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Poisson Models and Mean-Squared Error for
Correlator Estimators of Time Delay

ALFRED Q. HERQO, MEMBER, IEEE, AND STUART C. SCHWARTZ, SENIOR MEMBER, 1EEE

Abstract — A method for modeling large errors in correlation-based time
delay estimation is developed in terms of level crossing probabilities. The
level crossing interpretation for peak ambiguity leads directly to an exact
expression for the probability of large error involving the hazard function
associated with the level crossing process. Two models for the distribution
of the error over the level crossing times yield approximations to the
mean-square error (mse) which involve the low-order { < 4) finite dimen-
sional distribufions of the associated level crossing process. Application of
an inhomogeneous Poisson mode) for the level crossings reduces the form
of the approximations to a weighted sum of the Cramer—Rao lower bound
and the second moment of 2 function of the level crossing intensity over
time, Explicit expressions for the large error probability and the mse
approximations are obtained under 2 Gaussian model for the correlator
statistics. Analytical evaluation of the expressions, for the special case of
flat low-pass observation spectra, indicate in a simple and umified manner
properties of the corvelator estimator which have been reported in previous
studies. Qualitative and quantitative comparisons between these approxi-
mations and the Ziv—Zakai lower bound on estimation error are then
presented. Finally, results of computer simulation are presented which
indicate the sccuracy of the approximations.

I. IMmroDUCTION

PERSISTENT problem in the design of multisensor

array processing systems is the determination of the
accuracy with which the spatial position of an energy
emitting source can be estimated [9]. In the absence of
noise the bearing angle of the source, relative to the
baseline of a linear array, can be exactly determined by the
time differences of arrival of the propagating wavefront
betwesn pairs of sensors. With a noise background the
time differences of arrival, or time delays, must be esti-
mated from the observed sensor waveforms.

For the two-sensor case the minimum achievable estima-
tion error has been lower-bounded by the Ziv—Zakai lower
bound (ZZLB) [21), [S]. For flat spectra and a sufficiently
large chservation-time signal-bandwidth product (BT), the
simple correlator estimator has been shown to achieve the
ZZLB. On the other hand, if BT is insufficiently large, the
performance of the correlator estimator is known to fall
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short of the ZZLB [7]. In this case approximations to
correlator error are of interest.

A simple and accurate approximation, the correlator
performance estimate (CPE), was presented in [3] for the
special case of flat observation spectra and moderately
large BT. An extension of the CPE to bandpass spectra
was presented in [7). However, the computation appears
impractical for small bandwidth signals due to the large
number of sidelobes in the correlator trajectory.

We present a different technique to approximate corre-
lator error based on a continuous time level crossing model
for large error. The technique derives from the approxima-
tion of an upper bound on the mean-squared error (mse)
obtained using the level crossing model. The principal
advantage of this approach is that ail input spectra can be
ireated in a unified manner via the intensity function of
the associated correlator level crossing process.

We will deal with the following observation model. The
outputs of two sensors, x,(f) and x,(7), are observed over
a finite interval of time ¢ [0, T]:

(1) =s(t)+ny (1)
x3(1) = s(t = DY+ ny(1). (1)

The signal components, s(¢) and 2 delayed version s{z—
D), and the noises, n,(r) and n,(t), are zero-mean uncor-
related stationary Gaussian random processes. The delay
D is restricted to an @ priori region of possible delay
[— Dy, Dy]. We assume the signal and noise spectia to
have positive frequency support { f>0: |f — f| <B/2},
where f, and B are the center frequency and the double-
sided bandwidth of the signal process s(¢). The correlator
estimator of D is implemented via estimation of the cross-
correlation function R,;(1) by the sample cross-correla-
tion function, namely,

()23 [aOutena. @)

The correlator estimator of time delay D is the location in
time, within [ - D,,, D,/], at which the global maximum of
the sample cross-correlation function occurs:
bs Argmax RIZ(T)' (3)
T€[— Dy, Dy]
An analytical expression governing the mse of the corre-

lator estimator has been clusive due to the nonlinearity of
the estimator as a function of the sensor cutputs. In the
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absence of such an exact expression, considerable effort
has gone into constructing mse approximations. These can
be divided into two general categories: local (or small
error) mse approximations, and global mse approxima-
tions. If BT is sufficiently large, a small error approxima-
tion of estimator mse can be reliably applied for high
SNR [6], [19]. The approximation is equivalent to the
Cramer-Rao lower boiind (CRLB). However, as the SNR
decreases beyond a certain SNR threshold, which is BT
dependent, the approximation is known to significantly
underestimate the true global mse [3], [5], [7), [21]. This
threshold occurs when the multiple peaks, or peak ambigu-
ities, displayed by the correlation function over time, be-
come of the same order of magnitude as the local peak
occurring in the neighborhood of the true delay.

On the other hand, experiment has shown that the
ZZ1B is very nearly achieved by the correlator estimator
for flat signal spectra and large BT. Hence in this case the
ZZLB can be interpreted as an accurate approximation to
the correlator mse. However, it has been established
through simulation [7] and analysis [8] that the mse of the
correlator estimator can significantly exceed the ZZLB for
small BT,

The CPE [2] is a global mse approximation which accu-
rately models the mse for spectrally flat lowpass signals
and large BT [3]. The CPE is derived by modeling large
error as the occurrence of exceedances of a random level
by a set of independent identically distributed (ii.d.) time
samples of the trajectory over the g priori interval of delay.
For the simple low-pass signal the ii.d. samples and the
random level referred to earlier are simply the output of
the correlator at the zero locations of the delay-shifted
signal autocorrelation function and the output at the true
delay time, respectively. Thus the computation of the CPE
involves the prespecification of a set of sample times for
each case of observation spectra considered.

In an attempt to generalize the application of the CPE
to the bandpass case, it was proposed in [7] to calculate the
joint probability of level exceedance by the mutually corre-
lated ambiguity-prene sidelobes of the correlator. The
generalized CPE was shown to be a good approximation to
the mse for the low center frequency-to-bandwidth ratio
signal simulated in {7]. While application of the gener-
alized CPE to large center frequency-to-bandwidth ratio
was not discussed in [7], it is clear that as the center
frequency-to-bandwidth ratio increases, the increased
number of narrow sidelobes which need be considered
would rapidly render the calculation of the joint probabil-
ity of level exceedance impractical.

The CPE and generalized CPE can be interpreted as
discrete-time mse approximations based on the computa-
tion of level exceedance probabilities. In what follows we
will derive global mse approximations directly motivated
by the continuous-time nonstationary nature of the sample
cross-correlation function, In this approach the large error
is characterized by the occurrence of level crossings rather
than by level exceedances. The occurrence times of these
level crossings play the same role in our approximation
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that the prespecified test points play in the definition of
the CPE. This permits the direct application of our ap-
proximation to arbitrary spectra. Particularly for bandpass
spectra, a level exceedance computation along the lines of
[31, [7] involves the integration of a joint probability den-
sity whose definition is different for baseband and band-
pass spectra and whose dimension is proportional to the
center frequency-to-bandwidth ratio. On the other hand,
the level crossing computation proposed here involves the
integration of a bivariate joint density funetion: the inten-
sity function of the level crossings.

II. OVERVIEW OF PAPER

The first step in our approximation is to separate the
contributions of small errors and large esrors to the overall
mse. The second step is to relate the sequence of peak
ambiguities to a sequence of level crossings associated with
the sample correlation function. For this, the “ambiguity
process” is defined whose zero exceedances occur in the
neighborhood of the peak ambignities and whose global
maximun occurs at the global maximum of the correlator
waveform.,

Associating zero exceedances with zero crossings pro-
duces an exact expression for the probability of large error
in terms of the hazard function of the zero crossing pro-
cess. Also, conditioning the location of the global maxi-
mum of the ambignity process on the occurrence times of
its zero-exceeding local maxima gives an upper bound on
the large-error mse. This is (26), involving the probability
distribution of the global maximum over the set of local
maxima. This is accomplished by bounding the occurrence
times of local maxima with the occurrence times of a set of
associated zero crossings.

