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ABSTRACT
The well-known uncertaintly principle is of-

ten invoked in signal processing. It is also often
considered to have the same implications in sig-
nal analysis as does the uncertainty principle in
quantum mechanics. The uncertainty principle
is often incorrectly interpreted to mean that
one cannot locate the time-frequency coordi-
nates of a signal with arbitrarily good precision,
since, in quantum mechanics, one can not de-
termine the position and momentum of a parti-
cle with arbitrarily good precision. Rényi infor-
mation of the third order is used to provide an
information measure on time-frequency distri-
butions. The results suggest that even though
this new measure tracks time-bandwidth re-
sults for two Gabor logons separated in time
and/or frequency, the information measure is
more general and provides a quantitative as-
sessment of the number of resolvable compo-
nents in a time frequency representation. As
such the information measure may be useful
as a tool in the design and evaluation of time-
frequency distributions.

1. TIME-FREQUENCY
UNCERTAINTY

Time frequency uncertainty is defined in var-
ious ways with slightly different results. Ca-

*This research was supported in part by grants from
the Rackham School of Graduate Studies and the Of-
fice of Naval Research, ONR contracts no. N00014-89-
J-1723 and N00014-90-J-1654

bor's 10 definition will be used for the purposes
of this paper. It is:

(1.1)

The proper interpretation3 of the Lt Lw
is that they are the standard deviations (re-
spectively)of the time and frequency marginals
of the time-frequency distribution. This as-
sumes that the time and frequency margins are
'correct', in that they reflect the instantaneous
power and energy spectrum of the signal. If
a signal is stretched in time its Fourier trans-
form representation is compressed inversely in
frequency. Thus the Lit Lw product remains
constant. It is correct that one cannot indepen-
dently reduce the time spread and frequency
spread simultaneously. These quantities are
tightly linked via the scaling property of the
Fourier transform. That is,

F{s(at)] =
a a

1.1 Representation, localization
resolution

(1.2)

and

It is certainly true that the concept of time-
bandwidth product (TBP) is useful in charac-
terizing the concentration of energy in time and
frequency. It may seem that the most concen-
trated signal offers the best localization in time-
frequency. This is not true. Skolnik14 points out
that there are many signals which have large
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TBPs, yet offer excellent localization proper-
ties. The problem is that ambiguities arise.

One may use a pair of chirps in time-
frequency. One chirp may rise linearly in Ire-
quency (up-chirp) while the other falls linearly
in frequency (down-chirp). Each chirp will pro-
duce a thin "knife edge" in time frequency. The
time frequency distribution will be in an
form due to the crossing of the up-chirp and
down-chirp. The crossing point defines both
the frequency and time location of the "center"
of the compound signal and it defines these 1-
cations quite precisely. This definition may be
made ever more precise by increasing the time
and frequency extent of the chirps. Thus we
have the supposedly paradoxical result that in-
creasing the TBP improves time and frequency
localization. There is a price to pay, however.
With multiple versions of these "X" s there may
be overlap of the chirps from the different ver-
sions. The problem is to distinguish the "true"
crossings which yield the time-frequency local-
izations of each "X" from the "false" crossings
due to overlap of the "X"s. Ambiguities have
been introduced.

Resolution of signals is another important as-
pect of signal processing. It is here that TBP
and uncertainty in the signal processing context
makes sense. The concept of an elementary sig-
nal is needed. There are several possibilities,
prolate spheriodal,15'16 Hermit functions 6 and
special compact bases11 are among them. Ga-
bor logons will be used in this paper due to
their minimum uncertainty properties. If there
are two elementary signals how much separa-
tion between these two elementary signals must
one achieve in order to be able to conclude that
there are two signals present rather than one?
One would like an objective count of the num-
ber of resolvable elementary signals present.

An information theoretic approach has some
appeal in this context. Such an approach would
produce a result expressed in "bits". One el-

ementary signal would yield zero bits of infor-
mation (20) two well separated elementary sig-
nals would yield one bit of information (21)
four well separated elementary signals would
yield two bits of information (22), and so on.
The strategy for this paper is to apply informa-
tion measures to time-frequency distributions.
Unfortunately, the well known Shannon Infor-
mation13 can not be applied to some time-
frequency distributions due to their negative
energy . There is a generalized form
of information due to Rényi which admits neg-
ative values in the distribution. This allows a
treatment of many time-frequency distributions
in terms of information measures even though
Rényi formally requires that the probabilities
be non-negative in his formulation. As will be
seen later in this paper violation of that rule
does not prevent "reasonable" answers from be-
ing obtained.

