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Timing Estimation for a Filtered Poisson
Process in Gaussian Noise

Alfred O. Hero, 111, Member, IEEE

Abstract —We treat the problem of estimation of time shift of an
fnhomogeneous causally Riltered Poisson process in the presence of
additive Guussian noise, Approximate expressions for the likelihood
function, the MAP estimator, and the mmse estimator are obiained,
which become increasingly accurate as the per-unil-time density of
superimposed filter responses becomes small. The optimal MAP estima-
tor takes the form of a cascade of linear and memoryless nonlinear
components. For lew signal amplitudes the MAP estimator is equivalent
to maximizing the outpul of a linear matched filter arising in optical
communications receivers, For smoolh point process intensities, the
performance of the MAP estimator is studied via local bias and loeal
variance. A rate distortion type lower bound on the mse of any estimator
of time delay is then derived by identification of a communications
channel that accounts for the mapping from time delay to ehservation
process. Finally, vescells of numerical stodies of eslimator performance
are presented. Based on the examples considered it is concluded: 1} the
small-error mse of the nontinear MAP estimater can be significantly
better than the small-error mse of the optimal linear estimator; 2) the
rate distortion lower bound can be significantly tighter than the Poisson
limited bounds determined in previous studies,

Index Terms—Shot noise processes, Lime delay estimation, intensity
shift estimation, rate distertion bounds on estimation error.

[. INTRODUCTION

E TREAT in this paper the problem of time shift

estimation for inhomogeneous, causally filiered, Pois-
son point processes, equivalently nonstationary “shot noise,”
in the presence of additive Gaussian noise when the time
delay parameter is imbedded in the intensily function of the
point process, We call this combined pulse superposition and
Gaussian noise signa) a Poisson-Gaussian process. Here we
consider only the simple case of constant filter gain; an
extension 1o a random gain model is considered elsewhere
[15]. Our model is a special case of a random gain model
arising in applications including: nuclear particle detection
systems [10], optical communications systems [16), neural
spike train analysis [6], acoustic echo-localization [5), seismic
signal processing [21), and analysis of underwater acoustic
reverberation noise [8]. For cxample, in Positron emission
tomography (PET} a nuclear decay event produces gamma
rays that are detected and amplified through avatanche pro-
duction of photons in photo-multiplier (PM) tubes [23]. Each
PM tube drives an electronic circuit whose output is a
combination of the superposition of single photon filter
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responses, forming a filtered Poisson process, and thermal
Gaussian noise. The objective of the estimator is to give an
accurate estimate of the time-of-flight of the gamma rays,
from which the approximate spatial position of the nuclear
decay can be determined. In optical communications, an
optical receiver is to decide between the presence of a logical
“1” and a logical “0’" based on the number of photons
detected over a certain time interval that is specified by
slot-synchronization information. In the case of pulse posi-
tion modulation {PPM) this binary signal is coded in the time
shifts of the photon packets. In other moduijation formats,
such as phase shift keying (PSK) and pulse amplitude modu-
lation (PAM]), lack of synchronization of the receiver to the
phase/time delay of the photon intensity can significantly
degrade detection performance [9].

Previous work on estimation of time shift of point process
intensities has focussed on the Poisson limited regime, e.g.,
(1L (11, [14], or on the Gaassian limited regime [9], [101. For
the Poisson limited regime, the point process can be ob-
served directly and exact analytical forms of the likelthood
function can be found. For this regime the major difficulty
lies in the manipulation of the likelihood function into a
tractible form for maximum likelihood (ML), maximum
a posteriori (MAP), or minimum mean-square error (mmse)
estimation of time shift. For the Gaussian limited regime the
time shift parameter is imbedded in the mean and covari-
ance functions of the observation waveforms and an analyti-
cal functional form for the likelihood function can be found,
see for example [7]. For the mixed Poisson~Gaussian regime
considered in this paper, an analytical form for the process
density function is more difficult to obtain even though the
characteristic function has an analytical form {24]. Here we
focus on an approximation to the likelihood function based
on a low-pulse density condition simiiar to [22, Ch, 11]): the
product of the filter pulse-width and the intensity amplitude
is uniformly small over time. This condition can be viewed as
complementary to the condition of uniformly large intensity
amplitude for which case one can assert that the filtered
Poisson process is approximately Gaussian [27].

It is worth pointing out that estimation of point process
intensity time shift differs from the related problem of esii-
mation of the amplitudes and arrival times of the superim-
posed filter response pulses, In particular, in [5, 20] the pulse
arrivals are not Poisson and the number of pulses is assumed
known. In [21] Poisson arrivals are considered but the point
process intensity, assumed constant therein, is only inciden-
tal to the pulse amplitude and pulse position cstimation
problem. The asymptotic likelihood function approximation
developed here is obtainable as a special case of an approxi-
mation praposed in a paper [18] that appeared a number of
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months after this paper was submitted. However, in [18] the
estimation problem is not considered.

In this paper we use the low pulse density approximation
to obtain forms for the likelihood ratio used to detect the
time shifted point process for known intensity time shift. The
expression is then used to obtain approximations to the MAP
estimator and the mmse estimator of time delay. The log-
likelihood ratio is seen to have the following structure: After
suppression of the Gaussian noise compenent of the obser-
vations via classical matched filtering, an exponential trans-
formation generates a spike train that is subsequently corre-
lated against a time-shifted version of the intensity function.
The log-likelihood ratio is maximized over the set of possible
times shifts to yield the MAP estimate. It is significant that
for low process amplitude, and a narrow superposition filter
response, the nonlinear log-likelihood ratio reduces to a
classical linear filter receiver that has been previously pro-
posed as a suboptimal detector for optical communications
systems. This is a uniformly low intensity extension of the
well-known result that the linear matched filter is an approx-
imately optimal linear estimator /detector for uniformly high
intensity. While we do not consider random gains on the
generated pulses, it is shown in [15] that with random Gauss-
ian distributed gains the resultant likelihood function ap-
proximations are quite similar to those in this paper. Speciti-
cally, the only difference is that the random gain model
introduces a quadratic memoryless nonlinearity between the
matched-filter and the exponential transformation in the
log-likelihood structure previously described.

To evaluate the performance of the approximation to the
MAP estimator, we derive expressions for the local bias and
local variance under the assumption that the point process
intensity is differentiable. These expressions characterize the
small error behavior of the approximate MAP estimator over
the full range of low to high pulse density, The local bias and
local variance can be related to the asympiotic rates of decay
of the actual bias and variance of a MAP estimator obtained
from observing successive independent versions of the Pois-
son—Gaussian process through the mechanism of repeated
experiments. Alternatively, the small error variance can be
interpreted as an approximate Cramer—Rao lower bound for
low-pulse density. To establish fundamental limits on estima-
tion performance, a rate distortion lower bound on estimator
mse s then derived. The bound is obtained by identifying a
cascaded Poisson and Gaussian channel which maps random
time delays to the measurement process. The capacity of the
Poisson channel is upper bounded .using results in [14]. On
the other hand, the capacity of the Gaussian channel is
upper bounded using standard results of rate distortion
theory [3]. The final form of the rate distortion bound is
obtained via the dara processing theorem. Finally, a numeri-
cal evaluation of the expressions for small-error mse and the
rate distortion lower bound is presented for the special case
of Gaussian intensity and cxponential superposition filter
response. Based on the examples considered we conclude:
1} the small-error mse of the nonlinear MAP estimater can
be significantly better than the small-error mse of the opti-
mal linear estimator; 2) the rate distortion lower bound can
be significantly tighter than the Poissen limited bounds stud-
jed in [14]. :

The organization of the paper is as follows. Section Il
introduces the main assumptions and gives a low-pulse den-
sity approximation to the likelihood ratio. Section 111 reviews

conventional linear estimator structures and develops forms
for the MAP and mmse estimators. Section IV develops
expressions for local bias and local variance of the MAP
estimator. Section V presents lower bounds on mse. In
Section VI numerical performance comparisons are pre-
sented.