The proposed class of mse approximations is generated
by the assignment of various models for the probability
distribution of the global maximum of the ambiguity func-
tion over the set of its local maxima and by the approxi-
mation of the small-error mse by the CRLB. Two such
models are investigated here: 1) the “maximal model,”
Table II of Section IIl, which maximizes the mse over
possible probability assignments, and 2) the “uniform
model,” Table III of Section III, which assigns equal
likelihood to the local maxima. Under either of the two
models the resulting expressions for mse, (29) and (30),
respectively, involve the first-, second-, and third-order
finite-dimensional distributions (fdd’s) of the zero crossing
process.

Next, some recent results concerning the representation
of level crossing probabilities are discussed to motivate the
approximation of the level crossing process by an inhomo-
geneous Poisson process. The inhomogeneous Poisson
model can be regarded as a first-order approximation; it
approximates the hazard function by the more tractable
(incomplete) intensity function. In [4], [13] it was shown
that the progressively “thinned” zero crossings converge in
distribution to a Poisson process under some broad condi-
tions. Based on a practical interpretaticn of this asymp-
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totic result, we justify the Poisson level crossing model for
high SNR and large BT. While useful bounds on the error
in the Poisson approximation to the finite-dimensional
distributions appear difficult to obtain, we provide a gen-
eral nonparametric bound on the error in the Poisson
approximation.to the probability of large error. This bound
indicates that, independent of BT, the Poisson error prob-
ability approximation is conservative under the asymptotic
conditions of high and low SNR. Using the Poisson model,
the mse bound under the maximal model (29) and under
the uniform model (30) reduce to what will be called the
maximal model Poisson (MMP) approximation (45), and
the uniform model Poisson (UMP) approximation (47).
These are linear combinations of the CRLB and a correc-
tion term for large errors, For the UMP the correction is
the radivs of gyration of the intensity function of the level
crossing process.

To evaluate the UMP and MMP approximations, we
apply a Gaussian model to the correlator output waveform
and derive expressions for the intensity function of the
zero crossing process as a function of sensor SNR. For flat
low-pass signal spectra and large BT the intensity function
is approximately independent of time, and the Poisson
error probability and mse approximations reduce to an
analytical form. It is noted that the UMP and MMP are
identical when the intensity function of the zero crossings
is small, i.e., for large SNR, and are indicative of an SNR
threshold associated with a sudden onset of increasingly
large errors.

Numerical comparisons between the UMP and MMP
approximations, the ZZLB ‘of [5], and computer simula-
tions are presented for spectrally flat low-pass and band-
pass sensor waveforms for various values of BT. To the
extent that the cases studied are representative, the follow-
ing results are obtained. The UMP correctly indicates the
time delay estimate 10 be uniformly distributed over the
a priori interval for exceedingly low SNR, while the MMP
overestimates the mse by +5 dB over this region of SNR.
Over the rest of the SNR range the MMP and UMP are
virtually identical. The UMP and MMP behave similarly
to the ZZLB, indicating multiple SNR. thresholds of corre-
lator performance. For the flat low-pass spectrum consid-
ered and large BT, the UMP approximation overestimates
the actual mse, closely approximated by the CPE [3] for
this case, by a maximum of approximately 5 dB. For a flat
bandpass spectrum, in which case the actual mse exceeds
the ZZ1 B by approximately 8 dB on the average, the UMP
overestimates the mse by an average of less than 4 dB.

IIIL.

Let D and D be the correlator estimate and the true
delay parameter, respectively. Given a small positive con-
stant 8, we separate the error ]D - D| into small and large
error regions |D D|<8 and |D— D|> 8, respectively.
An exact expression for the global mse results from direct
application of the “law of total probability” to the mse

ESTIMATION ERRORS AND LEVEL CROSSINGS
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E{(D-D)*}:
E{(D-D)’} =02 (1-P.) + &P, (4)
where
a;gc=E{(f>- pylb-pe [~8,8]) (5)
=E{(ﬁ—D)2|I5—D65[—8,8]} (6)
P,=pP(D-De&[-6,35]) (7

are the conditional expectations of the squared error and
the probability of large error, respectively.

While the expression (4) is valid for any definition of
small-error region be [D - 8 D + 8], it will be conveni-
ent to choose 8 such that o2, is approxnmately equal to
the CRLB, 02y 5 [6], when the CRLB is less than the
maximal small-error mse &2. For flat spectra a standard
asymptotic analysis gives, for large BT,

(8

62, < min {oém + 0(82),82}
where

2 {3) 2 3

0(8%) < D_G?EJS(D_,_&IRSS(f) lodrL8°.
In the sequel we will use the bound (8) with § the smallest
magnitude zero of the signal autocorrelation function:
§=1/B for low-pass signals and § =1/4f, for bandpass
signals.

Next, we derive an expression for the large-error prob-
ability and develop an upper bound on the Iarge-error mse,

P,, based on a level crossing interpretation for large
error. The occurrence of 4 peak equal or greater in magni-
tude than the maximum of the correlator within [D — §,
D + 8] is called a peak ambiguity since it confounds the
estimator’s search for the location of the local maximum,
The presence of peak ambiguities can be detected in two
ways: by observing the values of the correlator output at
the endpoints — D,,, D,,, and by detecting the occurrence
of crossings of level zero by the difference between the
correlator output over [— D,,, D—8§)U(D+ 8, D,,] and
its local maximum in [D—8§, D+8]. The conditional
equivalence between the occurrence of level crossings and
large error will be exploited to arrive at an exact expres-
sion for the large-error probability. On the other hand, the
level crossings are not sufficient to give an exact expres-
sion for the large-error mse since the mse depends on the
specific distribution of the peak ambiguity locations. By
focusing on a subset of the level crossing locations, which
constitute “candidates” for D, a wide class of mse ap-
proximations can be generated. This is done by assignment
of different probabilities to D over the set of candidates.

We first relate the occurrence of large errors to the
occurrences of level crossings. Define the random level
2 ma.xue[ D=8, DJﬂ,;llilu(u) and the *ambiguity process”
AR(7)2 Ry5(7)— I;. The level I, is the magnitude of the
desired peak of the sample cross correlation, occurring
near D (see Fig. 1). Note AR(7) must be negative over
& {D—§, D+ 8] for no large error to occur. Next, define
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Fig. 1. Detection of global maximum of R, aver [~ D, , D, gives
correlator estimate of time delay D = . Local ma:uma oocurrcnce
tmes my and m, are candidates for large error D. Occurrence of evel
crossings of local maximum /y = max, o (.5 5 Ri2{#) by Ryy(r) at
Tmw and T=w, implies occurrence oII Ia.rge error. Estimation of
local maxima occurrence times by level crossing times uppes-bounds
error magnitude |D D},

the level crossing counting process N2 (N(r): €
[— Dy, Dy,)} associated with the ambiguity process

N,(= Dy, 1), re[-Dy,D~8)
. |N(~Dy,D—8), re[D-8,D+8]
N(r) £ N(=Dy,D—8)+N(D+8,7), ©)

re(D+8, D,

where N,(#y, t;) is the number of up crossings of zero by
AR(r) over 1 E€[t, 1) C[— D,,, D—8), and N,(1,,1,) is
the number of down crossings of zerc by AR(T) over
T€[1,1,) (D +8, Dy If Ry, is differentiable, an up
crossing (down crossing) is defined as an intersection of
zero by AR with a positive (negative) slope. For more
general definitions see, for example, [12]. The process N is
merely the running sum of the total number of up cross-
ings to the left of the true delay plus down crossings to the
right of the true delay (see Figs. 1 and 2).

N{z)
24
1 =
ol _‘
111 BLl al { ! 1
< Py o
On o mz-e Cen
T
Fig. 2. Level crossing counting process N, defined in (9, for example
of Fig. 1.

With the foregoing definitions, no large ersor occurs, i.e.,
D e[D-6,D+8]if and only if 1) the boundary condi-
tions AR(— Dy} <0 and AR(D,,) <0 are satisfied, and
2) N(D,;)=0. For convenience, define the indicator ran-
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dom variables I, and I,:

L1, ifAR(—Dy) 20

I.=

' {o, if AR(~ D,,) <0 (10)
o (L if AR(D,) =0

1 {0, if AR(D,,) <0. (1)

Hence the probability of large error is
P,=1-P(N(Dy)=0, =0, ,=0). (12)

An important quantity associated with the counting
process N is the hazard function A:

NG h]i_r‘no}l;P(N(f+h)— N(=) > 0|N(r)=0). (13)

The hazard function is a measure of the probability that
the first increment or point in N occurs at time #. For the
present application we will need the conditional hazards

A ; &iven the boundary conditions I, =i, I, = j, i, j=0,1:
A'U( ) ft 0 h

P(N(7+h)— N(r) > 0|N(1) =0, =i, I, = j).

