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Time-Delay Estimation for Filtered Poisson

Processes Using an

EM-Type Algorithm
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Abstract—1In this paper, we develop a modified EM algorithm
to estimate a nonrandom time shift parameter of an intensity
associated with an inhomogeneous Poisson process &, whose
points are only partially observed as a noise-contaminated output
X of a linear time-invariant filter excifed by a train of deita fune-
tions—A filtered Poisson process. The exact EM algorithm for
computing the maximum likelihood time shift estimate generates
a sequence of estimates each of which attempt to maximize a
measure of similarity between the assumed shified intensity and
the conditional mean estimate of the Poisson increment 4V, We
modify the EM algorithm by using a linear approximation to this
conditional mean esitmate. The asymptotic performance of the
modified EM algorithm is investigated by an asymptotic estimator
consistency analysis. We present simulation results that show that
the linearized EM algorithm converges rapidly and achieves an
improvement over conventional time-delay estimation methods,
such as linear matched filtering and leading edge thresholding.
In these simulations our algorithm gives estimates of time delay
whose mean square error virtually achieves the CR lower bound
for high count rates.

I INTRODUCTION

ILTERED point processes are widely used to model a

broad range of physical phenomena, such as radioac-
tive emission measurements [1], opto-electronic signals [2],
electro-physiological measurements [3], and acoustic rever-
beration [4). The filtered point process model assumed here
specifies the measured waveform as the superposition of
single point responses {(SPR’s), each excited by a point of an
inhomogeneous Poisson point process and each multiplied by
a random SPR gain, and additive Gaussian (thermal) noise.
The unknown parameters of interest are imbedded in the
Poisson intensity function composed of a time-varying signal
intensity and a constant dark current intensity. The filtered
point process model arises in several important applications:
nuclear particle detection systems, such as conventional and
time-of-flight positron emission tomography (PET); optical
communications receivers; impulsive “shot noise® waveform
channels; neuron discharge; and seismic geophysics. In each of
the aforementioned applications, detection of the point process
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of interest, and subsequent estimation of related intensity
parameters, are of central importance,

In PET, ~y-ray interactions with a scintillator crystai produce
secondary photon emissions detected at the output of a high-
gain photo-multiplier tube (PMT). Here the objective is to
estimate the y-ray interaction time 7y that shifts the intensity of
the secondary photon emission process. Traditional methods,
such as leading-edge and constant fraction timing, are con-
ceptually simple and have been used extensively. However,
they fail in several important cases [5]. For example, high
dark-cuyrent intensity andfor thermal nois¢ may severely bias
the leading edge and the constant fraction estimators. More
recently, maximum likelihood (ML) methods have pained
increasing popularity because of their associated optimality
properties [6], [7). However, analytical expressions for the
likelihood function have been derived only for the ideal direct-
observation case where the arrival times are observed exactly.
Due to finite detector bandwidth and the various “noise” fac-
tors (random filter gains, thermal noise, dark current), this ideal
model may be unrealistic. Various estimator structures have
been proposed to approximate the exact likelihood function in
the Poisson limited (low intensity) and Gaussian limited (high
intensity) regimes [8]-[10]. However, the function maximiza-

tion required for the MLE renders these techniques difficult to
implement numerically.

In this paper we present a modified expectation-maximiza-
tion (EM) algorithm that recursively updates the time-delay
estimate to iteratively approximate the ML estimate. This
algorithm explicitly accounts for the effects of finite bandwidth
and noise inherent to the measurements. Like the exact form of
the EM ML algorithm [11], our algorithm alternates between
estimation of the complete data log-likelihood function and
maximization of this estimate over the range of 7p. The
difference between our algorithm and the exact EM algorithm
is that we implement a linear approximation to the “E-step”
of the algorithm. Specifically the algorithm first calculates the
optimal linear estimate of the point process as the output of a
linear time-varying filter. The output of the filter is then used
in place of the ideal direct observation to estimate the time
shift of the intensity function via the implementation of the
standard MLE. While the exact EM algorithm converges to the
MLE and is therefore a consistent estimator, the linearized EM
algorithm is not guaranteed to be consistent and may stagnate
or diverge, We introduce a general methodology for studying
estimator consistency that involves studying convergence of a
nonrandom estimator sequence obtained from the mean square
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limit of the linearized EM objective function. For the special
case of triexponential intensity, monoexponential single point
response, ii.d, Gaussian single electron gain sequence, and
negligible thermal noise, we establish that unless the ratio of
the squared mean and the variance of the gains is above a
certain threshold the linearized EM algorithm stagnates and
the resultant time-delay estimate is incomsistent. Finally we
present simulations that indicate that significant performance
gains relative to previous metheds are possible by using our
technique. Furthermore, the simulations show that the MSE of
the delay estimates virtually achieves the CR lower bound for
high count rates.

II. STATEMENT OF THE PROBLEM

Let &),t2,---,1, be the arrival times of events of an
mhomogcneous Poxsson process {dN; : ¢t € [0,7]} where
n= fo 4Ny is the number of Poisson events or points during
the observation interval [0, T]. Let the _intensity functlon be
given as the superposition

A() = As(tm0) + Ao, € [0,7]
where A;(t;70) = At — 70} is the intensity of an inhomo-
geneous signal point process, 7o € 7 is an unknown time
shift parameter lying in a known interval T, and ) is a

constant intensity govermning a homogeneous “dark current”

noise process. It is assumed that for all 7 € T the mean signal
count rate

T
A, = f At = 7)dt
0

is functionally independent of time shift = € 7. The above
assumption is valid when the {-support of A,{¢—7) is contained
in [0, T] for all 7 € T, L.¢., the time-width T, of X,(t) is much

" shorier than the total observation time T'.