1.2 Time-frequency distributions
There are many types of time-frequency dis-

tributions. For purposes of this paper the dis-
tributions utilized will be members of a general
class of distributions commonly called Cohen's
class3. Cohen's class is defined as3

C3(t,w;çb) 'fJJei(0tTu)
q(O,r)s(u +

— )dudrdO, (1.3)

and has been frequently used as a unified frame-
work in time-frequency signal analysis. The
kernel q(O, r) determines the distribution char-
acteristics. Different kernels produce different
distributions3 , such as the WD, spectrogram
Exponential (ED)2 and the RID.9'17'18'19 The
kernel has a unity value for the WD. The RID
(Reduced Interference Distribution) enjoys al-
most all of the nice properties of the WD, but
has the advantage of greatly reducing cross-
term interference that often plagues the WD
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iro

Power is normalized to 1:

L00ptdt= Je_t2k2dt= 1

The Fourier transform of s(t) is:

1 r00
8(w) = — J s(t) e_iWt dt2ir

= (c2fr)1/4 e_22uhl2

Energy density in the frequency domain (the
frequency marginal) is:

P(w) = S2(w) = e22
Total energy in the frequency domain is also
normalized:

E P(w) dw = e22 dw = 1 (1.9)

Equation 1.1 takes the equality value in this
case as can readily be seen by determining the
product of the standard deviations of the time
and frequency marginals. The time and fre—
quency marginals are shown in Figure la,b.

1p00
W(t,w) = — / s(t+T/2)2ir j—oo

E1 W(t, w) dw
100 00

(1.6) = e2dw Jet2dt
=1
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when it is used to study multicomponent sig-
nals.

1.3 The Gabor logon
The Gabor logon1° is a popular candidate

for representation of the elementary signal ele-
ment. It is possible to expand signals in terms
of such elementary signals and such an ap-
proach has been useful in the detection of tran-
sient signals.7 Using a Gabor logon defined as:

s(t) = _e_t2/22
The instantaneous power (the time marginal)
is:

(1.5)

1.4 Wigner distribution for one Gabor
logon

The Wigner distribution (WD) for the Gabor
Logon with a 2 of one is, using the standard
definition3:

s*(t T/2)e_Wt dr

(1.4) = _e2et2 (1.10)

The Wigner distribution is also normalized; en-
ergy obtained by integrating over all time and
frequency is 1:

(1.11)

This would be true for other values of cr2 as
well. The WD of the Gabor logon is shown
in Figure ic. Note that the distributions must

(1 .7) always be normalized for the purposes of this
study. We wish to treat the distributions us-
ing tools usually applied to probability density
functions, hence they must be properly normal-
ized.

(1.8) 2. INFORMATION MEASURES
Information is most often related to random

events. Distributions considered in the infor-
mation context are usually distributions of ran-
dom variables. In this paper we wish to appro-
priate information concepts and apply them to
distributions which may be derived from de-
terministic signals. This is done in order to
benefit from certain very desirable properties
of information theoretic measures. There are
six properties of information that are desirable.
For the purposes of this paper the properties of



additivity, continuity and symmetry are partic- 1 '°°
e_t2k2

ularly useful. A brief presentation of Shannon J_oo
and Rényi's information formulations and their [ e_t21f72]

dtrelationship sets the stage for the application of log2
these ideas.

log2ir log2eShannon Information Definition 2 2 log2 (3.1)

The definition of Shannon information for
Information for the frequency marginal is:continuous functions is:

Ix = f(x)log2f(x)dx (2.1) I = — I P(w)log2P(w)dw
—00 J—oo

The definition of Shannon information for dis- 1-SI— I e w2c72
crete functions is: v

I = —
>;Pi log2 p2 (2.2) log2 [e_w22] dw

Rényi Information Definition
log2ir log2eThe general defintion for order Rényi in-

2 2
log2 o (3.2)

formation of a continuous function is:
Information in the Wigner distribution is:1 too

R = log2] f°(x)dx (2.3)1—cr oo oo
Itf = — f_ I W(t,w) log2 W(t, w)dtdwooJ — ooThe discrete equivalent is:

1 oo oo
1 = I I e_et/U2R = 1log2p (2.4) ir -oo

log2 (!
e_w2U2e_t2k2)

dtdwFirst order Rényi Information reduces to Shan- \.r
non Information for a = 1 . Third order Rényi = log2 ir + log2 e (3.3)Information is defined as:

oo Thus the differential information is zero:R = —iog2f f3(x)dx (2.5)oo

'dif Itf — (I + I) = 0.0 (3.4)3. SHANNON INFORMATION OF
THE DISTRIBUTIONS The Wigner distribution provides no additional