(14)

As a matter of notation, subscripts “*” will denote averag-
ing over the relevant index, e.g.,

Ap(r) & lim —
-P(N(7+h)=N(7)>O|N(r) =0, [, =i). (15)

The hazard functions should not be confused with the
(incomplete) intensities p and p;; which are not condi-
tioned on the past history of the process:

p(T) éhﬁ-EnO;P(N(r+h)—N(7)>0) (16)

1
pi (1) & Jim. }!—P(N(-r +h)= N(7)>O)|L =1, L,= j).

17

Under Leadbetter’s regularity conditions [12], the intensity
functions are related to the rate functions:

EIJ{N(T)} =f:D Pu(“)d“- (18)

The following representation theorem associates the hazard
function (14) and the probability of large error.

Theorem I1: Let N & {N(r): [~ D,,, D,,]} be the level
crossing process defined in (9). If (1/R)P(N(r+h)—
N(7)>QIN(7) =0, I,=90, I, =0) converges uniformly as
h— 010 Agy(7), then

P,=1—exp{—f": Am(q-)df}p(o,o) (19)
where F(x, y) 2 P(AR(— D)) <x; AR(D,,) <y) is the

left continuous joint probability distribution function asso-
ciated with AR.
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Proof: Fix h>0 and let t €[— D,,, D). Define the
partition {#,}£.,, of [~ Dy, 1]: t, €[~ Dy, ¢) and #,,,— ¢,
=h. The event N(t)>0 can be decomposed into the
disjoint unmion UZZYN(t,,y)— N(2) > 0N N(1,) = 0)).
Hence

P (N(2)>0) 2 P(N(t)>0|[1 0, I, =0}
= 3 2PN t) - () > (1) = 0)

-,I-’W(N(tf)=0)h. (20)

Taking the limit as h—»0, p—co vields, by uniform
convergence of the Reimann sum,

Py N(2) >0) = f_‘D Aoo{7)(1 = P (N(7) > 0)) .

(21)
Equation (21) is an integral equation for the r-varying
function Py, (N(#)>0) which has the unique solution
Poo(N () > 0)=1—exp{— JEp Aoo(T)dr}. The relation
Pe=1—P00(N(Dm)=O)F(Oa0) (22)
finishes the proof.

The foregoing theorem gives an exact representation of
the probability of large error in terms_ of the hazard
function associated with the level crossings. However, while
the presence of level crossings is (conditionally) equivalent
to the presence of ambiguity, the level crossings alone do
not uniquely specify the location of the global maximum.
On the other hand, the level crossings can be used to
upper-bound the deviation of the location of the global
maximum from the true delay D,

Given N(D,;)=n,let wy,- - -, w, be the points (times of
increase) of the process { N(+): t €[— Dy, D,]} defined
in (9), and let w,=—D,, and w,,,=D,,. Specifically,
define w,* -+, w, the zero up crossings by AR to the left
of D and w, ,,---,w, the zero down crossings to the
right of D. Between each successive palr of up crossings
and each successive pair of down crossings there is a local
maximum constltutmg a peak ambiguity. The occurrence
time of this maximum is a possible location for the correla-
tor estimate D. If AR(— D,,) > 0, then the location of the
maximum of AR between — D,, and w) may also corre-
spond to D. Similar comments hold for the case AR(D;)
>0. Let {m,;)77] be the set of locations of the local

maxima
argmax AR(7), i=0
TE[— Dyw]
argmax AR(7), i=1,+,n,—1
T €[4, W]
argmax AR(r), i=n,
s ) relw,, D8]
) 23
g argmax AR(r), i=n,+1 (23)

TE[D+ 8, W, 1q]

argmax AR(7), i=n,+2,--:.n
TE (w1 W]

argmax AR(7), i=n+1
f.EIwu!DH}
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The contraction property of iterated expectations [20}

relates the mean-squared error to the locations of the local
maxima {m,}:

E{(H-D)*}
= E{E{(ﬁ_ D)zl’"o" “Myp et D Do, N(DM)}}
=E{(D- DY, =0, I,=0, N(D))) = 0}

’P(I1=0s I,=0, N(DM)=0)

N(Dy)+1
+E{ ¥ (mk—n)’P,,}

k=0

(24)

where P, is the conditional probability that D =m ; given
the random variables I, I,, N(D,,), {m, }J(D)+1;

P,-é P(IA) =my|my, -+, Myep v D1 I, N(DM))' (25)

Note that P, is zero for all & if no large error occurs.
Otherwise, ¥, P, =1. It is also a given that if AR(— D,,)
<0 and AR(Dp) =<0, then P;=0 and P, ,=0 since
AR(m,) and AR(m,,,) do not exceed zero. Define the
candidates for D as the subset of {m;} for which a positive
probability P, may be assigned to each event D =m » Note
that m,,---,m, are always candidates, while m, and
m,,, may not be: The random variable P, and the set of
candidates-are further specified in Table I.

TABLE I*

Candidate Locations for D L A N

argmax  AR(t) (F=P=0) 0 o 0
r&[D-8,D+8) -
my, -y (Po=Pys1=0) O 0 >0
my (B=0,P=1) 0 1 0
My, Mg (F=0) 0 1 >0
my (Pp=1,P=0) 1 0 0
Mg, iy (Pysr=0) 1 0 >0
my, my 1 1 0
g, My 1 1 >0

*Bet of candidates for location of global maximum of correlator under
various conditions,

L&I[AR{—Dy)>0]
L2 I[AR(Dy) > 0]
N £ number of level crossings over [~ Dy, Dy ] 2 N(Dyy).

The obvious relation {m,—Dj<|w,— D}, i=0,---,n+
1, and the identification of the first term on the left of the
expression (24) as a2 (1— P.), gives the upper bound on
the mean-squared error:

E{(ﬁ - D)z} < oﬁ,cexp{—ff; Aool(7) d'r}F(0,0)

N(Dy)+1
+E{ (2 (wk—D)sz}. (26)
k=0
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The relatioh (26) is the basic result which relates the
mean-squared error to the level crossing statistics. The
result can be developed further via introduction of models
for the probability distribution { F;}.

Here we propose two models. The first model, { P!} in
Table II, assigns all the probabihty mass to the candidate
local maximum which maximizes the sum in (26) {maximal
model). The second model, { P2} in Table III, assigns
equal probability to all of the candidate local maxima m;
(uniform model).

TABLE II* _
Maximal Model I I N
pl=0, Foralti . 0 0 0
Pl=1, = a.rgmax Iw;— D] 0 >0
J-
Al=1 ] 1 0
Pl=l, i= ar w—D] O 1 >0
Jelee N4
Pi=1 1
Fl=1, i= agmax jw—D| 1 >0
J=Oee N
Pl=1, Q= agmax|w— D 1 1 0
=01
Bl=1, i= agmax [w-D 1 1 >0
L =0 N
P,= P! maximizes the mean-squared error over probability
assignments to the events {my;= D). Note wy=— Dy and
Wya1 =Dy
_ TABLE in* ,
Uniform Model A I N
P?=0, foraili 0 0 0
B ! =1 N 0 0 >0
¥ N’ =l
Pi=1 0 1 0
p? ! .+, N+1 0 1 >0
S
Pi=1 1 0 0
p? LA 0,---, N 1 0 >0
FTNE TR
p? 1 0,1 1 1 0
[ 27 i y
P =0, N+1 1 1 >0
CT N T

4P, = P? assigns equal probability to events {m,=D}
over all candidates {1, ).