11. PROBLEM STATEMENT

A few words about notation are useful. In general, bold
faced variables, e.g., X, denote random variables, vectors, or
processes. A notable cxception is the random variable 7. The
probability distribution of X is denoted by the generic
“P(X)" Observe that P(X} and P(r) are different func-
tions, not the evaluation of a function “P" for two different
values of its argument. The probability density of X, with
respect to some usually unspecified dominating measure g,

is denoted by F(X)= dP(X)/ dp.

We will consider the case of a general random time delay
r. Estimators for the nonrandom casc can be treated by
specializing to a uniform prior on 7. Conditioned on 7, let

NE{N(): £ €[0,T]) be an inhomogeneous Poisson process
with intensity function {A(t — ) ¢ €[0, T}, where

AMey=2a,)+4,. (1

In view of (1), N corresponds to the sum of an inhomoge-
neous Poisson signal process, N¥, with intensity AJ(¢ —7),
and an independent homogencous Poisson noise process,
N?, with intensity A,. It will be assumed that r affects A, as
a shift, without truncation in the sense that the set {z:
At —7)> 0} is contained in the observation interval [0,T]
for all = over the support set {r: f{r)> Q).

Let the total number of points of N over [0,T] be denoted

by n, specifically nd;rN(T). Let {#;}{L, be the n occurrence
times associated with the points of N. The joint probability
distribution of {¢}., and n» given 7 is specified by the
conditional density f({z;}. ln, 7) of {£;}*.; and the probabil-
ity mass function p(n|7) of n [27]:

n
e MIA(t,-7), m>0,
i=1
f_’_‘\,

F{ed i ln, ) p(nlr) = (2)

n=10,

where

def

AL [Tt~ vydr = [TM() di = A+ Ay (3)
1]

{
is the energy or integrated rate of the point process which,
by assumption, is functionally independent of 7.

Available for observation over the time interval ¢ €[0,7]
is the sum of 4 filiered Poisson process and Gaussian noise

N

X(1)= X p(t - 1)+ w(i),

i=1

(4)

where p{t) is a known continuous and square-integrable
filter impulse response with 3-dB time-width 7, W is zero-
mean white Gaussian noise independent of r and {¢}7. | with
E[w{r)w(e)] = (N, /2)5(¢ — u). For the purposés of mathe-
matical analysis, the notation in (4) is to be interpreted as
shorthand for the equivalent second-order integrated obser-
vation Y(t) = ["ZM¥p(u — 1) du + W(1), where W) is a
standard Weiner process [28]. We will assume that the filter
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F:ig. 1. Sample path of Poisson-Gaussian process X = X(t) is superpo-
sition of randomly shifted pulses (indicated in figure by dotted lines),

and uncorrelated Gaussian noise.

A

T

Intensity function A = A(r — 1) of time shifts (Poisson occur-
rence times) of super-imposed pulses in Fig. 1.

Fig, 2.

p is causal: p(t)=0 for + <0. Under this assumption the
process (4) is equivalent o the observation

"
X(1)= X p(t — 1)+ w(r).
i=1
Fig. 1 illustrates a typical realization of the X process for the
intensity plotted in Fig. 2.

Fix a realization of 1. The objective of a signal detector is
to decide between the following two hypotheses concerning
the presence or absence of the signal intensity A, on the
basis of the observation X:

(5)

Hy: intensity = A

a1

H,: intensity = A (t = 7)+A,,.

(6)

The optimal test of H| vs. H, is the likelihood ratio test that
compares a likelihood ratio statistic

def dP(X|H],1')
O = ey

to a threshold. A general abstract form for this statistic can
be obtained using methods given in [19], [28). Here we take a
different approach. Conditioned on the values of the set of
occurrence times, {#)/_ |, and on their number, #, X in (3) is

a deterministic signal plus a white Gaussian random process.
A form for the conditional density of the observations given
{t'_;, n and 7 can then be obtained using the
Cameron—Martin formula [25]:

(XY mar)

= g/ NI XIS 3 pla 12t = (/NI o=t Wt ()
The numerator and denominator of the likelihood ratio
statistic are obtained by taking the expectation of (7) over
{#}/_, and n, denoted E, ..., , given H, and H, respectively:

f(X!H,,r) = E,I...,"[f(XI[t,-]f_,,n,‘r)lH,,-r],

FXIH) = E, . f(XNe)s n)|H). (8)

The two conditional density functions of (8) are not in
analytic form. In Appendix A, O{AT,A * ) approximations to
these functions are obtained, where

der 1 T,
ATE -—-max[H PA(#) dr < max A(s).
T, 4 t

P

Therefore, the approximation is accurate under the assump-
tion T, < 1 /(A max, A(r). This assumption is valid when the
pulse width T, is sufficiently small so that the nonoverlap-
ping pulses dominate in the sum J(E)? in (7). Substitution of
expressions (A.9) and (A.10} of Appendix A into the likeli-
hood ratio statistic L{X[7)= f(X|H,,7)/ f(X|H,} gives

L{X[t)=exp U'f'(etz/N..mm P2 A (1 —7) d,) ,
i
)

where the asterisk denoles convolution and y is the pulse-
to-noise ratio (PNR}):

def 2 T,
= — , 10
y Nﬂfup(r)dr (10)

[I1. EsTIMATOR STRUCTURES
In this section we will investigate the forms of the MAP

.and mmse estimators for 7, under the approximation (9) to

the likelihood ratie. In Section VI a-performance analysis is
presented for the MAP estimator. Let the MAP estimator
and the mmse estimator for 7 be denoted 7y ap and 7.
respectively,

A. MAP Estimation

The MAP estimator maximizes the a posteriori probability
Sf(rlX, H), or, equivalently, it maximizes the quantity
In{L{X[r)f(r)], over the set of possible 7. From (9) of
Scction H, it is seen that the maximurm occurs at the same
point as the maximum of the following function:

- del
Taap =

.argmax_ {fr[e(:"-/"\",.lxtll Epl=t=v /2 _ l]
1o

v\_,.(t—v)c[tan(.-)}. (1)
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B. mmse Estimation

The mmse estimator is the conditional mean E[7|X][25]
which, using (9), has the form

LX) [T
Lx) [LAXI) f(7) dr

" def
Tamse = [7

. (12)

Substitution of the right-hand side of (3) into the right-hand
side of (12) gives

A
Tl'!'l mse

-
fd'rfexp(f die@/NaX e pt=r=v/2 _ I)A,(! - 7)f(7)
_ 0

fd-rexp( Tt et/ Max i == 72 _ I)AS(I —7)f(7)
o

(13)

C. Linear Estimator Structures

For the purposes of comparison we mention the class of
linear estimator structures for time shift. These estimators
result from maximization of a linear function of the observed
waveform X:

"r‘,_dgargmax,{x(f)*h(f)}, (14)

where 4 is a function of the underlying parameters. Repre-
sentative examples of i are: the “optical matched filter,”

h(f)q—'e'f /\.\'(_I)

Ad—D+a,+

. (15)

o

2

and robust versions of (15), [12]; and the point process

domain optimal filter [9]:

Often the estimator 7 is implemented by detecting & zero
crossing of the right-hand side of (14). Examples include the
first electron and the constant fraction timing estimators
implemented in scintillation counters [10]. These various
filter functions A(t) arc substantially different both in their
form and in their theoretical motivation. The optical matched
filter is an optimal linear filter for signal detection in the
white noisc limited, voltage waveform domain. The point
process domain optimal filter gives a maximum-likelihood
estimator structure for ideal photon detection. The first
electron timing estimator is a suboptimal filter which has
been common in particle detection systerns such as those
implemented in PET. For the purposes of mse comparisons,
we will focus on the optical matched filter (15) estimator
since it is the optimal linear estimator for the observation
model considered.

