permittivity-squareroot product. With this estimated
parameter, the phase delay for any frequency of interest can be
predicted.
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We adopt a physical optics model for electromagnetic wave
propagation for a simple environment consisting of three point
scatterers placed behind the wall. These simulations are used to
show the result of correcting the imaging signals with the estimated
phase. Images produced without phase correction are also provided
to demonstrate the need for correcting unknown phase distortion.

2. POINT TARGET SIMULATIONS

The simulation consists of a stepped frequency radar generating
frequencies from 500MHz to 2.5GHz with equal steps, a
homogeneous wall, and three point scatterers. Figure 2.1 shows the
point scatterer arrangement. The radar is pointed directly at the
wall. The imaging algorithm operates on a measurement of radar
backscatter at 256 frequencies observed at 201 locations parallel to
the wall. We define a local coordinate system (also shown in Figure
2.1) at a specified center of the generated image.

We employ a physical optics model of radar wave propagation
through the medium. Specifically, the radar rf field is
mathematically modeled as plane waves. The reflections from the
wall and back of the wall are govermed by Fresnel Reflection
Coefficients, which are valid
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Figure 2.1: Three Point Scatterer Simulations

for time harmonic plane waves. For this work, refraction effects
predicted by Snell's Law have been ignored for simplicity. Snell's
Law predicts that the waves will be bent as they enter and leave the
non-free space media In this paper we neglect this effect and assume
that the waves travel straight through the wall regardless of angle of
incidence.
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Figure 2.2: Point Simulation- (left) No Wall (right) Wall
Inserted

The imaging algorithm used to reconstruct the image of the three
point scatterers is wavenumber migration. This method transforms

the received signals into the 2D frequency space and manipulates the
phase of each wavenumber. Interpolations (i.e. resampling) is also
applied to format the data properly in preparation for a 2D inverse
FFT. With correct interpolation and phasing, the energy of point
scatterers becomefocused [4]. This can be seen in the free space (no
wall) simulation shown in Figure 2.2. The 3 point scatterers are
clearly well focused into point targets in this simulation. Their
amplitudes can be seen to fade for targets that are further away from
the wall. This is due to the 1/r2 spherical spreading ofthe energy in
the transmitted wave. In these simulations the radar is just 6 meters
from the farthest point scatterer. At these distances beam divergence
loss of the transmit energy can't really be ignored. The point
targets have the same radar cross section (1OdB).

Figure 2.3 shows the motivation of this work. When the wall is
inserted between the radar and the point scatterers, the imaging
algorithm cannot focus the points. This is due to an unknown phase
factor that is now present in the data stream. A simplified model of
the observations is given by Equation 2.1.

y(f,x) = a (f)e jo,(f x)a,, (f)e- }6(f,x)pne- oI Equation 2.1

The amplitude and phase labeled a. and 0s are due to the free space
propagation between the radar and the nth point scatterer. The
complex reflectivity ofthe scatterer is given in amplitude by Pn and
on. The effect of the wall is to produce an attenuation and phase
(both of which are unknown) given by a, and 0,

Under this model the wall acts as a filter that attenuates some of
the incident energy. If this is a function of frequency, it would have
to be estimated, ifthe goal is to reconstruct the true reflectivity of all
the pixels in the image. On the other hand, if the goal is to
reconstruct the location ofthe scatterers in the image, the amplitude
attenuation can be ignored [4]. Of course, in the presence of noise
or interference the power transmitted by the radar must be enough to
provide a usable signal-to-noise ratio of the received amplitudes.
The effect of the phase 0yi is to distort the reconstructed image.
Hence the phase must be estimated explicitly prior to image
reconstruction Note that the wall parameters are the same for all
simulations in this work: relative permittivity ofthe wall is 10 and it
is 0.2 m thick.