Define the mse épproximations under the previous mod-
els, mse, and mse,:
mse; = o,f,cexp{— fD" Agolr) d'r}F(0,0}
- D“

N(Dy)+1
+E[ pN (wk—D)zP,ﬂ}, i=1,2. (27)
k=0 ’
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Maximal Model

Partial expansion of the expectation to the right of (26)
yields

{ N(Du)+1 ,
E{ Z (w,— D) Pk}
k=0

N{Dy) ) ‘ _
: =Eoo{ Z (Wk_D) Pk}P(Ilﬁoa L,=0)
k=1

N(Dy)+1 ,
"‘Em{ 2 (w-D) Pk}P(Il=O: 1,=1)
k=1
Ny
+Em{ h (Wk_D)IPk}P(ﬁ:L L=0)
k=0
N(Dy)+1
B . (=D Be}p(2 =1, =),
~0

(28)

In (28) E;; denotes the conditional expectation given events
=i, I,=j for i, j=0,1. The summation indices for
which P,‘ is conditionally zero have been suppressed as per
Table 1. Since each of the four tetms in (28) can only be
positwe Or Zzero, ma:ummng the individual expectauons
makimizés the entire sum, These expectations are in turn
maximized by setting P, equal to unity when k is the
index of the maximum square deviation (w,— D)2 as
indicated in Table I Hence E{¥(w, — D)?P, } is an upper
bound on the large-error mse,

Referring t6 Appendix I, the equality in the following
relation for mse, is established:

E{(f)—D)Z} < mse,
. 5 .
=0,2m(1-—Pe)+f_: (r— D) hy(r)dr

+(Day= D)’y +{ Dy + D)zﬁ; (29)

whete Ay, oy, and B,, given in (1.15) and (1.16), are
functions of the fdd's: {P(N(m) <k, -, N(1,) <k, )
T €{— Dy, D), k;=0,1,+-+ } up to order m=3.

Uniform Model

While the maximal model gives an upper bound on the
mse, it may be excesswely large at low SNR when the
distribution of D is expected to be uniform over the
a priori region. As an alternative, we consider the uniform
assignient of probability { P, } over the indices of the four
respective conditionial expectations (28) (see Table III). In
Appendix I the following expression is derived for the mse
under the uniform model:

mse, =03 (1~ )+ [ (v~ D)'p(r)go(r) dr

+(Dy— DY ay+(Dy + D)8, (30)

In (30), «, and B, are decreasing functions of the prob-
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ability that R ,(— D,,) and R,,(- Dy,) exceed zero, re-
spectively, and are decreasing functions of P(N(D,,) > 0k

ay= E{m }E{Iz}

Bz=E{

1
W II=1}E{11}.

The function g,(7) is defined as

(5] 1 n
J:.’z:(“')é E 7 E ak—l.n—k('r) (31)
n=1 f p=t
and we have defined the function

1
@rot,n—k —hh—IPDZP( (r)=k—1, N(7,Dp) =n—k|

‘N(r+h)—N(r)>0). (32)

a, ;. can be interpreted as a “bidirectional” Palm measure
which corresponds to the pl’Obﬂb]llty that, given the occur-
rence of a point at 7, this point is the kth occurrence in a
sequence of n points occurring over [— D,,, D,,]. See [11]
for a discussion of Palm measurss.

Observe ‘that the uniform model gives an upper bound
on the mse under the following monotonicity condition on
{P;}: |m;— D| <|m;— D| implies P,> P,. In other words,
if the probabihty of a global maxlmum occurring
at my decreases as the distance |m;— D| increases, then
E{(D - D)*} < mse,. However, even for simple models
for the distribution of AR, e.g., Gaussian, it appears
difficult to establish general sufficient conditions for
monotonicity.

The expression for mse, (29) and mse, (30) are of
similar form. Both consist of four terms. The first term is,
as before, the small error contribution to the global vari-
ance. The second term is the contribution of the level
crossing process, and the sum of the third and fourth terms
is the contribution of any peak ambiguity which does not
generate a level crossing (i.e., corresponding to the assign-
ment D = + D,,). Note that, as a function of the statistics
of N, (29) and (30) behave in 2 manner expected from any
reasonable mse approximaticn. In particular, as the prob-
ability that N(D,,)> 0 approaches zero, the hazards A,
must approach zero. For continuous Ru, o, and B, w1ll
also typically approach zero. Hence in this case o,
dominates the expressions (29} and (30). Conversely, when
P(N(Dy,) > 0) becomes large, A;; becomes large and the
second, third, and fourth large-error terms dominate.

The form of the expressions (29) and {30) is not suffi-
ciently simple for computation. Indeed, while the intensity
function p is straightforward to compute [12], the compu-
tation of the hazard function A is generally difficult due to
dependence between the increments of the point process N
over time. However, when N is a Paisson process, the
hazard function can be calculated easily.
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IV. Poisson MoDELS

The explicit evaluation of mse, and mse, depends on
knowledge of the fdd’s of N, the level crossing process
associated with the ambiguity process AR. In this section
we motivate the Poisson model for the random process N
by the following: 1) as the intensity converges to zero over
(= Dy, Dy), N converges to zero at the same rate as a
Poisson process converges to zero under a large BT as-
sumption, 2) the Poisson model provides an upper bound
on the probabﬂny B(N(o, 1)>0), s5,7€[— D, D,] in
the limit of large and small intensity, and 3) if the ratio.of
the variance to the mean of N is bounded for large E{N },
the upper bound of 2} is also a lower bound.

Assume that D=D,, so that N is the point process
associated with the zero up crossings of AR over the
a priori interval. It is easy to generalize the following
discussion to the case of mixed up crossings and down
crossings for a general D. We have established in [18] the
followmg representation theorem for the up crossings gen-
erated by a random’ process X { X(7)} which will be
applied to AR,

Theorem 2 [18]: Suppose the random process X 2
{ X(7)} has continuous sample functions with probability
one, and let the joint density f, ,.(x;, x;),-of X(7,), X(7;)
sansfy Leadbetter’s conditions [12] Then the probability
p(1) 2 P(N(a, 1) > 0) of one or more up crossings of zero
by X over the interval [g, ¢) satisfies the integral equation

()= [o(n1-p()) dr+Q(e,r)  (33)

where
E{N(o,1)} =j;‘p(f)df (34)
and
p(1)= lim = ("2, cosO) . (59)

In (35), £, ++4{x, x+ By) is the joint density of X{r) and
X(++ h) evaluated at the point X(r)=x and

X{r+h)- X(r)
—_— -

The function Q(s, t) in (33) is the integral over [o, ] of the
following measure of dependency between the forward
increment dN(7) and N{=), denoted g{r):

g(7)dv £ P(aN(r)>0, N(r)=0)
— P(dN(r) > 0)P(N(r) =0). (36)

Leadbetter’s condiltons, referred to in Theorem 2, are
simple conditions on the second-order density of X such
that the joint density of X and the right derivative of X at
7 exists and has finite first moment. Theorem 2 gives an
implicit relation for the probability that N(g,+)> 0. Al-
though the intensity p is calculable in pringiple, the Q term
in (33) is not known. It is conceivable that (33) may lend
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itself to an iterative solution if some increasingly good
estimates of g are available. In so far as exact results are
sought, however, the previous representation theorem may
only be used as a verification method for some candidate
for P(N(s, ) > (). On the other hand, Theorem 2 is useful
for establishing some asymptotic results which will be
outlined presently.

Unfortunaiely, there are but a few explicit distributional
results for level crossings associated with a nontrivial ran-
dom process X. To the best of our knowledge, published
results exist only when X belongs to certain restricted
classes of Markov or psendo-Markov processes [13], [14).
On the other hand, there is a rich literature on the asymp-
totic distribution of level crossings for certain stationary
random processes as the intensity approaches zero [15],

The most familiar asymptotic result takes the following
form. Define a suitable sequence of increasingly high levels
{1,.}. Given a stationary almost surely continucas random
process X which satisfies some regularity conditions such
as asymptotic mixing, the counting process N, associated
with the crossings by X of the increasingly high level /,,
behaves increasingly like a (homogeneous) Poisson pro-
cess. An equivalent interpretation is as follows: if p,, and
02 are the mean and variance of X, the zero crossing
process N, approaches zero as a Poisson process when the
“SNR” |u,,/0,| converges to infinity. .

In [18} an analogous but inhomogeneous Poisson limit
for the zero crossings of 2 nonstationary process is shown.
We will interpret this asymptotic result in a way which
motivates the Poisson model for the zero crossings N of
AR for large SNR. A heuristic argument for the Poisson
limit follows based on Theorem 2.