D. Discussion

The approximate expression for the likelihood function (9)
becomes exact as the pulse width T, becomes small. In this
case the approximate MAP and mmse estimators (11) and
(13) become exact. For the remainder of the discussion, we
confine our attention to the MAP estimator and the case of
uniform 7, f(r)=constant. For notational convenience, we
let 7= TFpup:

A block diagram of the MAP estimator (11) is given in Fig.
3. Observe that the statistic to be maximized is a simple
nonlinear function of the observations. The estimator strue-
ture can be divided into threc sequential tasks, indicated in
Fig. 3, accomplished by subsystems A, B, and C respectively:
A) a cascade of a noise prewhitening filter K, and a
classical linear matched filter of the form A(t)=p(-1)
extracts a raw signal X, by smoothing the noise process w
and enhancing the superposition process Z{_, p(t — ¢;) (K1
is just a multiplicative factor 2/ N, for white noisc w); B) the
nonlinearity exp(-) has the effect of producing a spike train,
Xy, which emulates a point process by increasing the
dynamic range of X,; C) a correlation of the spike train

A=1) Xy with A(r —7) generates the log-likelihood ratio,

h(r)=ln[1+-"—). (16) In L({#).)l7), and a subsequent maximization over 7 ex-
Ay tracts the time delay parameter.
A B C
Xt : In L(T)
-1
_—> K p(-t) >
XA
argrax  [e—
Fig. 3. Block diagram of approximate MAP estimator of time shift parameter for uniform 7.

T WL I L St
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[t is interesting to study the form of the MAP estimator
(11) in the limit of small values of the argument of the
exponential function: (2/N,)X ()= p(—1). In this case, us-
ing the siandard approximation ¢¥=1+ y and the fact that
under our assumptions [JAr —}dr is functionally inde-
pendent of + over the support set of f(+), the MAP estima-
tor reduces to the form of a linear estimation structure (14)
with

h(YS A=) (= 1). (17)

For a narrow superposition filter response, p{t), and for
Ay <« |, where y is the PNR defined by (10), A(r) of (17} is
equivalent to the “optical matched filter™ (15).

IV. ESTIMATOR PERFORMANCE

The relative performance of the MAP and linear estima-
tors is characterized by local estimator bias and local estima-
tor variance. Conditioned on a particular value of 1, let M
repeated identical experiments be performed yielding M
independent and identically distributed versions {X;}/7, of
the observation {X(r): 1 €[0,T1}. Let # be an estimate of =
formed from these M observations.

As a relevant example consider A, to be periodic with
period T, and assume that within each period A, is zero
except over a small interval of length T,. This model for the
signal A, arises in optical telemetry and in optical communi-
cations repetition codes for synchronization. Define T, /7,
the duty cycle of A,. If, conditioned on +, X satisfies suitable
asymptotic mixing conditions [2], the trajectory of X over
increasingly separated nonoverlapping segments of time are
asymptotically conditionally independent. For such a pro-
cess, the observation of X over M successive periods is
asympiotically equivalent to M identical experiments {X (s}
t €10,T,1} as T, increases to infinity for fixed duty cycle < 1.
Furthermore, under such mixing conditions it can be directly
shown that the approximate likelihood function L(X|+) of
(%) decomposes into the product of M zpproximately inde-
pendent identically distributed (ii.d.) factors L(X|7), i=
Lyere M.

Let £ =2z, be a zero of the function E[(d /dEYL(XI£N7],
which is nearest to 7. Conditioned on = we define the local
bias b(r) and the local variance o*(7) of the ML estimator #

to be:
def
b(r) = z; —,
T]

E[(d]n L{X,lr) )2

dr

2y L

=5 2[ d2in L(X}7) ] (18)
dr-

Conditioned on +, the local bias and local variance of 7 are
equivalent to the asymptotic bias and variance of 7 as M —
under certain regularity conditions on the approximate likeli-
hood function L{X|£) [26]). Specifically, if L(X|£) is twice
differentiable at £ =z, uniformly in X and the variance of
the first derivative is finite, if z; is an isolated zero of
EWd /deYLIX|E)7), if ENd®/dEDLIX)E)] is nonzero at
£=2z,, and if ¥ is weakly consistent in the sense that it
converges 1o z, in probability, then VM (F — z, } is asymptot-
ically Gaussian with zero mean and variance (1) given by

(18} [26, Theorem 7.2.2B]. With exception of weak consis-
tency, these technical conditions are easily verified for the
function L{X|¢} displayed in (9) using results derived in
Appendix B and using the as. continuity of the trajectories
of [X(#)* p(— ). Weak consistency of f is more difficult
and has not been verified. Local weak consistency of 7, on
the other hand, is simple to verify using a monotone approxi-
mation to {d /d£)L(X|£) in the neighborhood of ¢ =z, [26,
Lemma 7.2.2AL

Conditioned on 7 the local mse is now naturally defined as

mse{7) =o(7)+b%(7)

| E[(dln l_;i(TX,-h) )2

3 _ 2
=_AZEZ _a"zlnL(X,-h’) T:l +(r—z.)" (19)

dr?

If the function L(X|7) were the exact probability density
function for X piven r, then it could be verified that the local
bias is tdentically zero, and the local variance (18) is identi-
cally the Cramer—Rao lower bound on the variance of 7 [17].
The above local error analysis applies to any estimator
obtained by maximizing an objective function {X,7) over
which satisfies the additive decomposition property: /(X,r)
=M KX,T1), e.g. the linear estimator structure (14).

A. MAP Estimator Local Bias

We assume that 7 is uniformly distributed over its do-
main. If the local bias is small, ie., the zero £=2z, of

‘I’(«E)d;rE[(d/df)ln LIX|&)Ir] is close to T, a first-order
linear approximation in the neighborhood of 7=1z; holds:
W(z;1=0="P(r)+(z, —)¥(7). Assuming cxchange of
derivative and expectation is justified, this gives an analytical
approximation to estimator local bias b(r}=z, — 7

£ din L(X,|7) ]
dr ’

b =T x| T (20)
E _—'—f};?‘_‘ T

Expressions for the numerator and denominator of (20) are
calculated in Appendix B, ((B.7) and (B.8) respectively).
Substitution of these quantities into (20} gives the following
expression for the local bias of the approximate MAP esti-
mator 7

T, T,
f “exp (f e/ NIRL =10y (1) du])l'(f)dt
[ 0

b(r) = L—L
f " exp ( f “p@/ MR~ (1) du] A"(1)dt
L8] 0

» (2D

where R.,,(r)d=c] Jip(u+ Opluddu s the pulse autocorrela-
tion function. Note that the local bias is functionally inde-
pendent of =, and the expression (21) is thus equivalent to
the unconditioned bias E[6(r)]= E[z; —7]. Observe also
that the bias of ¥ depends on the particular structure of A
and the pulse autacorrelation function R,,. Since autocorre-
lation functions are symmetric about the origin, it can easily
be shown that the local bias is identically zero if A is
symmetric about any point. Hence, for an even signal inten-
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sity function A,, the approximate MAP estimator is locally
unbiased.