Available for observation over [0,T] is the continuous
waveform X

X(8) = am(t—t:) + w(t) (0

i=1

where the {e;} are iid. Gaussian gains associated with each
event and w(f) represents the observation noise, which is
taken to be while, zero-mean Gaussian with variance o2,
The impulse response wavelet p(¢), normalized to have unit
energy, is called the single point response (SPR) and models
the inherent finite bandwidth of the measurement system. The
first additive term in (1) is known as a Poisson shot noise
process [2].
We adopt the following notation:

= A=A, + Ap : mean event count rate over [0, TT;
* p = A,fA¢: signal-to-noise ratio;

* 1i,,02: mean and variance of the Gaussian gains;
» 02 = Z; thermal noise spectral level;

s v = p2fol: average SPR pulse-to-noise ratio.

There are two related objectives. First, a detector has to
decide whether the “signal” A, is present or not. If the detector
decides that the signal is present, an estimation algorithm
should give an estimate ¥ of the time delay 7o. In this paper,
we focus on post-detection processing of the observations, i.e.,
time-delay estimation.

OI. PrEVIOUS APPROACHES AND APPROXIMATIONS

A. Conventional Timing Methods

In nuclear particle detection, fast and simple timing estima-
tion methods have been used for a long time [1]. The common
feature of this group of methods is the detection of the time that
a linearly filtered version X (£)*h(t) = fOT X(u)h(t—u)du of
the observations first crosses a preset threshold. Among these
methods, the leading edge estimator is the easiest and most
direct timing method. In this method a percentage of the peak
value of the mecan of X{£} * h(t) is selected as an amplitude
threshold. The selection is based on factors such as signal
and noise statistics and practical experience. The estimate

" of time delay is then chosen as the first threshold crossing

by X(£) = k() over [0,7]. This method is quite effective
when the variance of X (&) # h(t) is not large. However,
when the variance is large, “amplitude walk” can occur and
estimation performance degrades. Dark current also affects
the performance, causing early threshold triggering that can
introduce large negative bias.

. Matched filter-type estimators have also been used, e.g., in
optical communications [2]. The optical matched filter (OMF)
detects the location over [0, 7] of the peak output of a linear
filier A9MF matched to the mean E[X(¢)] in the absence
of dark current; AOMF{—1) = i As(t) * p(f). This esttmator
performs well when the count rate is high, since in this case the
standard deviation var# [X (¢)] is small relative to the expected
response E[X(t)]. However, for lower count rates or high
dark current levels, occasional outliers may severely bias the
estimate [15].

B. Maximum Likelihood Approach

For given 1y € 7 we denote the prebability density function
of X = {X(t): ¢t €[0,7]} by f{X;70). In the ML approach
the log-likelihood function I(7) %= In f(X;7) is derived and
the estimator 7 is obtained by maximizing {(7) over 7. When
the observation waveform is specified by (1) the conditional
density of the observations X given =, the random gains
{a:}E.;, and the arrival times {#;}%;, is Gaussian and is
specified (up to a constant scale factor) by the Cameron-Martin
formula [13]

f(X ] , {ai}f—ls{t'}?— )
_exp(Nan X(t)-aip(t — t;)dt

#=1

__Zf a:p(t — ;) - a,p(t—t,)dt) (2

i,j=1
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Note that the above conditional density is functionally in-
dependent of the time delay mq. When the random gains
are themselves iid. Gaussian, the unnormalized conditional
density given {t;}™; and n can be writien as [15]

X {ti}?;l,n}—e}cp[:, ©(laXy + 17T + Rpo ™
X[eX;+1]-n)[ (3)

where o £ 102/42 = 02 /oy, Xp=[Xs(t1),- 2 X ()T
is a vector of n time samples of the normalized and filtered
measurements X sampled at the event times {#;}?

i=1

Xe( ——/ X(®)pt — t:)dt, i=1,,n
and By = [Rp(ti,t5)]i j=1,.n is an 7 X n matrix of temporal
correlations of p

T
Byltts) = [ ot~ tople - 1.

For given 7y € T the joint density of {£;}2, and n is [12]

f({t }1:17“ TO (H A(tt.l"'-Cl ) exp( A-) 4)

il

In (4), 70 is included in the arguments of A in order to
emphasize the time shift dependence of the intensity function.

To obiain the unconditional density of the observations we
must take the expectation of (3) over {£;}; and n

fXim) =3 f FX ] {2y, m)
n=0"t1,""tn
S, )

The function f(X;7) of T in (5) has no known analytic form
and therefore cannot be implemented as a likelihood function.
To deal with this difficulty, approximations to f{X;7) have
been made for various regimes of interest. It is useful to
categorize the approximations into two general classes: 1)
small pulse overlap approximations and 2) large pulse overlap
approximations.

In the absence of temporal overlap of the pulses {p(# —
t;)}i,. and for sufficiently Jow thermal noise level o
1, accurate estimation of the cvent times {£;}%, can be
performed, e.g., by using a simple level-crossing detector, If
the event time estimates, {£;}2.,, are used to approximate
{t:}{=, then ideal “direct detection” techniques such as ML

) [12] or least squares [6] can be used to estimate Ty from the
{£:}2, . The obvious shortcoming of this approximation is that
it becomes increasingly inaccurate when there is significant
pulse overlap since level-crossing thresholds cannot reliably
be used to separate the overlapping pulses {p(¢ — £;)}%,.