Let the intensity p = {p(7)} of the zero crossings by a
random process X be sufficiently close to zero such that
the crossings become rare events, i.e., with high probability
the distance between successive crossing times is large.
Furthermore, assume that X satisfies a *“mixing condition”
which guarantees the approximate independence of the
trajectories of X over two distant disjoint intervals of time.
Under the previous assumption, by virtue of their rarity,
the zero crossings are approximately independent for small
p. Specifically, for p(t) = P(N(o,t)>0), given ¢> 0 for
sufficiently small p, we have

|CI(‘T)|<€/j:exp(—£p(u)du)du, <7<t (37)

In this case (33) can be differentiated 1o yield the first-order
differential equation

e ) P B
with initial condition
ple)=0. (3%)
Let p*(f) be the solution to (38) for g(¢z) = 0. Then
Py =1~exp(~ [p(r)ar}  (40)
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and the difference A £ p* — p satisfies the equation

B oA o)

(41)
with

A(s)=0.
From (41) and (37} the following bound is easily derived:

|7*()= p()]= [Ta()lexp - ['p() ) dr <.
()

Hence N{o, ¢) is within e of having a Poisson distribution
with rate [Jp(7)dr.

Equation (42) is valid for any interval {o,7). Conse-
quently, by the approximate independent increment prop-
erty of N the level crossings must closely approximate (in
distribution) an inhomogeneous Poisson process with in-
tensity p in the sense that for small §,

P(N(IO! :1) =k1" ) '!N(tn’ l‘n+1) = kn)

- i
-1 m]_exp(_f‘f“p(f)df]m. (43)

i=0 [

The foregoing asymptotic result is made considerably
more precise in [18], Now let X of Theorem 2 be the
ambiguity process AR of Section III. If AR can be accu-
rately modeled by a Gaussian random process, then, con-
ditioned on R,(D), AR(r) and AR(x) are approximately
independent for |r —u{>1/8. Assume BT > 1, and et p
be suificiently small so that P(N(r,7+1/B)>0) <¢ for
all 7.

With the foregoing, any two level crossings, i.e., incre-
ments of N, must be separated by a distance of at least
1/EB with high probability. Therefore, for small p, or for
what will be seen to be equivalent, large sensor SNR and
large BT, the accuracy of the Poisson mse approximation
is guaranteed by the convergence of the fdd's of N to a
Poisson limit as in (43). The error in the Poisson ap-
proximation to the fdd’s of ¥ can be made explicit by a
careful analysis of the “mixing parameter” for the ambign-
ity process and development of a relation between ¢ of (42)
and 8 of (43).

For large p the accuracy of the Poisson approximation
to the finite-dimensional distributions of N is unknown.
On the other hand, the form of the bound (42) suggests
that the approximation error A(¢) associated with the
one-dimensional distribution p(N(o,#) > 0) be small as
p — oo when g has less than exponential growth in p. A
sufficient condition for

lim A(5)=0
E{N{f)} = o0
is
var { N(« )}
E{N(n)) — o E{N(r)}
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(see {18]). Consequently, under the previous condition, the
probability P(N(t)>0) is well approximated by 1-
exp{— E{N(t)} for asymptotically large or small mean
rate of N.

The application of the Poisson model to the level cross-
ing process N gives the following simple relation for the
probability of large error (22):

P, =1~ e~ Exl¥Di)iF(p,0), (44)
The mse approximations (29) and (30) become the follow-
ing.
Maximal Model Poisson (MMP) Approximation (D > 0)
We have

mse, = o2 _(1— P, )+f ('r-.D) z{(1)dr

+(DM- D) g~ FalN@2D-Dy))
-P(AR(— D)) <0, AR(D,,} = 0)
+(Dy + D)’ P(AR(~ D)) 2 0) (45)
where

z(r) = Poo("')[ehEm{Mmq'r)}I[D,D,,](7)
+ e—Em(N(f,ZD-“I‘)}I[ZD—D”'D](T)] .
- ¢~ Bl MW F(0,0)
+pge(r)eB NN op b (T)
‘P(AR(—Dy) <0). " (46)

Uniform Model Poisson (UMP) Approximation
We have
mse; <ol (1 P.}
+f "; (7— DY2p(r) dr(1- e~ EN D))
-Dy

,1— e Bt}
Eq{N(D,)}
1— e~ Ee(N(Du)

E{ N(Dy)}

+(Dy — D) P(AR(D,,) =0}

+(Dy+ DY P(AR(~D,,) = 0).

(47)
In (47) we have defined the normalized intensity

o) () [ o) du (48)

To obtain (44)-(47), we have used the fact that under the
Poisson model the hazards A (13) and A,;; (14) are identi-
cal to the intensities p (16) and p,(17), respectwely, due to
the Poisson independent increment property [11]. Further-
more, the function k() (31) reduces to the expression

hr) = P(N(Dy)>0)

EN (D, (49)
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Note that in the limit of large intensity p the MMP
converges to the worst case msec of max{(D,, — D)%
(D), + D)?} while the UMP converges to the mse of a
uniform distribution D /3+ D% Regarding the UMP
approximation (47), we note that as the intensity p in-
creases, the UMP discounts the small-error mse, o2, by P.,
and adds an increasingly large quantity. This quantity
represents the mean-squared deviation of the peak ambigu-
ities. In the next section we present results of the numer-
ical evaluation of the expressions (45) and (47) which show
the UMP to be virtually identical to the MMP except for
large p.

V. APPLICATIONS

In this section we will explicitly calculate the intensities
under a Gaussian assumption and investigate the resulting
form of the Poisson mse approximations for simple low-
pass and bandpass signals and the case of zero delay
D =0. We make the following assumptions: a) R, is a
Gaussian random process with nonstationary mean and
analytic covariance function, and b) max, o(_s, a;Rlz(")
= Rn(O) The Gaussian model invoked by assumption a)
is reasonable for large BT. In this case the sample cross-
correlation function represents the average of a large
number of independent identically distributed random
processes over subintervals of [0, T, each of length 1/8.
Since the exceedance of R,(0) by Ry5(7) for some re
[ Dy Dy ]—[— 8, 8] does not necessarily imply a peak
ambiguity, assumption b) is pessimistic at worst.

In the particular case D=0 and BD,, 1, the symme-
try of the intensities and the approximate independence
between AR(D,,) and {AR(7): r&€[— Dy, 8]} give sim-
plified expressions for (45) and (47):

mse, = o2 (1— P,)

+2ffDMrrzp1.(-r)cxp (ZEMpl.(u) du) dr

-cxp( —Zf—ob Pe(T) dr) F(0,0)
+ D (1- F(0,0)) (50)
mse, = o, (1— 7,)

+2f"°DMT=ﬁ(7) df(l—cxp(—Zf_ODMp(?) d'r))
1—-exp(—2fDMp1.(r) d-r)

2Dy 2f0 pp(r)dr

-P(AR(Dy) 20) (51)
where

Pe=1—exp(—2]jp po-(7) d-r)F(O,G). (52)

Explicit formulas for p, py., and p,. can be derived for
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7 < 0 by using assumptions a) and b) (Appendix II):

po(r) = {Klfo y®(apy+a)o(y+a,)dy, 758

0, -§<r<0
_ K2¢(a3){¢(a4)+a4@(a4)], T<—8§
p(T)_{O' ~f<r<0
(53)
ppo(z) = L)~ PBR(=Dy) < O)pyelr) (54

P(AR(~ Dy,) >0}

Here K, K, a4, ++,a, are functions of r given in Ap-
pendix II. The functions ¢ and ¢ are the standard Gauss-
ian distribution and density, respectively.