For the special case of small PNR y (10}, the local bias
(21) reduces to the simple form

T, T, Iy 5 I
j;] d’lf dty M1 )R8~ 13)X (1)

f "dr,f “diy AR (1 — 1) A 13)
where we have defined the normalized quantities:

det Rp(1) s der A(Z)
()—' ; B /\(‘f)_—A_’ (23)

b(7)= (22)

and p2d=erR,,(0) is the energy of the pulse p(t). it is impor-
tant to observe that to a small PNR approximation, the local
bias is only dependent on the shapes of the intensity function
A and the pulse autocorrelation function R, ie., bias is
independent of the PNR y and the rate A.

B. MAP Estimator [ocal Variance

Consider the case of uniformly distributed = again. The
numerator and denominator of (18) are calculated in Ap-
pendix B, ((B.11) and (B.8) respectively). Thus we have the
following expression for the local variance of the approxi-
mate MAP estimator conditioned on 7:

f d;]f "dszXp(Af [evifu—10+R - Ml—l],\(u)du+-yR,,(rl—rz)),\(rl)A(rz)

variance for the linear matched filter estimator (17). For low
PNR-rate product, a ratc of decay of the variance on the
order of A? as a function of the energy A of the Poisson
process is indicated by (25). The low PNR expression for
local variance (25) is monotonical]y decreasing in the PNR .
It is also decreasing in the second derivative of the normal-
ized intensity function A1) for those values of ¢ such that
Alu)is large, lu— 1l < T,,. On the basis of these observations,
the estimator can be expected to have low variance for the
cases where: 1) the process {z}., is easy to estimaic by
virtue of high PNR; 2} the intensity function A is highly
resolved in the sense that A is high and A is “sharply
peaked,” i.e., A"(r)>> 0, in t-regions of high intensity.

VY. Lower Bounps oN mse

Here we derive lower bounds on estimalor error for the
estimation problem outlined in Section II. Two bounds will
be presented: the Cramer—Rao (CR) lower bound, derived
under the optimistic Poisson limited (high PNR) regime; and
a rate distortion bound. Both of these bounds specify a lower
limit on achievable mse for the general Gaussian—Poisson
regime and, unlike the MAP approximation (9), are applica-
ble to arbitrary pulse density conditions.

a¥(r) =

where A and R are defined in (23).

We make the following observations based on the local
variance (24). Similarly to the local bias, the local variance
(24) is functionally independent of 7. Note that, since R (u)
=0, lut>T,, A%t) and Mu) do not jointly affect the local
variance for [ — 1] > T,. The same property holds for the
joint influence of A'(r) and Afw). T, corresponds Lo the
memory introduced by filtering {r; }" with a filter with
response p(t). Hence memory smears the intensity function
over time as_far as its influence on the local variance is
concerned. This differs from the pure Poisson observations
case, where it can be shown that the local variance and the
local bias do not depend on the correlation between differ-
ent time samples of A (see also the form (27) of the Poisson
limited CR bound in Section V).

Due to the presence of integrands of the form e in the
numerator and denominator of (24), the numerical computa-
tion of the local variance approximation is impractical for the
case of large PNR-rate product yA. For the case of small
PNR-rate product, yA <1, it is shown in Appendix B that
the expression (24) for local variance reduces to the expres-
sion:

-1
) - .
vAM f "d!‘f d'rz‘\(t )R,,(rl 13)A"(15)
(25)

o¥(r)=

Under the assumed low yA conditions, it can easily be
shown that the expression (25) is equivalent to the local

, (24)
A. CR Bound
The CR bound on 7 is given by the inequality
1
nmse = A (26)
E[-—- In L(le)f('r)]
dr

where L{X|7} is the likelihood ratio for the hypotheses (6).
For the case of pure Poisson observations, X ={¢}".,, the

CR bound is derived in [14]:
dln f(r)\*
=)

din f{z) |’ (27)
dr )

mse = 71 A( ) 3
T n ! N
Af" (T] Mdt+E

T( (t))
0 AntAr)

1

/\(r)a’r+E[(

where it has been assumed that derivatives in (27) exist.
Since addition of Gaussian noise to the observations only
introduces additional 7-uncoupled nuisance parameters o
the estimation problem, the Poisson limited CR bound (27}
is less than or equal to the exact but uncomputable CR
bound valid for the observation model of Section II [4]
Unfortunately, the right-hand side of (27) fails to be a useful
bound for a large class of intensity functions, e.g., bi-
exponential, rectangular, or any intensity for which the ratio
of the squared first derivative and the intensity magnitude is
noi absolutely integrable.
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{t:}ia :
el x

— G, n G,

Fig. 4. Effecls of mapping random timing parameler + into observa-
lion space as decomposed inlo cascade of two transformations: 1)
chunnel €, accounis for generation of point process through Poisson
mechanism. this is point process channel; 2) channel €. accounts for
finite bandwidth and additive noise effects introduced via detection
pracess, this is continuous observation channel.

B. Rate-Distortion Type Lower Bound

For the case of perfect Poisson observations X ={r,}7_, a
rate-distortion type lower bound was derived in [14]. The
bound in {14] was derived from a special casc of Shannen's
inequality

H(r)—%]n(Zwemse)s R(mse) <C, (28)

where C is the capacity of a channel taking the source
symbols 7 to destination symbols X, R is the ratc-distortion
function associated with a mse distortion measure, and H(r)
is the entropy of the p.d.f. of 7. Shannon’s inequality (28}
gives a lower bound on mse in terms of C:

1 .
mse > mczmﬂe_zc . (29)

In the present situation, the channel C can be represented
as the cascade of two separate channels C, and C;, where
C, takes the source symbols 7 into the occurrence times
{£)_\. and C, takes the occurrence times {£}J%., into the
observations X (see Fig. 4). Hence, C,| is an intensity modu-
lated Poisson point process channel with associated intensity
A{r — 7}, while C, is a Gaussian white noise channel with
impulse response p(—r) and Poisson inpul statistics, An
upper bound on the overall capacity € of this cascaded
channel is given by the *data processing theorem™ [3] as
C < min{C,,C,}. Furthermore, an explicit upper bound, C¥,
en C, was given in [14];

PR Al
c,scr"é':\[’A(:)lnL])-dz. (30)
0

T

In (30) the integral quantity is the nonnegative “information
divergence” between A and the uniform normalized intensity
1/ T [3] This can be interpreted as a {assymetric) distance
measure between the two intensities.