In {9], an asymptotic approximation to the likelihood func-
tion (5) in the small overlap regime was derived. The ap-
proximation is increasingly accurate as the correlation matrix
Ry in (3) approaches the identity [, an asymptotic regime

tn, 1 To)dt -+ diy
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comresponding to small A and small T, /T. However, several
difficulties arise for its implementation, First, the evaluation
of the objective function necessitates a double integraticn over
[0, T). Second, the integrand of this objective function involves
evaluating an undamped exponential function of X that can
cause numerical instability.

When pulse overlap and A are large the shot noise process
(1) approaches a superposition of a large number of i.i.d.
components and its distribution is closely approximated by
the Gaussian, at least in regions of [0, T where the signal
intensity A, (t~p) is large [12]. Using characteristic functions,
the first and second order statistics can be readily derived and
the log-likelihood function can thus be specified. The Gaussian
approximation is the basis for a number of methods for random
and nonrandom shift estimation [8), [14].

In [15] the above and several other approximations were
compared and simulation results were presented. It was found
that the performance of these approximate estimators degraded
rapidly, e.g., even for moderate pulse overlap no significant
improvement over the simple leading edge timing techniques
was achieved.

IV. FORMULATION OF THE EM ALGORITHM |,

The EM algorithm is an iterative method to maximize the
likelihood function. The method was formally introduced by
Dempster et al. [11].

Suppose we are interested in estimating 2 vector of param-
eters §;, € O based on measurement data X € X, having
probability density f(X;8,}),0, € ©, where X is a measure-
ment space, calted the incomplete data space. The computation
of the maximum likelthood éstimate (MLE) § of the parameter
vector 90 may be dlfﬁcult £.g., due 1o an infractable form of

the log-likelihood 1(9) In f(X;8) as a function of . To
overcome this difficulty, we postulate a different data space ),
called the complete data space, for the measurements such that
the log-likelihood In f(Y;8) is better behaved as a function
of 8. Once ¥ and f(Y;8) are specified, we implement a
recursive algerithm that alternates between estimating the log-
likelihood function ln f(¥'; 8) given (X, 8'®) and maxzmzzmg
the estimate of In £(Y;8) over § € © to obtain 1),

More specifically, if the complete data ¥ were available,
we would maximize the complete data log-likelihood func-
tion: § = arg maxgeo In f(¥;8). However, since Y is not
available we maximize the “best guess”of In f(Y;8) given
the actual observations X. If an estimate %7 is available, a
good guess for In f(¥';8) is one that minimizes the mean-
square error given X and ), The minimum mean-square
error (MMBSE) estimator of In f(¥'; 8) is the conditional mean

® Q(21¢®) =E[msw:0) | x:6%]  ©
where Q (g | g(’“}) is called the objective funcion of the EM
algorithm, Next we maximize the objective function over 8 to
obtain an updated estimate g+

() 6% —awgmax0(218®). @
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Alternation between (F) and (M) yields a sequence of values
8,8, ... and is called the EM algorithm. This algorithm
has the monotonic property that the sequence I(8™)) =
In f(X;8%), k = 1,2,---, is nondecreasing at each stage.
As a consequence the algorithm converges if the likelihood
function is bounded. However, if there are multiple local
maxima, it may not converge to the global maximum. The
standard requirements for the EM algorithm to converge are:
1) The p.d.f.’s on both spaces & and ) are governed by the
same parameters § and 2) ) must be related to X through a
relation g(¥Y') = X, where g is a deterministic function [111,

In our problem § is a scalar time shift parameter 7, and the
incomplete data are identified as the observation waveform
X ={X(t):t € [0,T]} . We define our complete-data ¥ as
the mcomplcte data supplemented by the set of arrival times:
[tla ta, n] 3 The

The complete-data likelihood has the simple form

f¥57) = fIX | {GHann) - f({tHonm ). @)
Using (3) and (4 in (8), we have
lnf(X Ht = n) + In f({t:} iy, mi7)
-2;‘.‘—3([@,« + 171+ Bpa] X, + 1] - n)

n f{¥ | 7) =

— A+ WAltsT) ©

i=1

Taking the conditional expectation of (9) we obtain
E[ln f(Y‘,T’)IX',T(k)]
= E[ = {loX; + U7 + Ry ™!

(X, +1] - |X;'r'("‘)]

—A+E[i]nk(t,;;1‘)

i=1

X;r(k)] . (1)

In (10) there is a sum of three terms: the first is a function
of the observations and the event arrival times, but not a
function of . Hence, the conditional mean of this first term
is a function of 7(¥) only, Consequently, this term does not
affect the maximization with respect to 7, performed in the
(M) step given by (7). The second term A is also independent
of 7 due to the assumption that the time delay does not
introduce truncation of the signal intensity in [0, 7], Therefore,
we may ignore these two terms. For the third term, using the
stochastic integral representation of the Poisson summation
(see Appendix B for a brief overview), we obtain an equivalent
Q function for the EM algorithm

Qr | hE R [znj tn A7) | X; r(k)]

i=1

T
=E f dNtln)\(t;THX;'r("‘)}. (1D
1]

algorithm will stagnate on the initial estimate:

Assuming the exchange of expectation and integration is valid
this is equivalent to

T
Qr | 7¥y = fu E[an | X,7®] mA(t;7)

T"-.-
- f dNt(X,'r(”)) mAET) (12
1]

where dN (X, 7(}} denotes the minimum mean-square-error
estimator (MMSEE) of the point process dN:. pgiven the
observations X and the current estimate 7(¥ of the time delay.