For large BD,,, small 8, and flat Jow-pass signal and
noise spectra of bandwidth B and magnitudes § and ¥,
respectively, it can be shown [4] that the intensities p and
Py of (33) are essentially independent of time and are
virtually identical in functional form. The unconditional
average number of zero crossings E{N(D,)} takes the
form

BD,, )
E{N(Dy)} =2pbu=m¢(v VBT). (53)

|7zl is the magnitude coherency between x, and x,,
1v12) 2 8/(S+ N), S/N is the SNR, and we have defined
¥ =112l/¥2+ [¥12]*. The MMP and UMP approxima-
tions (45) and (47) become particularly simple to evaluate:

mse, = o~ FNPI92( B)

) e BV} _ 1+ E{N(D,,))}
"'D"[l”z EF(N(D,)}
-@%(8)+ D} [1-2*(8)] (56)
and
mse, = o2 e~ E(MP@2(8)
+ %ﬂ 1+ ——-E{N:DM)} [1—@2(3)])
(1— BN (57)
where

B =~ E{AR(~ D,,)}/{var (AR(= D,)] .

Some general comments concerning the behavior of mse,
and mse, can now be made based on (55)-(57). First, as
the coherency increases to gne (high SNR) the average
number of level crossings approaches zero and 8 goes to
positive infinity. Hence one can verify that under these
conditions,

D2
mse; = mse, = o e~ E¥P} 4 TM-E{ N(Dy)}. (58)

On the other hand, decreasing the coherency (low SNR)
causes an increase in p, and hence both mse, and mse,

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 28, 2008 at 13:05 from 1EEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 34, NO. 2, MARCH 1988

increase to D and D} /3, respectively. Second, the term
¢(y'VBT) displays an abrupt increase in magnitude as the
SNR decreases beyond a BT-dependent threshold SNR,
(SNR, is such that y'YBT =3), resulting in a sudden
increase in the rate E{ N(D,,;)}. In general, increasing BT
decreases SNR,, expanding the SNR range of error-free
operation of the correlator. Finally, the quantity BD,,
governs the steady-state value of the average number of
level crossings as the SNR decreases to zero. Increasing the
length of the a priori region [~ Dy, D),] naturally makes
large errors more likely.

‘The behavior of the MMP and UMP approximations as
a function of SNR is analogous to the behavior of the
ZZLB reported in [5] for low-pass signals, with the follow-
ing exception., Consider the asymptote of (55) as SNR
approaches infinity. In this case |y} ~1 and

BD
E(N(Dy) ~—Z*o(k/BT)  (59)

where k, is a finite numerical constant. This interesting
result implies that even at infinite SNR, large errors {level
crossings) may be committed. This is in agreement with
results obtained in [8], showing the suboptimality of the
correlation estimate of delay except for very large BT,

Fig. 3 is a plot of ihe intensity surface as a function of
input SNR and time for a flat low-pass signal spectrum of
single-sided bandwidth, B =100 Hz. The observation time
was set to T = 8 5. The time window displayed in the figure
extends across the first few sidelobes of the autocorrelation
function of the signal, starting at § =1/B (at the northeast
comer of Fig. 3 for an SNR of 0 dB). In the figure the
global maximum of the signal autocorrelation function lies
beyond the rightmost point on the r axis. Note the abrupt
increase of the intensity near the SNR threshold indicated
by SNR, on Fig. 3. At low SNR the intensity surface
saturates (average height is about 4.5 ambiguities per unit
time) with only a small ripple variation over time, For high
SNR the intensity is essentially zero uniformly over the
time window. In the intermediate tange of SNR (ap-
proximately —8 to —20 dB), the average number of peak
ambiguities per unit time is higher in the neighborhoods of
the local maxima of the signal autocorrelation than in the
outlying regions.

In Fig. 4 the intensity surface is displayed for a band-
pass signal at center frequency f, =500 Hz with band-

43086

Fig. 3. Intensity surface for low-pass signal over time and SNR.
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Fig. 4. Intensity surface for bandpass signal over lime and SNR,

width B =200 Hz and T=28.0 s. Here the time window
extends from the first zero crossing of the autocorrelation
function of the signal § =1/4f; to approximately the fifth
sidelobe away from the origin. Fig. 4 is oriented identicaily
to Fig. 3 for the lowpass case; the global maximum of the
autocorrelation is beyond the rightmost point on the ¢
axis. Contrasting Fig. 4 with Fig. 3, it is evident that the
variation in the intensity surface is much more severe in
the bandpass case, even at low SNR. In fact, the average
number of peak ambiguities is orders of magnitude greater
near the first sidelobe than over the rest of the time axis. A
distinctive feature of Fig. 4 is the SNR difference between
the point SNR,, where a rapid rise in the intensity of
ambiguity first begins (in the region of the first sidelobe)
and the point SNR,, where a uniform increase of the
ambiguity over time is evident. This implies the existence
of at least two separate SNR thresholds in the bandpass
case.

In {5], four distinct regions of performance were dis-
covered based on a study of the Ziv—Zakai lower bound
for the simple bandpass spectra considered. These regions
are delineated by two SNR thresholds, SNR, and SNR,,
and an SNR point, SNR,, beyond which only ¢ priori
information is useful. In light of the present results dis-
played in Fig. 4, a physical explanation of the threshold
phenomenon in terms of the intensity function of the level
crossing can be proposed. A similar explanation is pre-
sented in [21], based on the behavior of the ZZLB.

It may be helpful to refer to Fig. 5(a) and (b) in
interpreting the following comments, For SNR larger than
SNR;, the only significant source of errors comes from
small variations in the maximum of the narrow peak,
which occurs at the true delay. As the SNR approaches
SNR,, however, a rapid increase in the error occurs be-
cause of the proximity of the maxima of the closely spaced
high-frequency sidelobes of the signal autocorrelation.

Due to rapid attenuation of the high-frequency compo-
nent by the autocorrelation envelope (see Fig. 5(b)) an
initial saturation of the errors occurs within the central
lobe of the envelope as the SNR approaches SNR ,. The
occurrence of additional large errors over the outlying
remainder of the a priori interval is precluded until a
sufficiently low second threshold is attained, SNR,.

Beyond SNR,, the outlying ambiguity becomes as sig-
nificant as that falling within the central lobe of the
envelope, and the error begins a second episode of rapid
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Fig. 5. Signal autocorrelation function. (2) For spectrally flat low-pass
signal. (b} For spectrally flat bandpass signal.

increase. This increase continues until total saturation of
the a priori interval is achieved at SNR,.

Beyond SNR; a limit on the number of ambiguities is
imposed by the maximum number of times a waveform of
finite bandwidth B can undergo zero crossings within the
a priori region, While SNR ; is not really a threshold in the
sense of SNR, and SNR,, we will refer to all three as
SNR thresholds.

For comparison with the results of a simulation of the
correlator for low-pass signals performed in [3), we gener-
ated plots of the MMP and UMP approximations (56) and
(57), the ZZLB [5), the CRLB [10}, and the CPE [2] as a
function of SNR for BT =1600 and BD,,=25. Fig. 6
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Fig. 6. Comparison of Poisson MSE approximations, MMP and UMP,
with CPE, ZZLB, and CRLB for signal with flat lowpass spectrum,
BT =1600, BD,, =~ 25, and D =0,




298

shows the results of this numerical comparison. Note the
presence of an SNR threshold, SNR ,, displayed by all but
the CRLB in the neighborhood of —6 dB. The MMP and
UMP approximations are essentially identical except at
very low SNR and are uniformly larger than the lower
bounds and the CPE. This confirms the conservatism of
the Poisson approximation for this case.

In [3] the CPE for this example was compared to the
simulated performance of the correlator, In that study the
CPE matched the simulated mse to within about 2 dB on
the average. Hence for the low-pass large BT case consid-
ered here, the UMP is less accurate as an mse approxima-
tion than the CPE by a maximum of about 4 dB.