An upper bound on C, is obtained by recalling the decom-
position formula for the capacity of a channel with input Z
and output X, which is the sum of a “signal” § = g(Z) plus
an independent additive noise w: X = g(Z)+ w. Specifically:

C,= sup {H(X)- H(X|Z)}

PLYIZ)

= sup (H{X)— H(w|Z)}
PLXIZ)

= sup {H(X)} - H{w). (31)
PuxIz)

where H(X) and H(X|Z) are the entropy of X and the

e VT F 0 3e0 il L. AR ARAA b ds A I,

conditional entropy of X given the input Z respectively,
P(X|Z)is a conditional distribution, and FH{w) is the entropy
of the noise. In (31} we have used the independence of Z
and w 10 equate the conditional entropy H{w|Z) to the noise
entropy H(w), which is independent of P(X|Z). On the
other hand, it is well known that, for a fixed outpul autoco-
variance function K = K, + K., the entropy H(X) is maxi-
mized for Gaussian X [3]. Hence the channel capacity C, is
upper hounded by the capacity of a Gaussian channel,

Here Z can be identified with the point process sequence
{1}, and S(1)=g(Z)=T7., plt — ;) where n = N(t). The
autocovariance K (z,z,), at times z; and z,, is computed
in Appendix C (C.4):

Ki(zi,22) = [ p(2 ~ ) oz )X (u) d

+ z'dtrJZ:dLaz plz, —u)p(zy—uy)
0 i
cov[AQuy~ 1), A(uy — )], (32)

where X(u)d=LI E[A(i — 7)]; and the expectation in “cov™ is
over the random variable r. For the special case that
K{z,,2,) depends only on z,—z,, ie., § is covariance
stationary, C, is upper bounded by the capacity of the
stationary Gaussian channel with capacity C¥ [3):

2G(w)

of | =
Czsczifz; _x!n(l+ )dcu, (33)

1

where G, is the power spectral density of the signal §, ie.,
the Fourier transform of the covariance K. For the general
case of nonstationary K, a more complicated channel capac-
ity formula involving the eigenvalues of the Karhunen Loeve
expansion associated with K, must be used [3].

Combination of (30) and (33) gives, from (29), the rate
distortion lower bound:

der 1 [,
mchBn”h phet ZTeeZH(.)e. Zmin{C’; .(3‘]- (34)

The rate distortion lower bound (34) has some intcresting
features, Assume that 7 is uniformly distributed over {0,T]
and that p(s) is a causal impulse response. In this case (see
Appendix CY AM(¢)=A /T, t€l0,T]) and, as T — o,

Gw) =pClw), (35)

where
6 E Bl a | # (A -3())[]
=| B[ A +|A(w) = Asine (0T /2)[7], (36)

and sine(n)'S sin(x)/x. In (36), Alw)=S(A) is the
Fourier transform of A, hence A{0) = A, the integrated rate
of the point process. Also the pulse energy normalized
Fourier transform of the superposition filter p(r) has been

defined: Blw)S S (ptn/ Y p? = Plw)/Vp®. Note that

the minimum value Gj.(w)=r7]i5(w)|3/\ is attained for the
case that A(¢) = A(1). Using (35) in the bound (34} we obtain
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the final form:

2re
B~

e

where y, is a PNR threshold determined by the condition
C{f=C¥ in (34), Specifically v, is the solution of the equa-
tion:

f:\(t)[n—-—dr Lf_:ln(l+7u|GA,(w)]2)dw, (38)

T

when the solution exists. An important case where the solu-
tion of (38) does not exist is when the, superposmon filter
ple) approaches a delta function, ie., |P()|? = constant. In
this case, since the right-hand side of (38) diverges, CF < C¥,
and hence min{C¥, C#}=CF, forall y > 0. Thercfore ¥, =0

1 -
—e2MMeyp [ —ZAITA(J) In
0

- fﬂ’""h'(—z)(x(x)*ﬁ(:))dr

A)

(37)

1 1 .= "
e exp (“ Er-f_xln(l + ‘yG_v(w)) dm). Y=Y

random variable with equal entropy as +. Thus the bound
(37) provides an indication of the & posteriori variance reduc-
tion achievable by making use of the observations X.

VI. NumericaL COMPARISONS

In this section the mse performance of the MAP estimator
(11), the lingar “optical matched filter” (15), and the lower
bounds (27} and (37) are investigated numerically.

Using the expressions (21) and (24) with the identification
In L{X{1) = X(1) * h(t), we have the following forms for loca!
bias and local variance of a linear estimator structure of the
form (14):

(39)

b(r)=

T, (T, ' , N,
1 d'lf diai'{ —t }H(—t3) K;(!lzfz)'l'?s(’l_‘l)
L] L]

f()’""h"(-:)(x(:)*ﬁ(:))m ’

2( )_.

for a zero width pulse p(¢) and nonzero PNR, and the
lowerbound (37) is identical to the rate distortion lower
bound of [14] for the pure Poisson observation X = {¢.}! i1
The lower bound (37) separates the mse pcrformance into
two PNR regimes: the Poisson limited regime (y > ¥,), and
the Gaussian limited regime {y<+y,). In the high PNR
Poiszon limited regime, we have a PNR independent bound
that is independent of the superposition filter p(r) and
depends principally on the information divergence between
A and the worst case uniform intensity 1/ 7T over [0,T] The
closer 4 is to the uninformative uniform intensity, the poorer
becomes the estimator mse. This Poisson limited bound
decays to zero at an exponential rate as the point process
rate A increases. This rate is controlled by the information
divergence, which is the magnitude difference between the
entropy of the normalized intensity A and the normalized
maximum entropy uniform intensity. On the other hand, in
the low PNR Gaussian limited regime, we have a bound that
depends on the pulse shape through its magnitude Fourier
transform, and depends on the intensity function through the
magnitude squared difference between the Fourier trans-
forms of 4 and the wniform intensity A, Observe that, unlike
the Poisson limited casc, the decrease of the rate distortion
bound for y < v, is subexponential in A for large A. In both
the Poisson and the Gaussian limited regimes the effect of
prioer information on r is manifested through the quantity:
exp{2 H(r)}/(2me), which is the a priori “entropy power” of
7 {3} The entropy power of T is the variance of a Gaussian

; (40)

2
[ [P (=i s)al

where K! is the covariance:

Ki(z),25) = f(f'p(e - 2)p(t ~ 2.)A(r) dr.

A numerical study was performed for the case that the
signal intensity function A, is a Gaussian pulse with one
sided standard width T, and M = 1. The superposition filter
response p(¢) is a one sided decaying exponential with time
constant 7. Due to the symmetry of A, both the approxi-
mate MAP estimator (11) and the optical matched filter (15}
are locally unbiased. Fig. 5 shows the local mse of the MAP
estimator (24} and the local mse of the optical matched filter
(40) as functions of Poisson rate A= A+ A, for the follow-
mf parameters: Poisson signal- -to-noise energy ratio

p=A;/A,=50dB; PNR y =0 dB; intensity time-width to
filter umc-w:dth T,/T,=33.3; a priori interval-width to
intensity time-width T/ T,\= 100. Observe that for low Pois-
son rate, A <5 dB, the matched filter and the MAP estima-
tor have similar local mse performance. For higher A, how-
ever, the MAP estimator has uniformly smaller local mse
than the linear matched filter. The improvement of the MAP
local mse over the maiched filter local mse can be over
10 dB for high A. While this dramatic improvement may not
occur in the global mse, which takes large errors into ac-
count, Fig. 5 is suggestive of performance gains, Also shown
for comparison are the CR bound (27) and the rate distor-
tion bound (37). For A below a rate threshold of i dB, the
rate distortion lower bound is a tighter bound. This thresh-
old specifies the lower boundary of the A region over which

Aitharizand lirancard nea limitad 44+ | Inhrareibr rlF LA, nhlﬂ:r\ | lhr:lnr nr\wnlﬂadnﬂ An luhe 92 2000 ot 11745 fram IREFE Ynlnra  Ractrictinne onnle
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20
- o =30.0dB
v = 0dB
0 - /T, =33.3

T/T, =100

-60 T T T ) T

Fig. 5. Local mse approximations for matched filter (mf), MAP (map), rate distortion lower bound (rdlb), and
Cramer—Rao lower bound (crtb), as functions of rate A of Poisson proccss. Poisson SNR, denoted p. is 50 dB and PNR = y
js 0 dB. mse axis has been normalized so that 0.0 corresponds to the mse of uniform random variable over

a priori interval [0, 100].

