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ABSTRACT

Computation of the Cramer-Rao bound involves inversion

of the Fisher information matrix {FIM). The inversion car
become computationally intractable when the nuraber of
unknown parameters is large. Hero has presented a re-
cursive, monotonically convergent and computationally ef-
ficlent algorithm to invert sub-matrices of the FIM corre-
sponding to 2 small zegion of interest in image reconstruc-
tion [1]. The canvergence rate of this algorithm depends
on a splitting matrix which can be interpreted as a com-
plete-data FIM. In this paper we investigate the accelera-
tion of the algorithm using several different choices of the
complete-data FIM. We also present a conjugaie gradient
based algorithm which achieves a much faster convergence
rate at the expense of monotone convergence. We apply the
methods developed in this paper to emission tomography.

1. INTRODUCTION

The Cramer-Rac (CR) bound determines a lower bound
on the variance of any estimator. Calculation of the CR.
bound involves inversion of a non-singular Fisher Informa-
tion Matrix (FIM) Fy. Direct matrix inversion, requiring
O(n?) flops (FLOating Point operationS), conld be compu-
tationally intractable if the number u of parameters to be
estimated is large. For example, in emission tomography,
where the pixel intensities are the parameters to be esti-
mated, a moderate size ima’.ge of 128 x 128 pixels has a FIM
of dimension (128)? x (128)* and will require 4.4 x 1012 flops
to compute its inverse.

Often we require a bound on few estimator companents of
interest, called the Region Of Interest (ROI). Hero et al. [1]
presents a recursive and computationally efficient method
for calculating a small portion of matrix Py~ which corre-
sponds to a gxg ROL As presented in [4], this algorithm re-
quires that we find the FIM Fx of an imagirary “complete-
data” sel, called the splitting matrix, such that Fx domi-
nates Fy in the sense that Fx — Fy > 0. In this paper we
obtain an optimal Fx by puzely algebraic, non-statistical
approach, as a solution to a constrained optimization prob-
lem. The main advautage of the algorithm of [1, 2] is its
maonotone convergence which generates a valid improving
fower bound on estimator covaratice at each iteration of
the algorithm. However, the price paid for monotone con-
vergence is slow linear convergence rate. For applications
where a astrict lower botnd is not required at each itera-

1This work was supported in part by National Selence Foun-
dation under grant BCS-9024370 and a Qovernment of Pakistan
Postgraduate Fellowship

Authorized licensed use limited to: University of Michigan Library. Cownloaded on July 28, 2008 at 11:13 from IEEE Xplore. Restrictions apply.

tion, 2 non-monotone conjugate gradient algorithm is given
which has a significantly faster convergence rate,

We apply the methods developed in this paper to emis-
sion tomography using several different images for a Single
Photon Emission Comapuied Tomography (SPECT) system.
Finally some conclusions are presented.

2. CR BOUND

Given a measurement ¥ that is a random variable and has
probability distribation fy(¥;2) dependent on an unkrown
parameter vector 8, we want to estimate @ = [61,82, ....8.]%.

A vector function ?_(y) is a parameter estimator based on
the cheervation Y =y,

The Cramer-Rao lewer bound on the covariance of an un-
biased parameter estimator is given by the inverse of FIM:

cou(®) > F3(6). R
Where

Fy(8) = —Ee[vg In fv(Y;8) v, In fr(Y:8)],

and 7, denotes the (row) gradient vector [3%‘-,-0%5,..., ]
and Ep denotes statistical expectation with respect to
fe(Y:8).

Under broad conditions the unbiased CR bound (1) is
known to be asymptotically achievable for increasing obser-
vation times [3).

3. RECURSIVE ALGORITHMS

3.1. Monotone Convergent Algorithm

Assume Lhat we want to calculate the OR-Bound for only
the first component of g, corresponding to the top left entry
of F3''. The algorithm can be easily extended to g param-
eters, ¢ < = [5). Let g, =[1,0,0,...,00T. Then a recursive
algorithm for computing the first column of F' is given as
follows:

Algorithm

INITIALIZATIONS:
E(o) =0 an n X 1 vector of zeroes
RECURSION:
FOR k := 0,1,...,1 D0
B = g8 _ pod( By g g ) @)
END DO
BOUND:
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B = Ef E(l}_ (3)

In [1] it is shown that if Fx dominates Fy in the sense of
posttive semi-definitiveness of Fix — Fy then the algorithm
generates a sequence of approximations B which mone-
tonically converges o 1x1 sub-matrix Bof Fy~' asl — 0,
The monotone convergence property of this algorithm guar.
antees that the matrix BY calculated at each recursion by
this algorithm ie a valid lower bound.