We numerically evaluated the integrals in (45), (47), and
{53) for a spectrally flat bandpass signal with center
frequency to bandwidth ratio f, /B =10, and BD,, =25,
The results are plotted in Figs. 7 and 8, along with plots of
the CRLB and ZZLB, for BT = 200 and BT = 80, respec-
tively. Again, the MMP and UMP approximations are
virtuaily identical over the majority of the range of SNR,
differing by a maximum of only 5 dB at low SNR. They
behave similarly to the ZZLB in Fig. 7, indicating
the presence of three distinct SNR thresholds (e.g.,

.
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Fig. 7. Comparison of UMP and MMP with ZZLE and CRLB for
bandpass signal spectrum. £, /B =10, BD,, =25, BT = 200, and D=0,
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Fig. 8. Comparison of UMP and MMP with ZZLE and CRLB for
bandpass signal spectrum. f, /B =10, BD,, =25, BT = 80, and b= 0.
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SNR,,, SNR,, and SNR,; in Fig. 7) of performance.
For SNR <SNR, the MMP and UMP approximation
becomes a much better predictor of mse than the CRLB.
[SNR,;,8NR,] is a region where, with high probability,
large errors are comcentrated in the interval D e
{-1/B,1/B]. When SNR <SNR,,, the error approaches
that of a uniform random variable over [— Dy, Dy]; the
estimate [} is useless. For BT =80 (see Fig. ) the MMP
and UMP approximations have moved away from the
ZZLB relative to BT =200. Indeed, they appear to hit an
asymptote with increasing SNR; the correlator commits
large errors cven as the SNR approaches infinity. As in the
case of low-pass signals, this corroborates the reported
suboptimality of the correlator estimate for small BT (7],
{8].

Finally, a discrete-time simulation of the correlator
estimator was performed for bandpass signal and noise
spectra and low BT. The relevant parameters chosen for
the simulation are f; /B = 2.5, BT = 50, and BD,, =8 and
D=0. The details of the simulation procedure are now
described. For SNR values of —8, —4, 0, 4, and 12 dB,
9000 Gaussian white noise sequences of length 4096 were
generated using a standard pseudonoise generator and a
Box—Muller transformation. Then bandpass waveforms of
length 4096 were obtained by truncating all but a narrow
band of indices in the fast Fourier transforms (FFT's) of
the white noise sequences. Successive groups of three
waveforms were then combined to form sensor waveforms
x, and x, of (1).

Finally, a set of 3000 comelator estimates were gener-
ated by detecting the global peak of the output of the
discrete time version of (2), and the sample mse was
calculated along with 95-percent confidence intervals, Fig.
9 displays the results of the simulation. The vertical dimen-

voriance (normalized)
I
Q
1

. ] i i

=10 o i0
SNR (dB)

Fig. 9. Comparison of UMP with ZZLB and simulation for fo /B = 2.5,
BD,,=8§,BT=50,and D=0.

20

ston of the ® characters in the figure indicate the 95-per-
cent confidence interval for the actual mse. Plotted for
comparison are the CRLB, ZZLB, and UMP approxima-
tions. The combination of the ZZLB and the UMP ap-

proximations appears to bound the range of simulated mse.
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On the average, below an SNR of 5 dB, the true mse is
significantly closer to the UMP than it is to the ZZLB.
Note in particular that at SNR=-8 dB, the UMP is
within the 95-percent confidence interval of the true mse
while the ZZLB is quite loose at this SNR by about 5 dB.
On the other hand, at SNR =4 dB the mse is approxi-
mately equidistant from the UMP and ZZLB by ap-
proximately 7 dB.

V1. CoNCLUSION

A method for modeling large errors in correlator time-
delay estimators was developed in terms of leve] crossing
probabilities. The level crossing interpretation for peak
ambiguity led directly to an exact expression for the prob-
ability of large error involving the hazard function associ-
ated with the level crossing process. The mse of the timie
delay estimate was then considered under the aforemen-
tioned large-error model. An upper bound on the lirge-
error inse was derived, and a class of large-error mse
approximations was introduced via a class of models for
the distribution of the erroneous estimate D over the level
crossing times. Two models were presented: a bound-pre-
serving maximal model and a uniform model.

A Poisson approximation to the level crossings was then
presented which was motivated by a representation theo-
rem. The Poisson approximation was then applied to the
large-error approximations to derive simple expressions for
the global mse of the correlator estimate, the MMP and
UMP approximations (45) and (47). These approximations
involve certain conditional (incomplete) intensity functions
of the level crossing process. Under a Gaussian model for
the sample cross-correlation trajectory, explicit expressions
for the intensity functions were derived. For low-pass
signal spectra and large BT, our approximations reduced
to analytic forms (56) and (57). Investigation of the behav-
ior of (56) and (57) revealed, in a unified manner, the
importance of several factors on correlator performance
reported throughout the time delay estimation literature,
e.g., (2], [3], [5], [7], and [8). The MMP and UMP ap-
proximations were then compared against the ZZLB for
typical examples of low-pass and bandpass signals via
numerical integration. The results show that the UMP is
close to the MMP over the majority of the SNR region
studied, suggesting that the uniform model is bound pre-
serving over this range.

For simple low-pass spectra and large BT, tlie UMP and
MMP appear to overestimate the true mse for which the
CPE (3] is more accurate. Likewise, for the simple low
center frequency-to-bandwidth ratio bandpass case studied
in {7} the approximation method of [7] appears more
accurate, The degree to which the UMP and MMP over-
estimate the mse for more. ¢omplicated spectra than the
simple cases considered here is unknown at present. For
such specira the methods of [3] and [7] also are inapplica-
ble or difficult. On the other hand, the technique is quite
powerful in that a large class of approximations are possi-
ble through the application of different models to the { P,}
in (26) and to the point process N (9).
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There are several future directions for study. One is to
extend the upper bound (26) on the large error mse we
have developed in Section III 10 a lower bound. A
straightforward modification of our procedure for upper-
bounding the distance between the local maxima occur-
rence times and the true delay using up crossing and down
crossing occurrence times yields lower bounds on the
la.rge-eri'or mse by exchanging the roles played by the up
crossing and down crossing occurrenice times. The upper
and lower bounds can then be interpreted as a description
of a confidence region for the mse.

It is known that for a small average number of level
crossings the Poisson model is accurate; it preserves the
upper bound (29). In the interest of finding analytlc bounds
on correlator mse, bound-preserving level crossing distri-
butions should be investigated.

In its présent form the approximation technique pre-
sented in this paper is only adapted to estimation prob-
lems over a simple one-dimiensional parameter space. This
is due to the difficulty in the intérpretation of level cross-
ings for multidimensional surfaces. We are currently devel-
oping generalizations of the technigue to two dimensions
by modeling of the local maxima with a two-dimensional
Poisson field.

APPENDIX 1

Here we derive expressions (29) and (30) by application of the
maximal and uniform probability models {7} and {P?} de-
scribed in Tables IT and IIT of Section I to the upper bound on
the large-error mse:

E{Nf(w&—n)’a} (1)
k=0

where for convenience N £ N(D,,). As in Section II, define the
random variables I; & f[AR(— D)) = 0land I, £ [[AR(D))) =
0). Also, define the conditional expectations

E {X}AE{XI=i,L,=j} (1.2)

where X is a random variable. Partial expansion of the expecta-
tion (1.1) yields

{Eon-orn) 2

£jm0,1

oS-

k-0

D)sz}
P(L=i 5L=j). (13)
We next treat the maximal and the uniform models separately.

Maximal Model: P, = P}
Reference to Table II, Section I, gives

(L4
Em{:g:(‘"k - D)zpi} =(Dy _D)ZPM(N=O)

+ Em{j-rﬁahﬁl(% - D)ZI[N> 0]}
)
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N+1 We now specialize to the case D > 0. The case D <0 follows
Em{ 2 (we- D)ZP}:} = (Dy+ DY Pyy(N=0) analogously. For D > 0, under the positive delay hypothesis the
k=0 following expression is easily derived via (L8):
+ E, { max {w;— D 21’[N>-0]} N1
o), 255~ 2) Eo.,{ T (w- D)IP;}
@)

k=0
N+l Dy 2
Eu{ r (wk—n)lri} = max(( Dy + DY (By ~ DY) =),
- {n Py (wy €1, 74 d7], N(— Dy,2D—7) =0)
In (1.4)—(L7} we bave used the identity max,_, ,.q... ;(w — D)? +f? (.,-_D)z
= max;,., (w—D)* (recall monotoaicity of {w}), and the 2D-Dy

conditional probabilities P,(A4) = E,,;{I{A]} have been defined.

