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1 Introduction.

Bayesian networks (BNs) can simultaneously predict probabilistic causal relationships among
biomolecules from noisy genome-wide measurements. However, optimal inference of Bayesian
Network on the given data is a NP-hard problem. Consequently, existing BN learning algo-
rithms use heuristics, such as constraining the search space by pre-screening the candidate
causal relationships [1], [2], [3] or using heuristic search of good BN structure with randomly
start, genetic algorithm or simulated annealing [4], but do not guarantee an optimal solution
to the problem. Motivated by the recent findings that gene regulatory networks are likely
to be hierarchical organized [5], we propose a novel BNs learning algorithm that is able to
find the best BN structure(s) from the condition/tissue-specific genomics data in polyno-
mial time. The algorithm takes advantage of a biological constraint, namely that signal is
transmitted sequentially and hierarchically from the master regulators on the “top layer” to
the regulators in the subsequent layers. The layer constraint makes the NP-hard problem of
learning optimal BN structure(s) solvable in a heuristic manner.

2 The Algorithm

A BN is a directed acyclic graph (DAG) representation of the joint probability distribution
of a set of random variables, X = X1,X2, . . . ,Xn. Based on the assumption of first-order
Markovian dependency, a random variable Xi is independent of the other variables in the
network given its immediate parents πi, the joint probability distribution can be decomposed
into a particularly simple form of conditional distribution, in which the πi varies following
BN structures:

P (X) =
∏

i

P(Xi|πi). (1)

A score function can be applied to score conditional distributions (Eq. 1) corresponding to a
given BN structure. We use discrete score function that is suitable for noisy genomics data
as follows:

Score(Bs|D) ∝

n∏

i=1

qi∏

j=1

ri − 1

Nij + ri − 1

ri∏

k=1

Nijk, (2)

in which Bs represents a BN structure, D represents genomics data, ri is the number of
discrete outcomes of each variable (i.e. 3) and Nijk equals the total number of cases in
the dataset where dataset variable i in state k and the parent nodes are in stage j. A
number of existing literature discussed the advantages of discretizing data in both supervised
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Figure 1: Optimally reconstructed MMS-specific signaling hierarchy. Only layers 1,2 & 3 are shown.

learning (e.g. tissue classification) and unsupervised learning (networking and clustering).
The proposed BN learning algorithm is presented as the following:

Algorithm 1 Hierarchical BNs Learning Algorithm

1: Initialize hierarchical layers L1, L2, . . . , Ln. j represents layer index, Gji repre-
sents ith gene in the jth layer, and πji represents the parent(s) of Gji.

2: for all layer j, j = 2, 3, . . . , n do

3: for all gene i in layer j do

Bs = argmaxScore(Gji|πji)
4: end for

5: end for

3 Learning Methyl-MethaneSulfonate (MMS) Responsive Sig-
naling Hierarchy

Based on the yeast signaling hierarchy constructed from manually curated datasets [5], the
MMS responsive hierarchy was optimally inferred (Fig. 1), ie, the highest-score structure by
Eq. 2 given the MMS response microarray data. Many predictions made in this analysis are
supported by biological literature. For example, two out of eight top-layer master regulators
in [5] (HIR3, GZF3) were predicted to be involved in the MMS response. After checking
references, HIR3 was shown to be able to repress transcription and cause MMS sensitivity
[6], and GZF3 is a transcription represser, which is a good indication of its role in DNA
damage response.
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