Using (12) in (7), the EM algorithm takes the following
simple recursive form

T = arg max o [Qerirt)]
= arg max, .o [ [N (X ) magm)]. (13)

In view of (13), we can make useful interpretations that
elucidate the asyraptotic behavior of the EM estimation algo-
rithm. When there is no observation noise and p(t) approaches
a Dirac delta function, corresponding to an infinite bandwidth
measurerment system, then dN; is perfectly observable and
dNt(X %)} = dN,. In this case

J1axend(%,019) = [1aanan,
= Z In A(te; )
i=1

which, when substituted back into (13), yields the well-known
form of the maximum-likelihood estimator of 7o when the
point process is perfectly observable [6). For this case the EM
algorithm converges in a single step to the MLE.

On the other hand, when the noise level is high, it can be
expected that the conditional mean is approximately equal to
the unconditional mean: dN.(X,7®)) ~ E[dN; | 7] =

A{t; 7)) dt. Therefore, from (12)

) ,
Q('rl'r‘k))”fo dAGT®) A ()

which has a maximum at 7 = %), To see this, we make use
of the inequality Inz < z — 1 as follows

T T
f dEMt; 7O In A (5 7) — f diA(t 7N I A(t; 7 (F)
0

A7)
AMt; )

< i) = | dta(tr®
< [o dta(E7) fn (7%
=A—-A=0. (15)

f At 7®) o BT

Therefore, we conclude that when the thermal noise level is
high, the maximization operation is (13) is degenerate and the
7®) = 0
k=12
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V. LINEARIZATION OF CONDITIONAL MEAN

The EM algorithm presented in the last section has a decep-
tively simple looking iterative form (13). The main difficulty
for implementation is the caleulation of the conditional mean
estimate (11) of S{r) &f fUT dN,In A(; T), or, equivalently,
the calculation of the conditional mean estimate (12) of dN;. In
general, the estimate of S will be the output of an infinite-order
nonlinear filter operating on the observations X. An important
exception is the case of jointly Gaussian X and S, whete the
conditional mean estimate is the /inear minimum mean square
error estimate (LMMSE). The jointly Gaussian approximation
is reasonable for X and § when A(%; ) is uniformly large over
t € [0,T) for all 7 € T. However, in general the conditional
mean estimate of S given X is not linear. In this section we
derive a linearized EM algorithm by finding the best linear
approximation to the objective function Q(+ ] 7)) in (13),
In the next section we investigate some of the limitations of
this linearized algorithm.

Specifically, we have the approximate EM algorithm

740 = arg max, o7 (| ™) (16)

where
Q(T|r('=>) = j; ! dN:(X, 7 mABT) (A7)

and the optimal linear estimate dN,(X,7(®)) of the event
sequence is given by [16]

—_ T
AN (X, 7)) = _/ du RdN..x(f,u;r(k))
0

X -/;T dvR}l (u,v;r("‘))

X [X(”) — px (v; r("))] +E [dNt|r(’°)]
(18)

where:

* Rx{u,v;7)} is the autocovariance function of the obser-
vations X sampled at times 4 and v when the true time
shift is 7;

* Rynex(t,u;7) is the cross-covariance function between
dN, and X (u) when the true time shift is T;

¢ px(u;7) is the mean of X{u) when the true shift is 7;

« E[dN; | 7] = A(t;7)dt is the mean of the point process
when the true time shift is r;

» Ry" denotes the inverse kernel function associated with
Ry.

Using the independence between the thermal noise w(t) and
the point process dIV;, we can calculate the quantities needed
in {18). The mean px(t; 7} is calculated as follows

D wplt~ ;)
i=1

= [ e )pe-oe a9

pac(67®) = B

'r(k)] +E [w(t)l'r(k)]
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The autocovariance function of the observations can be ex-
pressed as [12]

Ry (u, 'u;'r(")) =026(u—v)+ (62 + u?) -
x [ ou= A6 oo - 0dg. 0y

On the other hand, we have by definition of the cross-
covariance function

Rup, x (t, u; T("))

i=1
x E i aip(w —1t;) 'r(")] . 21
i=1

Using the stochastic integral representation, (44) in Appendix
B, and making use of the independence between the point
process and the random gains, we can write the two terms on
the right-hand side of (21) as follows

T(k)]

= E[a; ] T(k)] -E I:dNt . ip{“ —t)
t=1

E |:d.N¢ . i a,-p(u - t,')

i=1

.,ck)]
.,.(k)]

'r(")]. 22

= [ig * EI:dNt f p(u — C)qu
{el0,77}

= e - f plu—OF [amrmuvc
e

T(k)]

f pu— ()N, T“‘)]
{¢elo, T}
= p,,E[dNt | 'r(k)] / plu— C)E[ch I'r(k)]
{¢elo, T}
= paAlt; 'r(k))dtf
{¢e[0,7h

When t # (, the two differentials dV; and dN; in (22}
are statistically independent, while when £ = ¢ we have
dN; dN; = dN;, since dN; € {0,1}. Therefore

.,o:)]

Pl — C)E‘[dNt|T”‘)]

Z a;p(u — &)

i=1

E[dNt ] T(k)]E

= B [dN; | W] E

plu— OA¢ ). (23)

E |:dNt . Z“: a:p(u — &)

i=l

e /{CG[D-T]}—{t}
x B[V | 9] + wap(e - B[ |r)]

= Mt T®)dtp, j Bl ~ MG TM)dg
CF#L

+ pap{u — £)A (t; T(k))dt : 24
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where the integral on the RHS of the last equalities in (23) and
{24) is a standard (Riemann) integral. Now, since the integrand
p(u— QM 7)Y of this integral contains no delta functions,
we have

[ p(u— OMC; ™)
{¢e[0, T} —{t}

= [ - MG
{0
Plugging (23) and (24) into (21), we obtain
Ran, x (t,u; ) = pop(u ~ A (5r®)az. @)

Using (25) and (19) in (18) we obtain the final linear filtering
formula

_ T
AN X, 70 = A(g; 7)) dt - {1 + fta / dup(u — 1)
o]

T
-/0 dvR}l (u, v;‘r(k))
: [X(v) — ta j; i A&7 ) p(o - E)d«E] }

(26)

Finally plugging (26) into (17) we obtain
_ T
Q(-r | 'r"°’) = f ditM(t; ) In At 7).
A !