Pplwm [T, 7+d7], NRD=+,D,)=0
Using the fact (w,— D) = (w, — D) iff w; + w, <20, ! 71 N 7 Du)=0)

2D ~-Dy _ 2
Euf o, (- DY 11N> 0 + [ =)
=Ep{(m - DYI[N=1]} < Py(w €[ 1,7+ dr)). (111)
+ Ego{ (W~ DY Iy + wy <2D]I[ N > 0}} ﬁf‘_la)l:Ogously, (L9) and (1.10) give simple expressions for (L6) and
+ Exo{ (wy— DY I[my +wy > 2D]1[N>0}}. (18) {N+1 . }
Lik E - DY p}
. ise, 01 k);_:D(Wk ) ]
En{ max (- D)1(N>0]) = (Dy = D) Pu( (= Dyy,2D ~ Dyy) =0)
= En{(%~ DY I[w, <2D = Dy /[N > 0]} M= DY R Lt dnl) ()
- DY - N+1
+(Dy— DY’ Py(N>0,w>2D—Dy) (19) F_m{ fl (e D)ZP}:} —(D,+D).  (L13)
and =,
Em{ ,—‘1‘3*”(“’!'_ DY IIN> o]} f:stifmﬁm of (L11)-(L13) and (17) into (13) gives the final

= Epp{(wy — DY I[wy > 2D+ Dy ] I[N > 0]} E{Nf(w,,—D)‘P,t} =fD; (1= DYho(r) dr
+( Dy + DY’ Pp(N>0, wy<2D+ Dy). (1.10) k=0 T
: +(Dyy— D)’ ap +(Dy + DY'B, (L14)

where for D> 0,
Py (N(— Dy,2D = 1) = 0, dN{) > 0, N(=, D) =O)E{(1- L)(1- L,)}, t>D
hp(7) 24 Po(N(— Dy,7) =0, dN{r) >0, NQD — v, D) = E{(1- I)(1- L,}}, 2Db-Dy,<rgD
P{N(— Dy,7) =0, dN(7) > 0, =0) E{1- 1}, T1<2D- Dy

ap~exp(~ 2" hai(r) dr) B{(1- 1)1}
Br=E{l}. (1.15)

A similar analysis for D <0 yields (1.14) with

Bpo(N(— Dy, 7) =0, dN(7) >0, N(2D -7, D,y =) E{(1-I)(1- L)}, T<D
hp(7) 2{ Po(N(= Dy, 2D ~1) =0, dN(1) > 0, N(7, D) =0)E{(1- 1)(1- L)},  D<7<2D+Dy
P(aN(x) >0, N(7,Dy) =0, =0)E{1- L}, T>2D+ Dy

aptE{L}

P exp(_ Il o) df)E{ L(l-5)). (116)
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Specialization of (1.14) to the case D = () gives Substitution of (I.18)—(L.21) into (I.3) yields

N+1 N+l 2
E{ E wf}’é} =fD” fzho(r)d'r E{ Z (Wk—D) sz

k=0 - Dy k=0

+Dj(1- P(4,=0, L,=0)). (1.17) —f"" (DY T Pm(wk &[r,7+dr))
n=1 k=l
Uniform Model P, = P} -E{(1-L)(1- 1)}
. . 1
R_eference to Table IIL, Section H, gives + Py ( wee[r, 7+ d-r)) E{(-L)5)

N+1
E"“{ kz.:o("'* =D P"} +—SPu(welrr+d))E(L(1- 1))

N
=Em{%k§1(wk —D)zf[N>01} n+2P11(Wk e+, 7+dr))E{LL,}

=R L8 on ) (ay O EO[THPBI<N=")E{(1-E>':}

n=1 Mgy ]
' "'?Pu(N"’")E{I:Iz}
N+1
E we— D 2P2} 0
m{kgo( — DY By +(Dy + DY Z [ +1P10(N=n)E[L(1 L)}
1 N+l 1
=E01{N+1 Z‘, (w, — D)} +mpu(zv=n)£{1112} . {1.22)
® 1 Equation (1.22) is next transformed to an inequality by
gy 1]”“ (r=DY By(w€[r,7+4dr))  ysing the trivial inequalities '
- 1 1 1
o) —— < —
+{Dy - D)IE Pm(N"“n) (1.19) n+2 n+l =
for n > 0 and identifying
£of T (D)2 Py [rr+dn)) =ay_y poi(r)o(r) dr (123)
- where '
{N+1 2 (w.— D)} ak—l,q—k('r)AP(N(T_DM»T)=k_1,
© N(7,D,;) =n—kldN(7)>0)
z f”“ (v = D) Py(w €[7,7+dr)) p(r)dr2 P(dN(r) > 0). (1.24)

n-]_ n+l k=1 =

This yields the upper bound

© 1
+( Dy + D) 3 Pyo(N=n) (1.20) +
( ) ,,);Dn+1 E[Nzl(wk_D)ZPkZ:I
N+l k=0
2{ T (-2 P"} <™ (= D)e(r) 5 2 ayrpil7) dr
] N+1 5 ﬂ"l
=Eu{m—2k§0(wk—13) PE} . +ay(Dy = DY+ B,( Dy + D)’ (1.25)
‘ b where a,, 8, are given by '
=Z 12 f ”(""D) Pu(w, e[r,7+dr)) P
nerh e =Y ———-P(N ml,=1)E{1,}  (1.26)
n-O

+[(DM+D) +(Dy - D)’]E —5 Pu(N=n).

(121) EO—P(N alL=1E{L}. (1.27)
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APPENDIX II

We give expressions for the conditional and uncond.luonal
intensities p and py. of the level crossing process N £ {N(7)},
defined in (9), over the interval r & [- Dy, ), for D=0, and
under the approximation AR = Ry, (1)~ B3 (0) discussed in Sec-
tion V. For D = the intensity of N over the foregoing fegion for
7 is the intensity of the zero up crossings by the Gapssian
random process X=AR. The infensity of Gaussian-generated
up crossing processes has been extensively studied, and we follow
the development in [12] for the following.

Proposition 1

Let x(r) be an almost surely continuous Gaussian process
with mean p(r), varance o(r), and covariance o{r,z). Let
r{rw) = 8" /81'3v (7, 0)}ry 2 o), and assume the deriva-

Lives
i), no(m1), no(m )y m(ty,7), ry(7,7)
are conlinuous in 7. Then if the matrix
ro(7.7)  (r,1) (7, 45) .
A= ne(r1) mlrr) (1) (IL.1)
ro{te:7)  tulto,7)  ro(do,t)

is positive definite, the foﬂoﬁng holds. The intensity function of
the number of zero up crossings by x over [#, t] given x(f;) <0
is

(1) = 5 50 ey + ayesp{ -3+ & (12

and

1
Ky(v)= VedjA| q}(

- () dﬁ w3
“F(‘o))¢ i !
V1o ()

a5 = z; (I1.4)
a=[-s0+ 2 e s
= [n(f) ¥ :—;#(T)]\/aTa (Le)

where in (I1.3)-(11.6) Lhe quantities d; and &, arc implicitly -

defined in terms of A™!;

_1- A b
K ¢l (L)
d, d, 1
[d2 33]=A--;bb" (1L.8)
b
[ b:] =b. (11.9)

Furthermore, the unconditional intensity function p is given by
(12]

p(r) = Kpp(ay)[ #(as) + a@(a)]  (IL10)
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where
= f1_,2 ra{r) - #(7) :
Ky=1/(1- 9 )———-r00 RO (IL.11)
A "n("’)
[ 20 - ('l') (. ) )
ay= 12
) \/(1""3)’11(") ¢
and we have defined the correlation coefficient #, as
5t (IL13)

T oD

) Alr.houg.h the proof of the foregomg proposmou is straightfor-
ward, the details are tedions and will not be given here. The
essential clement is to show that the joint dcns:ty function,
£ (¥, 2), of x(7) and

x(r+h)—=x(+)
& -
given x(ty) <0 satisfies the Leadbetter conditions given in [4).
Then Leadbetter’s results in [12] give that the (incompléte) inten-
sity pgs(7) is equal to the definite integral [Pzp, (0, z) dz, where
p.(0,z) =1im; _ o8, ,(0z) is the conditional joint cleusny The
specific form (I1.2) of the conditional intensity pg.(t) is then
obtained by mampu]auon of

f z lim g, ,(0,2) dz (11.14)

into calculable form,

The continuity conditions on the first- and second-order mo-
ments of x will be satisfied if higher order moments of the signal
autospectrum Gy, and the observation spectra Gy; and Gy exist
[4].
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