Since (2) requires only O(n?) flops, if ? is less than =,
we obtain a bound with fewer fops than required for direct
inversion of Fy (O(n®)), e.g. using the method of sequential
partitioning [6]. For this algorithm to be computationally
efficient we require F3' to be easy to compute. The rate of
convergence of this algorithm is directly proportional to the
spectral radius p(M) = p({f — Fx~'Fy]) = AM.., where
AM_, is the largest eigenvalue of J — Fx~!Fy,

Thus we can obtain a faster speed of convergence by re-
ducing p(M). This suggesta that we find a sparse Fx, that
is easy to invert, satisfies Fx — Fy 2 0 and, gives the min-
imum spectral radius p(A). One can show that even for a
simple case of a diagonal F the solution to this constrained
min-max optimizatior problem invelves the calculation of
cigenvalues and eigenvectors of an n X » matrix 5]. How-
ever, instead of directly minimizing the spectral norm we
can minimize the matrix Frobemius norm || Fx — Fy ||r.
The inequality AM,. < || F7' jl= || Fx ~ Fy |7 relates
AM ., to || Fx — Fy |[r, guaranteeing that minimization of
|| Fx = Fy || at-least makes the spectral norm AM, . small.

Define the p-diagonal matrix D, =

Fx' to be easy to compute (O(n*) or less). Efficent in-
version algorithms exist for diagonal (1-diagonal) and tri-
diagonal !Miagonnl) mattices 9], Using theorem 1 we
can di y writs the optimal 1-diagonal and optimal 2-
diagonal Fx.

Corollary 1 The optimal .diagonal matriz is:
T olagg) .- o
Eldnjl ‘

0 e Folanit
Corollary 2 The optimal 2-diagonal matriz is:
E las) a1z vee 1]

Id2
o i
Dy = -, .
dn-1mn
il . Bnnet gé!::f'

By identifying A with Fy and Fx with D: or D in the
algorithm we can obtain an acceleration of the convergence
rate.

3.2. Non-monotone Convergent Algorithm: Con-

Fdu diz e dhp 0 'l jugate Gradient
P! : Conjugate gradient ia an algorithm to solve the linear sys-
n  dyg tem of equation Fyz = 5 [8, 7]. If we substitute 3 =
: {1,0,40,...,0]% then it ia easy to recognize that the solution
to such a system of equations will be the first column of
dp1 do—pn |° @) Py, In general we can get the inverse of the m-th column
. of Fy if we choose b == 1 and &; = 0 § # m. The follow-
: ing conjugate gradient algorithm is applicable to symmetric,
pesitive definite matrices Fy [8].
i " i tf:-‘-:.n Algorithm
- v macp tr feaed dee d INITIALIZATIONS:
The following theorem is proven in [5): =0 b=[1,0,0,....07; " =
Thgqrem 1 .Lcu'. annxn mutn’zA_: ((a)) be a symmetric RECURSION:
Positive Sermi-Definite (PSD) matriz. Then the p-disgonal
matriz Dy, as defined in ({), that minimizes the Frobenius FOR i := 0 UNTIL |r(i)| < Tolerance DO
norm || Dy — Allp s.t. Dy — A is PSD is given by Dy, = IF i=0 B0
laxsd . =1
_Ez....'.’n B 4 0 ELSE
fasg
a2 ,-,:{Y,;,.,ff.“
ai =
ap1 Gn—pn g =
: END IF
Gn-1,n A = <£i|£i >
P o= . -
< Pll yp >
ey e E longl = -
| © Sun—p  Onn-l ;L0 ML o _(5) = _i +Ap
i1 _ i , i
Thus selecting Fx = Dp minimizes the Frobeniugs norm be- £ = A Fry
tween Fx and Fy over all p-diagonal matrices, We need
Iv-6
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Detector and collimator are

rotated through 180 degrees
i peducet dhe uootrialuly %l;"’
Radiouctive Sowrce Collimator
Figure 1. A SPECT system
END DO
BOUND:

B =7 o,

The iterations are terminated when the residual error |r'|
is less than a user specified tolerance. Although the above
algorithm calculates only a single column of F3?, it can
be easily exiended to g columns: ¢ < n [5]. The conver-
gence rate of the conjugate gradient depends on the con-
dition number of Fy and its eigenvalue distribution. One
advantage in using the conjngate gradient algorithm is when
computed with infinite precision, the algonthm is goaran-
teed to converge in maximum n iterations. Each itera-
tion of the algorithm involves a matrix-vector multiplication
Fy p*, requiring O(n®) flops and therefore if the algorithm
is stopped before n iterations, an O(n?) zpproximation to
the CR bound is obtained.