T
'{l‘l‘ﬂ-a/ du p(u —£)
0
- fT
- duRP u,v; r®
fo x(‘uu'r )

x [X(v) ~nafr\(é;f('°’)p(v—5)d€]}-

27

Discussion

By examining the form of the optimal linear approximation
(27) to the E step of the EM algorithm, we can make some
useful interpretations. First, observe that when the observation
waveform X closely resembles its expected value under the
current estimate 7(*), which may occur if 7(®) js ¢close to the
true time shift 7o and the variance of X is Iow, the argument of
the quantity (27) under the double integral will have a value
close to zero. Then dN, = A(t; 7)) dt and (27) becomes:
Qr | 7)) = fOT dt A(t; 7%)} In A(t; ), which, as was seen
in (15), has a maximum at 7 = 73, This supgests that, if the
variance of X is low, once the algorithm gives an estimate
close to the true value of the parameter, successive iterates
r{+1) £(:+2) .. will remain in the neighborhood of the
parameter.

Second, observe that the difference X (£) — gra [ A(€;7%))
p(t—E)d¢ should take on positive values in those time intervals
where the value of A{Z; 7))} is small and the value of A(Z; 7o)
is large, whereas it should take .on negative values where the
opposite is true. Since this difference is passed through a filter
involving the inverse of the assumed intensity function, the
positive values are amplified, while the negative values are
suppressed. As a result, the matching process will tend to shift
the current estimate towards areas where A(Z; 7o) is high, as
expected,

However, the lincarized EM algorithm can be seen to
degenerate as the mean p, of the gain sequence goes to zero.
Observe from (27) that the output of the linear filter, which is
supposed to act as a correction factor for the estimator update
from 7(® to 7¢*+1) has a multiplicative factor po. When pq
is close to zero the observations X (1) lose their influence on
the update, Q7 | +?)) ~ ff diA(t; ) ln A(t; ) and, as
explained above, the linearized EM algorithm will therefore
stagnate.

V1. CONSISTENCY OF LINEARIZED EM ALGORITHM

A matural way of trying to better understand the attributes
of the linearized algorithm is to look at the iterative algorithm
behavior under “best case” noiseless conditions. In particular,
we will investigate the EM sequence 7D 73 ... as A, the
total average number of Poisson events, goes to infinity- and
under the simplifying assumption that o2, = 0. If the sequence
converges 1o the true delay 7 in the asymptotic limit of large
A, then the limit point of the EM sequence is said to be
a consistent estimator and otherwise it is inconsistent. Note
that if the estimate jis established to be inconsistent under the
assumption o2, = 0, it will certainly be inconsistent for the
more difficult case o2, > 0, although the converse may not
hold.

Consider the equivalent EM algorithm

1=
(k1) _ L *)
T = arggéa}cAQ(‘r K ) (28)

To investigate this algorithm as A — co we normalize both
sides of (17) by the total count A

Q(T | T““)) = jT LaNx 7% In A(t; 7)
= o A t L] 1
= /T lé}\“’.ﬂ(x N 1n l)\(t' T)
e A ’ AT

T o ———
+InA j %dm(x, 78, 29)
1]

L
A

Since the second term on the right-hand side of (29) does not
depend on the variable 7, the linearized EM algorithm (16)
is equivalent to

(k1) 5 (k)
T = axgrfeaé)_(Q(T b ) (30)

é(f l 'r(")) = /D ) %va\'t(X, r(")) In %A(t; 7. Gl

5
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Furthermore

1~ 1

il E)y — Z (g K
AdNt(X,-r } A_)t(t,'r )t

T T 1 . -1
- {1 -Hmj(; du p(u — t)‘[o dy [-KRX (u.v;’r(k))]

1 T
x [KX(v) I CLO T é)df} } (32)
Since A = foT A(t; 70N dt, the quantity
%/\ (t;‘r(k)) = A* (t;f(k))

in (30) and (32) is merely a normalized version of the point
process intensity, which integrates to 1 over ¢ € {0,7] and
that is functionally independent of A. On the other hand, for
62 = 0 from (20) we have

(33)

1
KRX (u, v; T(k)) = (o2 + ,u.i)R}(u, w5 'r{k)) (34

where
B (1 7®) % [ p(u— 022 (679 )oto - .

Next we show that, for true delay 7o, the normalized observa-
tion £X(t) converges in the mean-square sense to its mean
value g, - p%(¢;7), where

T
Pty f0 A (ETplt - £)dE. (35)

It will suffice to show that the variance of + X (¢) goes to zero.
Using (20} with u = v = ¢, 7} = 1, and o2 = 0 we obtain

1 1
Var (KX(E)) = F‘Rx(t, t; 7o) (36}

24 .2 /T
= B2 [ - oveme
0

' (37

Since the integral is finite, we obtain Var(:X(t)) — 0 and
mean-square convergence is proved,

Using (32), (33), and (35) in (31) we obtain as A — oo
3 17) (e 170)

where

ITA
X [1+ ug_}_ngdup(u—t)
X fd’UR;c_l (u, 'U,‘T(k))
X [.ufz(v;fu) o (v;r“‘))]]

and convergence is in the mean square (m.s.) sense for fixed
true time-delay parameter 7q.
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Define the sequence {7¥)} by the following recursion

7 = arg max Q(u | 79) 38
where u is the search variable. The asymptotic consistency of
the linearized EM sequence 71,72 ... can be studied by
investigating the limit points of the sequence, 7%, 7 ...