3. WALL PHASE DETERMINATION AND CORRECTION

Two methods are proposed here for determining the phase caused
by a wall of unknown permittivity and unknown thickness. Both
methods utilize a pulsed radar. The pulses contain a cosine
waveform with just 1 frequency that lasts 100ptsec. The return
signal is assumed to be a superposition oftwo cosine functions. The
first is from the surface of the wall and the second is from the back
of the wall. Equation 3.1 shows the expected return.

r(t)= ao cos(wt - 0) + a1 cos(ct - 0- 0) + n(t)

O= < h 0 = < 4 Equations 3.1
c c
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The 0 parameter is the expected phase delay due to the waveform
propagating to the wall surface and back to the radar. It is
reasonable to expect this value to be known. The + parameter on the
other hand, contains the Z-C2 value that is unknown. The ao and a,
values are related to the reflection coefficients ofthe front and back
wall surface. The noise n(t) is an unknown, performance limiting
factor.

3.1 Dual Phase Approach

The first approach demodulates the returned pulse with a cosine
and a sine waveform. This would be the same as transmitting a
cosine and a sine signal and demodulating them both with a cosine.
The result is an in-phase and quadrature measurement.

R(co) ZYr(t )cos(woti 0) R(co) a- + a1cos(Oi)N j1 2 2
1 N

Q(CO) = -E r(ti ) sin(coti - 0) Q(co) = 2 sin(o)N j=1 2

Equations 3.2

The blue wrapping phase is the estimated value. The wrapping
occurs because the range of the arctangent function cannot
determine the phase outside of the -7 to 7C interval. However,
mathematically, it is not necessary to determine the true phase. Only
the value within
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Figure 3.1: (left) Estimated and True Phase

(right) Image After Correction with Dual Phase Approach

this range is required to affect the necessary phase corrections in the
image processor. Figure 3.2 shows the resulting image after the
correction. Note that the three points have been successfully
focused.

Equations 3.2 show the processing steps and the final scalar values.
It is assumed that the sampling rate is sufficiently high to prevent
aliasing. Note that all the unknown parameters appear in these
scalar measurements. A separate measurement must be made at
each frequency used in the imaging system.

A significant issue exists in the in-phase value. The ao term is the
reflection coefficient of the wall surface. This value must be
determined prior to the application of this dual phase method. This
is the so-called "layer peeling". The wall surface must be
determined, then the inner wall structure, then the imaging of the
area behind the wall. Here we focus only on the solving of the
middle problem - the inner wall structure. With the removal of the
ao value, the in-phase measurement becomes what is shown in
Equation 3.3

R()_ ao -> R()= a1 cos(0i)
2 2

Equation 3.3

Now the form ofthe in-phase and quadrature values can be divided
to remove a, (unknown). The result is a tangent of the unknown
phase. By taking an arctangent, the desired value is reached.
Equation 3.4 shows the final form. Note that the R and Q values
must be measured at each frequency and Equation 3.4 applied. This
gives an estimated wall phase value at every required frequency.

(kco)= arctan( Q(c)) Equation 3.4

Figure 3.1 shows the estimated phase for the three point scatterer
simulation. The red line is the actual phase value at each frequency.
The phase is linear because the wall in this simulation is
homogeneous and non-dispersive. The phase ramp is due to the
linearly increasing frequency. The advantage of this approach is
that, were the wall dispersive (meaning that the phase changed non-
linearly in frequency), the required phase at each frequency would
be sufficiently determined.

3.2 Dual Frequency Approach

The dual phase approach makes an assumption that may not be
practically achievable. This is the assumption that the return from
the front of the wall has been removed (i.e. canceled). Because of
this a second approach is introduced here. Some assumptions must
also be made for this method. Two frequencies will be used to
generate a set ofnon-linear equations that will be solved iteratively
using a non-linear, successive approximation method. The
assumptions here are that the reflection coefficients remain constant
for the two frequencies. Since these values are slowly varying in
frequency, this assumption is very nearly true. As long as the
frequencies do not get too far apart, this assumption will hold.