20
p=50.0d8

= —3dB
TA/‘I:): = 33.3

MSE(dB)
ro
o
1

-60 . : : : :

0 10 20
RATE(dB) 80

Fig. 6. Local mse approximations and lower bounds us function of rate A. Poisson SNR, denoted p. is S0 dB and PNR =y
is —3 dB. mse axis is normalized as in Fig. 5.
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40
. mf A =20dB
= (0dB
20 4 7
Ty/T, = 33.3
T T/T, =100
- ma
& 0 p
k=)
o .
[71]
= .90
1 crb
-40 -
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SNR(dB)

Fig. 7. Local mse approximations and the CR bound as functions of Poisson signal-to-naise ratio p= A, /A, A=A, + A,
is 20 dB. mse axis is normalized as in Fig. 5.

small errors are theoretically attainable. A decrease of A
below this threshold implies a sudden and precipitous in-
crease in the achicvable mse. In Fig. 6 the PNR has been
decreased to —3 dB below the PNR of Fig. 5. The effect of
the decrcased PNR on the lower bound is a raising of the
low A threshold that decreases the range of A over which
small mse is theoretically achievable, The local mse and the
CR bound as functions of the Poisson signal-to-noise ratio p
for a fixed total rate of A =20 dB and PNR=0 dB are
shown in Fig. 7. The remaining parameters are identical to
the ones used to generate Fig. 5. Note that the local mse of
the MAP estimator has similar appearance to the CR bound,
both curves displaying abrupt thresholds at approximately
the same value of SNR. As before, the local mse perfor-
mance of the MAP estimator is uniformly lower than that of
the matched filter estimator.

For these numerical evaluations, the PNR-rate product
yA had to be held sufficiently low to avoid numerical over-
flow in the numerator and denominator of the MAP local
mse expression (24). For the values of yA studied, it was
observed that in the exponent of the rate distortion bound
(34), we have C ¥ > C¥; that is, the bound was active only for
the Gaussian limited regime. At higher values of PNR the
Poisson limited rate distortion bound would normally be-
come active. Additional numerical studies of the rate distor-
tion lower bound are presented in [13).

VII. ConcLuston

Approximations to the likelihood function, the MAP esti-
mator, and thc mmse estimator have been given for the
time-shified intensity function of a causally filtered Poisson
process observed in additive Gaussian noise. The approxima-
tion becomes more accurate as the per-unit-time density of

superimposed filter impulse responses becomes small. The
MAP estimator has a simple nonlinezar structure as a func-
tion of the observations. First, it attempts to enhance the
filtered Poisson process via classical matched filtering. Then,
a memoryless nonlinear transformation produces a spike
train that emulates the underlying point process. Finally, the
spike train is correlated against shifted versions of the inten-
sity function. The maximizing shift provides a time delay
estimate. For smooth intensities, a local analysis of the bias
and mse of the approximate likelihood ratio statistic indi-
cated the conditions under which good estimation and detec-
tion performarce can be obtained: 1) a high pulse-to-noise
power ratio; 2) a high Poisson signal-to-Poisson noise ratio;
3) a large second derivative of the intensity function over
regions where the amplitude of the intensity is large.

A rate-distortion type lower bound on the mse of any time
estimator was derived. This bound is nontrivial for some
important cases where the CR bound gives trivial results.
The rate distortion bound indicates the importance of sev-
eral factors on the inherent estimatibility of the time delay.
First, for high pulse-to-noise ratio, the mse bound is Poissan
noisc limited and it decreases exponentially as a function of
Poisson rate, where the rate of decay is the “information
divergence” between the intensity function and a uniform
intensity over time. The higher the information divergence,
i.e., the more the intensity function differs from a uniform
intensity, the better the potential mse performance. Second,
for low pulsc-to-noise power ratio, the mse bound decreases
subexponentially as a function of Poisson rate, where the
mean-squared difference between the intensity and a uni-
form intensity over time, and the shape of the superposition
filter impulse response govern the rate of decay. The more
broadband the filter transfer function, the better is the
potential mse performance. Third, there is a pulse-to-noise
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ratio (PNR} threshold that specifies a PNR boundary be-
tween Poisson limited and Gaussian limited mse perfor-
mance.

A numerical evaluation of the local mse approximations
and the lower bounds indicates that the rate distortion
bound is tighter than the CR bound for the large error
regime, while the opposite is true for the small error regime.
A comparison between the local mse of the approximate
MAP estimator and the linear “optical matched filter” indi-
cates that the MAP estimator can have better local error
performance than the optimal linear filter. A large error
sensitivity analysis should be performed to more completely
characterize the advantages of the approximate MAP struc-
ture for detection and estimation of time shift.
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APPENDIX A
DERIVATION OF ApPROXIMATE LIKELIHCOD FUNCTION

We recall the following faci about a Poisson process with
intensity A [27]. Given the total number of points n over
[0, 7], the (unordered) occurrence times {£.}"; are indepen-
dent identically distributed random variables over [, T] with
margmal probability density functions f(¢,)= Alz,)/ A, where
A = [TA(£) dt. The following identity will be needed [27]:

En “‘1.[1_1[ Q(‘r)] _'e}" AN - I)dl
i=

where (¢) is an arbilrary (integrable) function. If @ is
independent of r, (A.1) specializes to the usefu) formula;

By g [Q7] = MO, (A2)
Another identity that will be useful js

" g
.Ejp(:—r,-)]=f0’h(u)p(r—u)du- (A3)
im

In this Appendix approximations to the numerator and
denominator in (8) of the likelihood ratioc L{Xir)=
AX|H\,v)/ f(X|H,) are derived. In the following (.4} de-
notes the indicator function of the se1 A, R,,=fuTP£§_t.+
1}p(uddu is the pulse auto-correlation function, and p2
R,(0) is the energy of the pulse p(r). We start from (7) by
expandmg the double sum (I)? and using, by definition of

T, R(#Y=0for [>T,

f(th_’nT)

(A1)

where

G(X {‘ } ]) e{2/N SR T X =)= p? /Z)
™

.[e—(l/N..l).I:'.,R,,(r,—:,) _ ]]‘ (A.S)

The random variable ]'[,ﬂl[lr > T,] is equivalent to
the random variable I'TF2\ z; >T, whcre z; is the incre-
ment from the kth largest occurrence time to the (& + I)st
largest occurrence time. Observe the following chain of in-
equalities:

E{l—:fl:l[z,.::- 7] |f}

< E{’:E::: E[1]z<T,] |T,n]}

[

E{ S P(N(t.t, + T,) > Olr, n]}
oz m
E{n[l mmP(N(t t+T,)=0lr, n)]}

{ ]
[ AT, )) W.H-r,,,]
(

[V] f

I

P(N(1,t+T,)> Olr, n)}

1A

(rr+T)
A

E n[l— m1n

=All- mm A

= O maxA(,0 + 7, )) (A.6)
where A(t,e}= [“ACu—)du and lim, _,, Otu) = 0. Defin-
ing

dl:f

1 u+T | QP
! _ "alu—7) du = max — "A(u) du,
At ma T,,f: A —1)du max ij; (u)