Consistency of {7¢*}}; Using Proposition 1 of Appendix C,
if Q(u | 7(¥) is differentiable and unimodal then the mean
square convergence Qu | ) — Q(u | 7¥) implies
convergence in probability (i.p.) of the sequence of estimates
73, 72 ... obtained from successive u-maximization of
G(u | ™), to the sequence of estimates 7, 7@,...
obtained from successive maximization of Q(u|r™)). Recall
that for an ergodic stationary process a parameter estimator
is said to be consistent if it converges ip. to the true pa-
rameter as the total observation time goes to infinity. For
the nonstationary Poisson process considered here, a natural
extension of the definition of consistency for the linearized
EM estimator is: The estimator is said to be consistent if
Iim; () converges ip. to the true parameter 7p; as A — 5o,
Under this definition, since m7*) converges i.p. to lim,7(*)
defined above, the sequence 1,7}, ... of linearized EM
estimators is consistent if and only if the limit limy7*) of the
deterministic sequence 71, 7@ ... is equal to 7.

First we note the following general consistency property. -
From the right-hand side of (38) stagnation occurs in the
sequence {7*)} when the ratio % /a2 approaches zero since
in this case the objective function Q(u | 7)) reduces to the
form (15). Therefore, unless the ratio u, /ey, is sufficiently
large to avoid stagnation of the sequence {719}, the limit
limg 007 will be an inconsistent estimator.

By inspecting the surface {Q(u | v) : w,v € T} we can
establish consistency or inconsistency of the linearized EM
algorithm for a specific intensity A, pulse shape p(t), and
operating conditions, ;2 /a2, p. Given a previous iterate 7(*),
the next iterate 7*+1) is given by the location along the line
{(u,v) : v = 7®} of the global maximum of Q(u | v).
The surface {Q(u | v) : w,v € T} for T = [2250 ns, 2750
ns} x [225Q ps, 2750 ns] and for the true time delay 70 =
2500 ns was generated for the.case of triexponential signal
intensity, monoexponential SPR, and the same parameters used
for the simulations presented in the next section. Note that,
since Q(u | ») is simply shifted by a change in 7o, the choice
of 7y within 7 is immaterial as long as the support of A, (t—q)
is contained in [0,T]. The signal intensity function is the
t-function A (t — 7) where

X(t) = et [emtna — gt ] (39)
and 0 < K3 < k2 < K. By choosing k1, &1,k the slow
component (k) and the rise time {(approximately xz — x3)
can be fitted to a large number of smoeth unimodal intensity
functions. To facilitate graphical interpretation, the objective
function Q(u | v) displayed in Figs. 1 and 2 are normalized
with the. maximum value of Q(u | v) over u for each v.
For piz/o, = 5, we see in Fig. 1 that, no matter where
) ig located on the v axis, the maximum along the line
{(u,v) : v = T(ry} occurs at the true time delay g, since the
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Fig. I. Objective function for the triexponential intensity, po /o, = 5.

Dlujv)

Fig. 2. Objective function for the triexponential intensity pof@e = 1.

maximum of Q(x | v) occurs along the horizontal ridge = g
for all %, Thus for this high value of 42 /42 the EM algorithm
converges in a single step to T = 79, no matter what the value
of the initial point %) and for this case the linearized EM
algorithm is consistent. On the other hand, for p./o. = I,
we see in Fig. 2 that the maximum over u of Q{u { v) occurs
at w = 7%}, since Q(u | v) takes its maximum along the
diagonal ridge » = v for all ». Thus for this Iow value of
puZ /o2 the EM algorithm stagnates at the initial estimate 7%
and for this case the linearized EM algorithm is inconsistent.

Now, to further illustrate the asymptotic performance of the
linearized EM algorithm we will consider the limiting case
where p(t) approaches a delta function. Then it can easily
be shown that the optimal linear estimate (27} of the Poisson
poimt process takes the asymptotic form

1 2
im — = A* (- R _Ha
[Jim SN, = (t,'r )dt[1+u§+ag

X/dué'(t—u)/dy §(u ~ ).

__ o

2
A (Tt + —EE v (4 mp)dt.
R g BT N it
(40)

In the limit, the estimate of the point process reduces to
a weighted average of the rrue intensity A*(f;79) and the
assumed intensity A*(t; 7(%)), When o2 > 12 we see that the
observations have less influence than the previous estimate
on the estimation process. This is readily seen for the case

ta = 0, when the algorithm stagnates on the initial estimate.
On the other hand, when u2 > o7, the observations dominate
and the estimation process will drive the estimate towards
the true parameter value 7o. This fact suggests that the linear
approximation is insufficient for regimes where g, dominates
M. In this case, a quadratic approximation [17] will perform
better than the linear approximation introduced here.

VIL. SIMULATIONS

We applied our linearized EM algorithm to simulated data
and compared its performance with that of two leading edge
estimators and the linear OMF estimator of the time delay 7.