Now we wish to compare the information in information about the signal above and beyond
the marginals against the information in the that provided by the marginals.
time-frequency distribution. Using Shannon's
information definition, information for the time 4. RENYI INFORMATION FOR
marginal is: THE DISTRIBUTIONS

coo A similar result is found using third orderI = —J p(t) log2 p(t)dt Rényi information. For the time marginal the
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e''2°2 dw

log2ir log2 3=
2

+
4 —log2a

The Rényi information for the Wigner
bution is:

1 f00 100 1

= —log2J J ——00 —00

e"2°2e_3t2 /c2dtd

= log2 ir + log2 3 (4.3)

The differential information for the Rényi in-
formation is zero.

Rf = R1 — [R + R] = 0 (4.4)

Again, the Wigner distribution provides no ad-
dition information about the signal above and
beyond that provided by the marginals.

4.1 Wigner distribution for two Gabor
logons

A signal containing two Gabor logons sepa-
rated in time by t0 is defined as:

s(t) =
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= [e(tt0/2)21F242

+e_(tto/2)2h/2a2]

The instantaneous power is:

p(t) = s2(t)
1

information is:

' P00

= _log2jp3(t)dt
1 P00

= _log2J(ircr2)l

e3t2 '2dt

log2ir log2 3=
2

+
4 +log2cr (4.1)

For the frequency marginal the information is:

' P00

= —1og2 I P3(w)dw
J —00

' P00
= - log2

(4.2)

distri-

(4.5)

v'(1 + e_t/4c2)
[
e(t+t01'2)2'2 +

+2e(t2+t4)k2] (4.6)

The spectrum of s(t) is:

2/ —w2i2/2S(w)= e
/v/f' + e_t42
cos(wto/2) (4.7)

Power in the frequency domain is:

2o
P(w) = S2(w) = e'

./F(1 + e_t/472)

cos2(wto/2) (4.8)

The Wigner distribution for this signal is:

1
W(t,w) =

2ir(1 + e_t/42)

[e(t+to/2)2 /2 eC2U2

+etto/2)2k2 e''2°2

+2et22

cos(wto)] (4.9)

4.2 Rényi information for two Gabor lo.-
gons

' P00
= ——log2 / p3(t)dt2 J-oo

' P00

= —log2JP3(w)dw
1

+ e_t/4



= _iog2JJ
W3(t, w)dtdw

5. INFORMATION RESULTS

5.1 Two Gabor logons
Two Gabor logons with unity variance as

previously described were separated in time ac-
cording to units of time standard deviation and
in frequency according to units of frequency
standard deviation. Various combinations of
time and frequency separation were used. Fig-
ure 2 compares the results of separating two
Gabor logons in time in terms of the Rényi
third order information measure and the time-
bandwidth product of the two Gabor logons.
One can see that the both the information and
the TBP remain near zero until about two units
of separation. At that point both measures be-
gin to increase. However, the information mea-
sure levels off at one bit above the zero sep-
aration value. The information gain is thus
one bit. This is quite appropriate for the two
logons. The TBP continues to increase with
increasing separation, giving no indication of
the number of signal entities present. Between
time separation values of zero and three, TBP
and information follow a very similar curve if
scale and offset are taken into account. This
implies that both measures proving something

useful concerning the resolvability of the two
logons. However, TBP does not provide any

(4 10"
indication of the time separation at which the' . I two logons are essentially resolved. The infor-
mation measure shows that this occurs at a
separation of about six units. Equivalent re-
sults are obtained if the separation is changed
to frequency separation of the logons. If corn-
binations of time and frequency separation are
used and the Wigner distribution is derived for
the resulting signal, it is found that the Rényi
information measure performs well in assessing
the situation. If time or frequency separation
are applied singularly the results are very sirn-
ilar to the marginal results. If time and fre-
quency separations are applied together there
is an interesting overestimation of information
for a combination of two units of separation for
both time and frequency. In this case the infor-
mation gain was considered. The information
obtained for a single logon was subtracted from
the result. Thus the information for zero sepa-
ration of two logons is zero.The maximum value
observed was 1.35 bits. However, with greater
separation the information value approachs one
bit as it should. These results are shown in
Figure 3a. Figure 3b shows the WD of the two
logons at the separations of maximum informa-
tion overestimation.