In relation to the recursive algorithm of previous section,
a disadvantage of this algorithm is its non-monotonic con-
vergence. This means that if stopped at iteration & < n
then the quantity B? calculated by the conjugate gradient
algorithm might not be a valid lower bound. This, however,
may not be a problem if we let the algorithm run until a
desired accuracy is achieved. Note that the conjugate gra-
dient algorithm does not zequize the calculation of another
complete-data FIM Fy.

4. APPLICATIONS

In this section we apply the recursive algorithms described
in the previous section to a simple Single Photon Emission
Computed Tomography (SPECT) system to several differ-
ent objects (Figure 2). We start with a brief description of
the SPECT system.

4.1. Si:;gle Photou Emission Computed Tomogra-
P
A SPECT system consiats of three basic components: 1) a
source of y-zays, 2} & y-ray detector and, 3) a y-ray colli-
mator. The function of the collimator is to reduce the un-
certainty associated with the origin of a 4-ray to aline ora
path (Figure 1}, During the imaging time, the 4-ray detec-
tor iz rotated 180° through small steps around the source.
The size of the step is detetmined by the spatial sampling
requirements. For reconstruction the source domain is di-
vided into small regions, called pixels. Both the y-tay emis-
sion and detection processes are governed by Poisson statis-
tics. The objective is to reconstruct the intensity of each
pixel @ = [81,02,...,8,]7, defired as the average number of
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Figure 2. Objects used for numerical compatisons. The pixel
of interest is the center pixel. Objects are: Top left: uniform,
Top right: Point source, Bottom left: Checker board and,
Bottom right: Brain image.

+-ray photons emitted by a pixel during the imaging time,
given the set of observationn Y; which are the detected +-
rays over the m detector bins.

It can be shown that for emission compuied tomography,
the Fisher information matrix has the form [4):

Fy = A" [diag(p)]™" A,

whete A is & m x n weight matrix; m = total pamber of de-
tector bins, g = A 8, and digg(p) is a diagonal matrix with
diagonal elements py, g2, .oy im. Fy is a0 n X n symmetric
positive semi-definite matrix {Fy > 0), which is typically
non-gingular if m > n. The standard choice of complete-
data in emission tomography is the set of obsexvable y-ray
emi:?laionu over the n pixels. The FIM for the complete-data
is [4):

Fx = diag(1” A) [diag(@)]".
4.2. Numerical Comparisons
Object: Several objects were used in the simulations (Fig-
ure 2). The high intensity pixels have a normalized intensity
value of 2 and the low intensity pixels are set to 1. The ab-
ject is within a disk of diameter 32 pixels: n = 716 pixels.
In all the pimulations the pixels of interest was the pixel at
the center of the image.

The recursive algorithm was said to converge when the
error between the actual and the calculated value was less
than 16~ and remained there for atleast 5 iterations,

Figure 3 gshows the effect of increasing the number of
diagonals of optimal Fx on the rate of convergence for
the checker board image. As expected the rate of conver-
gence improves with increasing number of diagonals since
the Frobenius norm || Fx — Fy || decreases. Forp = n
the algorithm converges in a single iteration since Fyx = Fy
in this case. Also plotted in the same figure is the conver-
gence plot for the diagonal Fx called EM, which exhibits
the slowest raie of convergence, and the convergence plot of
the conjugate gradient algorithm, called CG, which has the
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Table 1. Summary of convergence properties.

[Algorithm Object ]
Unilorm Point Souzce Checker Board Brain Image
No. o T35 i [ Amas { No. of [ 354 [ Amaz | Noo o [ 3, A | Amas | No. of | 3o ki | Amas
iter. jter. iter. itet.

EM_ RSN | 1064 { 33702 | 9097 | 002 | 34%.13 | 9998 | 7693 | 340.11 | 9999
1diag [ 803 | BLIT . 4 1733712 | 5997 | 686 | 337.12 | 9997 | &79 | 335.67 | 9997
2-diag TS| T935.66 1 9Y57T | 1036 | 336.65 | 9997 [ 623 | 336.60 | 0097 | 842 | 335.14 | 9997

Conjugate [ 42 31 4%
Gradient :

02

o

— " "
Rurrer of Bacations

Figure 3, Effect of changing the number of diagonals for the
optimal p-diagonal Fx and the checker board image. Numbers

plied them to the computation of the CR bound in emission
tomography. The algorithms presented are not restricted to
this particnlar application. The results of the simulations
should only be used as a guideline since the resnlts may
vary depending upon the application.
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