In these simulations, the sampling interval was set at T, =
0.5 ns. We used the triexponential intensity (39) with a rise
time of approximately 2.5 ns and a quick decay of 60 ns
along with a longer 300 ns decay component, More than 90%
of the events are generated by this longer decay component.
The overall decay component is approximately 260 ns. This
intensity function is typical of a BGO scintillator used in
PET imaging [18]1. Our SPR p(¢) is an energy-normalized
one-sided exponential pulse, p(t) = /57— exp(~¢/T;). with
T, = 5 ns. The random gains were generated as positive
iid. random variables with a truncated Gaussian distribution
and pofo. = 4.5. It was verified that for this value the
linearized EM algorithm gives a consistent estimator. The gain
distribution and the pulse shape are analytic approximations to
real measurement data for a Burle/RCA 8850 Photomultiplier
Tube used in PET imaging [18]. The estimator’s pricr search
region was centered at 2500 ns and was 500 ns wide. Each of
the two leading edge estimators was implemented to trigger
on the first crossing of thresholds 8y and S, respectively.
The thresholds were set at the 20% and 80% points between
the peak of the mean output waveform g, A(t) * p(2) and the
mean background noise Ievel p, Ag#p(t). The simulations were
performed for v = 20 db, p = 20 db and A varying from 15
to 23 db (approximately 30 to 300 total event count).

The Poisson events were generated by a simple log trans-
formaticn of pseudo random uniform variates to produce a
Poisson process. The integrals in (13) and (18) were discretized
and a high SNR approximation to the inverse kernel R}l was
used (see Appendix A). 200 independent experiments were
run for each value of A = 15,16,.-+,25 db. The leading
edge and optical matched filter, and lincarized EM estimator
were implemented for each experiment. For each experiment
the linearized EM estimate was iterated until convergence
was achieved. Since estimator performance is shift-invariant,

we kept the value of the parameter 7y constant throughout

the simulations. The sample mean of the individual squared

- errors was then calculated and normalized with respect to the

variance of a uniform random variable over the prior interval.

In Fig. 3(a) a simulated observation waveform is plotted as
a function of ¢ for A = 23 dB (200 events). The corresponding
optimal linear estimate dN; discussed in Section III is plotted
in Fig. 3(b) as a function of ¢. Ideally, if the estimate is
accurate, dV; should resemble a train of impulses located
at the amival times {¢;}7;. Observe from Fig. 3 that dN,
appears to operate as a high-pass filter that sharpens the peaks
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Fig. 3. (a) Simulated observation data for A = 23 dB,jo = 2.5 ps.

{b) Output of the lincar cstimator od dV; for the data of Fig. 3(a) and
%) = 2100 ns. .

of the signal, thereby enhancing visibility of the event times
of the Poisson process,

In [8] it was shown that the Cramer-Rao (CR) lower bound
on timing performance is trivial in several situations (e.g.,
when the scintillation pulse is rapidly varying) and a tighter
lower bound on the post-detection timing error was derived.
The RMS errors of all four estimators are plotted in Fig. 4
along with the unbiased form of the CR lower bound as a
function of A. In Figs. 5 and 6, the bias of all four estimators
is plotted, We see that the bias of the linearized EM estimator
is very close to zero and that the linearized EM estimator
virtually achieves this CR bound for high values of the mean
_ rate and comes very close for moderate values of A as well.

Based on these simulations we make the following conclu-
stons for the above example:

* Qur EM-type algorithm significantly outperforins both

the leading edge and the matched filter estimators for

moderate values of A. For very high values of A (not

shown in our graphs), all estimators have almost identical

periormace.

The EM estimator comes very close to the lower bound

derived in [18]. Hence, it is a virtually optimal estimation

scheme.

Unlike the other estimators studied, the bias of 7EM jg

very low, even for moderate values of A.

« The EM algorithm converges very quickly, usually re-
quiring only two or three jterations.
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Fig. 4. Root mean square eror {(RMSE) of two leading edge (le), the
optical matched filter (OMF), and the linearized EM (EM) estimators (95%
confidence intervals are indicated). The unbiased CR bounnd (bound) is plotted
for comparison.
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Fig. 5. Bias of two leading edge (..}, the optical matched filter (OMF), and
the linearized EM (EM) estimators (95% confidence intervals are indicated).
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Fig. 6. - Blow up of Fig. 5 to show error of linearized EM estimates (EM)
and the unbiased CR lower bound (bound).
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VIIL. CONCLUSION

We have presented an approach that makes use of the EM
algorithm to estimate the time delay of the inhomogeneous
component of a filtered Poisson process. For large square
mean-to-variance ratio p2 /o2 of the gain sequence, the algo-
rithm exhibits quick convergence and holds a clear advantage
in terms of MSE over previous timing techniques. Our model
may be applied to any time-varying intensity function and the
approach easily generalizes to arbitrary parameters 7 of the
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intensity A. Robustness issues remain to be addressed, since
the algorithm assumes that the shapes of the intensity and the
SPR pulse are known.

It is useful to contrast the observation model considered
here with other similar models considered in geophysical
exploration (detection of underground explosions, seismic de-
convolution for geologic strata analysis, etc.). In these latter
applications, observations are taken in discrete time and the
intensity of the process dN; is constant. The objective is to
estimate the arrival times and the associated gains. Several
optimal and suboptimal deconvolution algorithms have been
developed, such as single most likely replacement (SMLR)
and its variations [19], [20]. They give satisfactory results, but
do not extend to the time-varying intensity case. However, in
the time-delay estimation context, the event sequence is not
explicitly needed. The algorithm makes use of an estimate of
the arrival times, dV; only insofar as it is needed to produce an
estimaie of time shift. Indeed, as may be seen from Fig. 3(b),
the linear estimate d/V, is not restricted to the range [0, 1] and
it may even take on negative values. It Is remarkable that such
an estimate is sufficient to give a highly accuorate estimate of
an intensity shift parameter.