=F [e(Z/M,)l.thr)E:‘ Vit =3t —{ L/ N YT EE .pu-:,nhnh_]
IR

=E

£ty

[E(Z/N..))_':' AT XU =1, Yok — 2 /2) — U /N 20 ,-R,,{r.—f,)H

- Er. o, [e(2/N,,l}_," T Xeopt —2yetr— p? /Z)H][“i - ;J.| > fl,] |r]

+E . [e”/N..)Ef' AT Xt =t yds = /D=0 NILT, R, -m[
177 e

=Ey .y,

+E,

Artharizad nmmend ces limited tns Llsiosenib e nd Mishinan |ikeans Pmonlnndad an el 58 A0 A4 440AF frnea IECE Valans  Dantrintiana annhs

[eiz/N..n_'r .(;..Txu:p(r—;,mf—pm:/zah_]

G(X [!r}r—l [l_ﬁ.l[lt"_ i
i#j

Ul

i¥]

4>T,)

{

1':|, (A4)
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after applying the Schwarz inequality and (A.6) to the second
term on the right-hand side of (A.4) it is seen that

E?.

o] O0x e 1- Dlilia-s)>,]
<E G

‘E,, .. ,"{1 - nlj: [z,>T,) I'r]

= O(AT,A%). (A.7)
Hence, using (A.7) in (A.4);
f(X1H),7}
=E, ... |exp (-2- i (fTX(I)p(.r —t)dt — l?)] -r]
b Ny iZi Vo 2
+O(AT,AY). (A.8)

Thus to order O(AT,A™) we have, using the identity (A.1),
F(XIH,.7)
]

[
=E, .. ._[ [T e/ MXfT ket —2ydi —p* /2)
=exp ( f T(th/M.xﬁ?xm)p(u—ndn P _A(t—7) dt)
0

i=1

= exp (IT( 2@/ NN Xunpta—1dn—y /2 l)l\.(t —r)dt ] .
0
(A.9)

To obtain an order O(AT,A™") approximation to f(X|H),
simply replace A(t—+7) in (A9} by the constant Poisson
intensity A, .

f( XIH.,) =exp (jT(e:zz’M.JI.Txm)mu—ndu—y/z —1)A, dt )
0
(A.10)
Recalling the refation (1), At — 7)= A, (t — 1)+ A,, the ratio

of (A.9) and (A.10) reduces to the expression (9).

ArpPENDIX B
DerivaTioN oF MOMENTS oF LoG-LIKELIHOOD
DERIVATIVES

In this Appendix we calculate the numerator and denomi-
nator quantities on the right-hand sides of (20) and (19)
using the approximate form for the Jog-likelihood given in
9%

In L(X}r}

=fT(e(Z/M,)fJX(u)p(u—l)duw(I/N,.);-i__ DAt —1)dr
0

_ e_;E/NHITQ(Z/N,,H',,erJp(u—l]dnAS(! —T) d[ _ A- (B.I)
[t} .

For notational simplicity, we will denote ;=T and X,= X
where convenient,
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Take the first derivative with respect to 7 of the log-likeli-
hood function approximation (B.1) and take the expectation

E[d Ié I:;(TXilT) T]

=— e-(;;E/N.,)ITE[BEZ/M.)IJX(HW(H—f)du].r] Me—7)d,
0

(B.2)

where we have used the fact A% = A’. Consider the expecta-
tion within the { on the right-hand side of (B.2). We have by
definition, X =T p(t ~ £,)+ w, and hence:

E [e(Z/M.)fJ'X(u}p(u—a)du I‘T]

=F [ e(Z/N.. WEL T e Wt =y el

-E[e‘Z/N"'J“'T""“”""'”‘"‘log{:‘,-}:-'= R, r] IT] . (B.3)

Now since, by assumption, the Gaussian noise w is indepen-
dent of the Poisson occurrence times {#;}; and 7, we have
E[E(Z/M;)Jur”(u)ﬂ(lr—l)n’lr {t; J{'_ 1 TI
:E[e(Z/N,,)J',‘,rw(u)p(u—r)du]. (B4)
Now the expenent of the argument of “E" in (B4) is a
zero-mean Gaussian random variable with variance o=

p*/N,. Using the well-known form of the characteristic
function of such a Gaussian random variable, exp(er? /2), we
have from (B.4)

E [e(Z/N,,)j.fw(u)p(u - )\t!ul{ti}:_"“ .1, 1,] - ep3/Nu i (B 5)
Substitution of (B.5) into (B.3) gives:
E[e(Z/M.n..’xm)p(u—a>du|,.]

s E[e(Z/N..) 7y plu—t)ple—tydu |.,]

. n
= gl /N, E[ Il 22/ N plae—1ptu —ndu|.,]
i=1]

= BI_P_I/M. exp ( “T( e(Z/.i?.l'")f,}'p(u—zlp(u—l)dn . 1)
Alz—7) dz)
_ PN, T (2/N,IR f1~2)
=ef/Moexp f (et MBIy A (2 — 1) d2
[} .

= /M= A exp (fTe(Z/’,V'"‘?"‘""’A(u -7) du], (B.6)
0

where in the fourth line of (B.6) the identity (A.1) has been
used. Substitution of (B.6) into (B.2} gives the following:

E[dln L{Xji7) T]

dr
=— e—-‘lfrexp (ITE(ZIM')RF("_”A(L{ — T) du),\’(; _ T) de
} 0

=~ e"“frexp (fTe‘Z/M"Rr-“"”A(u) du)z\’(r) dr,
v 0

]

(B.7)
The calculation of
d2InL(Xx T
o £nstoi
dr

Ay

, Restrictions apolv.
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is similar to the calculation of Substitution of (B.10) into (B.9) gives, after some rear-
dln L{ X7} rangement of terms,
A2t} |
dr . (dln L(Xi7) )l
i —————— | Ir
the details are omitted. The result is dr
d*in L(X;|7)
S = T
= e -
o Mo

__-afT T 2/NR (=) ) "
=—¢ R = Tw Y du |A"(t Y. (B.
fu exp[fﬂe (u)du|A"(t)de. (B.8)

T
. (2/N MR =1+ R e —1323]
Next the numerator of {19) is derived. From (B.2): exp (jn € HRu—13+R, A (1) du

ey

dr
2 T T
=g W/N, dzlf dz,
0 (i

+NiRp(t[~t2))A'(t,)/\'(zz). (B.11}

Finally, it is shown that the local mse approximation (24)
reduces to the expression {25} of Section IV-B under the
Az =PI 20— 7). . small PNR assumption. For convenience we repeat the ex-

(2 =¥z =) (B.9) pression (24):

-E [e(Z/N,,)(J,,’X(lr)p{lr—:,)d’u+ .l'.fX(u)plu—::Jd’u)iT]

T. [ 2, 2 far— 3 (i — T 5 Iy I
f dr,f drzexp(/\f7 [ertRutar—ti+Rolur ‘:’I—I]A(u)du+pr(fl—r2))A'(:,),\'(rz)
0 1) {) .

E[(3-+)] = - . . (B.12)
M[f "exp (Af “[eYRan=0 113 (u) du))?"(r) d!]
0 0
Consider the expectation on the right-hand side of (B.9). .
In a manner analogous to the derivation of where 7y is the PNR defined in {10). Make the following low
" PNR substitutions in the numerator and denominator of

E[dinL(X)7) /drl7] (B.12):
find

exp [A[]Tu[ey[é,,(u—!|]+ﬁ,,(lr—£3)]_ 1],'\‘(u) du + Yﬁp(h - ,2)]
{

E [e(z/M,)( 13 XQ0ptr =2 e+ [T XQepe —::)zfu)l,r]
(B.13)