Our starting point is with the quadrature measurements R and Q at
two frequencies fi and f2. The reason for using quadrature is that the
ao unknown is naturally removed during the demodulation process.
Ifwe also consider the in-phase measurements, we have to solve for
the added ao unknown. Since ao and a, are nuisance parameters, we
utilize only q1 and q2. The expressions for these measurements are
given by Equation 3.5. These are rewritten in the form of functions
Fl, F2 for use in the Jacobian matrix described next.

a,
q2=2 sin(Al)

a,1
q2= 2sin(02)

af, (x) aF, (x)

! 817(X) 82 (X)
L 8X1 8X2

Fl(x)= sin( x2)
2 c

F2(x)= 1 sin( X2)
2 c

Equations 3.5

I I sin( Tfx2)
-s2 c

Isin( 4T2X2)
-2 c

XI 4;Tf 4;Tfxl sin( x2)
2 c c
xI sin(4 x2) 42 c c j

Equations 3.6
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The parameter x1 is the reflection coefficient from the back of the
wall. The parameter x2 is the thickness-permittivity-squareroot
product. The x2 parameter is ofprimary interest. Knowledge ofthis
value allows for the phase distortion to be corrected.

Define the two element vectors q and F by contacting the two
respective terms in Eq 3.5. The problem ofestimating the parameters
x1 and x2 can be formulated as a non-linear least squares problem,
min_x \lq-F(x)\A2, equivalent to maximum likelihood under an
additive Gaussian noise model q=F(x)+noise. Starting with an
initial value ofx1,x2, we can find the least squares solution using the
iterative Newton-Raphson approach. This algorithm uses success
approximations to iterate to a solution. The Jacobian matrix shown
in Equation 3.6 is determined using the non-linear equations F1,F2.

The Jacobian matrix defines a hyper-plane that is tangent to the
manifold of the F1,F2 functions at the point of the current estimates
of x1,x2. A solution to the equations is found within this plane and
this solution will be closer to the true answer than the previous
estimates. The same is true for the next solution until the estimates
no longer change. This is the successive approximation strategy.
Mathematically, this can be written as in Equations 3.7.

Xk = Xk- + (Jk_lJk_ ) 'Jkl(q F(Xk- ))

Lq2j - x2i (x) F2(X)]

Equations 3.7

A logical starting point is to choose the initial values of x1,x2 to
determined by the values we expect (i.e. the mean values) for the
wall being interrogated. This incorporates the a priori information
we have about the wall. For this simulation only a few iterations are
required for the estimates to converge. Figure 3.3 shows the
convergence in the x1 parameter while Figure 3.4 shows the same for
x2. The starting values were 0.8 for x1 and 0.6 for x2. The actual
values were 1.0 and 0.6325 respectively. The estimated values
reached by the algorithm were 1.3 and 0.6270.

Convergence Xl - Dual Frequency Approa Convergence X2 - Dual Frequency Appro.

Figure 3.3 Convergence of Parameters x1 and x2

The x2 parameter corresponds to the
,

82 product, which is the key
element in the unknown phase experienced by the waves traveling
through the wall. Once this parameter is estimated, the image can be
phase corrected at any frequency. So, provided that the wall
structure does not change, only one sounding has to be made in the

dual frequency approach. The resulting image is shown in Figure
3.5.

Note that the 3 point scatterers are well focused in Figure 3.5. The
dual frequency method shows much promise. Unfortunately, it does
have challenges to be addressed in future work, namely local
minima of the objective function \lq-F(x)\A2.

Phase Corrected - Dual Frequency Approach

Figure 3.5: Image after correction with the Dual Frequency
approach.

4. CONCLUSIONS

Two approaches have been proposed for determining the unknown
phase produced by plane waves propagating through a wall. It has
been shown that this unknown phase prevents proper imaging ofthe
scene behind the wall using a See-Through-The-Wall radar. Both
approaches were effective in determining and removing the
unknown phase when their underlying assumptions were satisfied.

The two approaches were also quite robust when contaminated
with noise. Both functioned well at a signal-to-noise (SNR) of
-1OdB. (SNR here is defined as the mean squared amplitude of
transmitted sinusoid to the variance ofthe noise.) This robustness is
due to the correlating of the return signal with the transmit signal.
Each pulse was sampled in such a way that 1000 points were
collected. When all these samples are correlated with the signal and
averaged together, a reduction in noise variance of a 1000 is
affected.
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