APPENDIX A

An analytical expression for the inverse R}l(t,u) of the
autocovariance function Rx(t,«) is difficult to obtain in the
general case, since it is required that an integral equation of
the form

f Rx(ts)d(s)ds = A¢(t) @D

be solved, where ¢(t) are orthonormal eigenfunctions asso-
clated with Rx and A are comesponding eigenvalues [21].
{41) is not easy to solve and an exact solution can be
derived only when the function is stationary and has a rational
Fourier transform. Obviously, this is a restricted class of
functions and it does not confain the: covariance function
of a filtered Poisson process with inhemogeneous intensity.
However, under the assumption of a causal, exponentally
decaying p(t), we may compute an approximate inverse.
First we discretize the temporal argumenis ¢ and = : i,1u €
{FAHL,, where A > 0 and MA = T. In order to account for
the effect of sampling, we will integrate p(t) and A(£) between
suceessive samples, Using (20), the discrete-time equivalent
covariance matrix X = ({Rx (34, §A)))i j=0, . m—1 i8

Tx = (02 + 42) - P-diag{}i)} - PT + o031

where I is the A x M identity matrix and P is a matrix
whose columns are shifted versions of the integrated samples

#k) = [ETV25()dt,k = 0,---, M — 1. For causal P(t),
P has the form
7(0) 0 e 0
#(1) (0} 0
P=1 #2) B(1) #(0)
: : B 0
MM ~1) B(M-2) #(0)

5.5 T nl T

0.2 P

o R - B N .
o 1000 e85 Bl 4000 53000 %000
_.| TJ I._ nsec

Fig. 7. The time interval of length Ty defining the blocks in (42) for &
monoexponential intensity function,

The matrix Y¥x can be approximated by a block diagonal
matrix under the assumptions of high SNR. In particular,
when the covariance of the signal process is much larger
than the variance of the thermal noise and the dark cur-
rent is low, we may be able to find a time interval where
(o2'+ 12} P diag{A(s)}PT dominates, while the white noise
dominates the dark current component in the rest of the
observation interval. Then we may write

o2l 0 0
Ex=] 0 (p2+0)PsAePF O (42)
0 0 o2 F

where P; and Ay are Ty x Ty submatrices of P and diag
(X(i)), respectively, and Ty is defined as the length of the
time interval over which the covariance of the signal process
dominates the noise. For any given value of the relevant
parameters it is straightforward to find Ty and the resulting
time intervais, as is evident from Fig. 7.

Under the above assumptions, the inverse matrix is written
as follows

LT 0 0
B | 0 mprPITATYRYY 0L @
0 ©0 =T

a’w

Let p(t) be of exponential type: p(t) = %}-e_’f‘;,t > 0. Then
the discrete-lime energy equivalent pulse is

&, k20
p(k) = {co, k<0

_a
where d = ¢ ?» and ¢ =

V/28/[(1 - @)n (3)]. It can
then be ecasily verified that

1 0 - .0
-4 1 0
1
_1‘——1 * . -
Pl = .o
-d 1 0
0 - -d 1

Now the matrix PyTAZ Py in (43) is written as follows
(see equation at the bottom of the next page), where 7 is the
time point where the interval of length Ty starts,
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APPENDIX B

Let {Ni;0 <t < T} be a Poisson process and {£;}?; the
arrival times of its events. We define the differential increment
of the process as

dN; = AH-IH)JNMN — V).

The inerement may take only the values Q or 1.
In dealing with Poisson processes, the following stochastic
function is of particular interest

n

=3 glt—t)

i=1

where n is the number of the Poisson events in the time
interval [0,T] and g is & deterministic function of ¢. Using
the binary nature of dN; we may rewrite (44) in a more
convenient way as follows

®) /0 N, gt —u).

The integral can be interpreted as a Riemann-Stieltjes integral
having the evaluation

by
0 Nr=0
dNug(t —u) = n !
-[0 gt =) {Ei—19(t"ti)s Np2>1

which is called the stochastic integral representation of the
Poisson process.

(44)

APPENDIX C

Proposition 1: Fix the point v and let @z | v) take its
maximum value at the point » = 7. Assume that +Q(u | v)
is differentiable in u# and that as A — oo it converges
mean square to a nonrandom function Q(u | v) which is
differentiable and unimodal taking its unique maximum vaiue
at u = T. Then # converges in probability to . S

Proof: By differentiability we can define g(u)
8/8,5Q(u | v), Flu) = 8/3,Q(u | v), and Aqlu)
q(u) — F(u). By unimodality §(x) is a nonincreasing function
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of » with unique zero at w = 7, i.e, forall u > @

T+ u) <0 <GT—u) (45)

For arbitrary u > 0 consider the probability

Plg(T+u) <0< g(F — u))
= P{Aq(T+) + (7 +u)
<0< AT~ u) +g(T — )
= P(Aq(T + u) < —4(7 + u), ~Aq(T ~ u) < T — u))
> P(V/IBglr + wP ¥ [Bglr— )P

< min{—g(7 +u), 37 - v)}).

Where the above inequality follows from (45). Using the
Tchebychev inequality we obtain for any « > 0

Plg(T+u) <0< g(T—u))
_ Elladz + )] + E[lAq(F - )]

2 T (e + o) - 9P

By the m.s. convergence assumption the expectations on the
right side of the Tchebychev inequality converge to zero.
Therefore we have established that for all w > 0

Alim Plg(T+u) <0< g(T—u)) =1 (46)
— 00
and hence + converges to 7 in probability [22]. O
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