- E[eﬂ/%)ﬂ' i plae =1 R ptet—20) +pla—z20bdie . N .
=1+ 'yAfu "[Rl,,(u ~ )+ R (u— rz)]z\(u)du
. E[e(Z/N,,)J.Tw(u}[p(lr—:, )+p(u—::)]ri’u|{‘i}"" on ‘J’] |T]
i=101 .
+yR, (1~ 13). (B.14})
= E[eﬂ/“’--”-'r" LR =2 3 R0t —2a1) and:
Top it tn— .
. E[e(Z/t\',,]j.f‘w{u)[p(u—:,)+p(n—::)]¢lu]|1,.] exXp (A’I; [e'r’l"’p(n 1y _ I]A( u) du)
1
2N N IR S - 5 T, -
e o =1+7Af R (u—0)A(u)du. (B.15)
. E[,_,(Z/N,‘)Ef.1[R,,u,-—:.)+R,u,—:;:li.r] v
Since the integrals of A" and A" are identically zero the

= 2/ N /N IR, = 2) substitution of the approximations (B.13) and (B.15) into
(B.12) gives:

-exp Uu"(ecz/M.HR,.(ra—:n+R,,(ar—:;)1 —DA{u=1) du] E[( P T)z]

— T. T, * 5 T
= 2N = AU NIR Lz = 22 1 f dr,f dea (YR (0 = 1) X (1)
_ 0 i} - (B.16)

T _ . RN .
.exp(fu e(Z/N..)[R,,(u—.\)+R,-(u—--:)],\(u)du)_ (B.10) M[L dr,fu diyA(1) )Rt — 1)A"(15)
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Next note that, due to the assumption T =T, T, and the
differentiability of A:

d2
0= ?fdr.jdrzA(r,)R,,(:, —1,)A(1;)
a2 .
fd—f—zjd:.jdfza(z,~f)RP(:,~:2)A(:2—T)
= [t fdr (1 - TIR(t,— 1) X(ty~ 7)
+ [t [t A1, = TR (1, — )42, = 7)
= [dt [t M) R, (1) = )X (1)

+fdr,fdt2/\(r1)Rp(t,—rz),\"(tz). (B.17)

Finally, using the identity (B.17) in (B.18), we obtain

E[(s-7)]
1 1
T T, (T srovg
4 fﬂ dflf; dt; X1 )R, (1, — 1)1 (47)
1 -1

= : . {B.18)
AIM T, T, & 2 2 (
¥ fo dr,fo dty A(t )R, (t,— 1) 30(1,)

ArpenDIx C
ComMpuTATION OF COVARIANCE OF FILTERED
Poisson PROCESS

Here the autocovariance of the superposition 8§(t)=
ENDp(t — t;) is derived,

Since, conditioned on , (¢}, is Poisson, applicdtion of
the identity (A.3) gives '

E i plr —r,-)] =E[E[

i=1 i=1

i P(‘—‘i)l"”
E[[U’p(: —u)A(u—1) du] =‘j::p(t —w)Mu)du, (C.1)

where A(t)= Elx{u — )] and n=N(s). Next consider the
autocovariance function K,(z,,z5):

Nz} Nzy)
E[ Yz~ 1) _El P(Zz-‘j)]
=

jw]

—fz'p(zl —u)yA(u) dufzzp( 7, — u)A(u) du
o )
Nz3)

Nz}
=E[E[ Z Pz - 1) E P(zz"‘j)l'r]]

i=1 f=1

_fz]p(z,—u)X(u) dufzzp(zz—u)X(u)du. {C.2)
0 0 .

The inner expectation of the first term on the right-hand side
of (C.2) decomposes into a sum of two terms due to the
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independent increment property of {£,}_, (27

Nz} N(zy)
E{ Y p(zy—1y) _El P(Zz_‘;]""}
=

i=]
Nmin{z;.z;1)
= E[ Y ez "f,‘)P(Zz"‘:)IT]
f=1
+fz'p(z, —u)A(u-7)du
0 .
.f;zp(zZ — W) (u—7) du
= [z, -y = )M =)
+f:p(zl —w)A(u—7)du

-j{;zzp(z2 —wA(u—7)du.

Finally, taking the expectation of (C.3) with respect to 7
gives the covariance function:

Nz} Mzp)
Kz),z)=cov| ¥ plz,—t) Y, p(z2—1)
i=1 - i=1

(C.3)

_ furnirifzpzz]p(z1 ~u)yp{z,— u)i(u) du

+j:ldu1]:1du2 plzy—u))p(zs~usy)
“E[A(u; = 7)A(uz—~7)]

- fu“p(z, — u)A(u) du fo”p(zz—u)z(u)du
= [ 2y~ ) p( 2y~ )R}

z 23
+j(.) ldulju diy p(z) —uyp(z;~ uz)

covA(uj— 7}, A(uy — 1)}, (C4)

where
cov[A(u, ~7),A(uy~ 1‘)]

= E[/\(u, —-r)~ )t(u,)] [A(uz -7)-— A(uz)] .

Next it is shown that the covariance Kfz,z,) of (C4)

depends only upon the time difference z,— 2, undet the

following conditions: 1) T —w; 2) unifoimly distributed =

over [0,T]; 3) causal impulse response p(r). Under these
conditions we have the following results:

I{r)=E[h(r—"r)_]
] -
=?f”ﬁ(:-f)df
=JT-£,T(AS(t—f) +4A,)dr

1 .
=?j0'°(,\s(7)+ A,)dr

T
= A d
71, {7)dr

= 0=<t<T, (C.5)

?l
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and
cov [A(u — 7). Au, — )]
= E[(ACy— 7} = Xu))(A(uy — 1) = A(113))]
7
TTh

Hence, from the causality assumption,
Mz Ntza)
K(zpz)=cov] ¥ plz,—¢), ¥ p(z,—1)

i=1 i=]

= [Tp(ai=wp(z = i) du

T T
+ [ [z p(zy— ) p(z, ~ uz)

-cov [ A(uy—7),A{uy— 7). (CT)

Using (C.6) in {C.4) and taking a two-dimensional Fourier

transform over the arguments z; and z, gives
F(K(z,2,))

=" an [ deK (z z)e e (C8)

= P(w)P(»)[ A(O)sinc([w +v]T/2)
+ A{w)A(¥) sinc{[w +v]T /2)

— A%(0)sinc(@T /2)sinc(vT/2)],  (C9)
where A(w) and P(w) are the Fourier transforms of A(r)

and p(r), and sinc(x)dgsin(x)/x. As T—w, sinc((o -+
v]T/2)=0, unless w=—v, and sinc{wT /sinc(zT/2)=
sinc?(wT/2) if w =» and zero otherwise. Therefore in the
limit, over its nonzero region of definition {the diagonal
@ = —v), the two-dimensional Fourier transform (C.8) re-
duces to the one-dimensional Fourier transform in the fre-
quency variable w. Hence 1o an O{1/ T') approximation, the
covariance function K(z,, z,) has a one-dimensional Fourier

transform over the difference 7, — z,:

Gy(@) =] P(w) [ A(0) +|A() ~ A(@)sinc(wT /2) [,
(C.10)

and hence K| is a function of z, - z,. The final form for the
Fourier transform of K used in Section V is obtained from
(C.10) by definition of the energy normalized Fourier trans-
form of p(t), denoted P{w), and recognition of the D.C.
value A(0) as the energy A of the point pracess. The result is

G(w) =P P(w) [ A +| A(w) ~ Asine(wT/2) {7

(C.11)
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