The same analysis was carried out using
RID instead of the WD to determine the time-
frequency distribution. Similar results were ob-
tamed. However, the RID does not produce
nearly as much overestimation of the informa-
tion as does the WD. In fact, the maximum
overestimation was 1.08 bits. These results are
shown in Figure 4. Note that the information
has a residual value above zero for zero sepa-
ration in this case. That is because the gain
was obtained using the WD result for one lo-
gon. This was done to show that the RID has
slightly more spread for a logon than does the
WD. If the information gain had been deter-
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The formulation becomes quite complex for
two Gabor logons under Rényi Information.
Results for the information measures were ob-
tained using numerical techniques in practice.

An information measure based on Rényi In-
formation of the third order was applied to
Wigner Distribution (WD) and Reduced Inter-
ference Distribution (RID) time-frequency dis-
tributions of two Gabor logons and four Gabor
logons separated by various amounts in time
and frequency.



mined using the RID result for one logon the
overestimation of information under the RID
would be less.

Figures 3b and 4b may be compared to gain
some insight into the cause of information over-
estimation. The larger WD interference terms
may be the reason for this.

5.2 Four Gabor logons
A more ambitious application of these ideas

was then carried out. Four Gabor logons were
placed at the corners of a rectangle in time-
frequency. One side of the rectangle was time
separation and the orthogonal side was fre-
quency separation. When the length of both
sides was set to zero the four logons com-
pletely overlapped forming one logon. This
should yield zero information gain. By increas-
ing the length of the sides of the rectangle it
was possible to explore the effects of different
types of separations. When the time separation
was zero, but the frequency separation was in-
creased the effect was that of two logons sep-
arating in frequency. Likewise when frequency
separation was zero and time separation was
increased the effect was that of two logons sep-
arating in time. Finally, when both time and
frequency separation was applied the four lo-
gons separated as at the corners of a rectangle
expanding in size. The results for the WD and
the RID are shown in Figure 5. The results
are as one might expect. Separation along ei-
ther the time or frequency dimension produces
a rise to one bit as was the case in the two lo-
gon experiment. Separation in both time and
frequency produced a rise to one bit continu-
ing with a rise to two bits with a small plateau
for some combinations of time and frequency
separation. Again, the WD produced an over-
estimation of information in some cases and the
RID produced a smaller overestimation of infor-
mation. Again also, since the RID information
gain was based on the WD result for one logon,

there was a small amount of non-zero informa-
tion at zero separation in time and frequency.

6. INFORMATION INVARIANT
TIME-FREQUENCY

DISTRIBUTIONS
Here we introduce a new requirement for

time-frequency distributions . Information in-
variant time-frequency distributions are defined
to be time-frequency distributions which pos-
sess an invariant information measure under
time and frequency shift and time and fre-
quency scaling. This is a useful property be-
cause it allows the information measure to be
employed usefully in several ways. For exam-
ple,

. The information could be minimized under
selection of kernel parameters, providing
the highest resolution or optimum result.

. The information measure provides an
objective assessment of the number of
equal energy resolvable elementary signals
present.

. The information measure may provide a
means of judging the effectiveness of 5ev-
eral different distributions.

Possession of a product kernel (/(O,T) =
/'(OT)) by a distribution is sufficient for it to
be information invariant.The WD and the RID
enjoy this property among others. However,
many interesting time-frequency distributions
do not. The spectrogram, for example does
not ordinarily preserve the volume in time-
frequency under time scaling of the signal. This
is because of interactions with the window. It
would be possible to design a special window
which adjusts, perhaps, to account for this, but
it is probably not useful.
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Use of the information measure to opti-
mize kernels may not produce a unique choice.
There may be several choices which produce lo-
cal minima in the information.

It is interesting to note that the analyzing
wavelet of the wavelet transform is informa-
tion invariant in time-frequency under the def-
initions of this paper. This may be useful in
certain applications of wavelet transforms.

Despite some of the problems the informa-
tion concept may be useful if applied with care.
One possible application is in instantaneous fre-
quency applications.

6.1 Instantaneous frequency
Instantaneous frequency is an important as-

pect of time-frequency studies . Boashash has
provided many useful insights into matters of
instantaneous frequency . Instantaneous fre-
quency may be defined to be the mean of fre-
quency under the time-frequency distribution
conditioned on time. The spread of instanta-
neous frequency is based on the variance of the
instantaneous frequency about that value. Co-
hen has provided many interesting insights on
instantaneous frequency, its spread and instan-
taneous bandwidth '. In the same sense as
Cohen has proposed one may formulate an un-
certainty measure for instantaneous frequency.
It is:

R3(t) = —.log2

(i: ('' )).
dw)

(6.1)

This is an alternative to Cohen's local band-
width idea. It indicates the number of resolv-
able entities in frequency for each time. Ide-
ally it should be zero, indicating one compo-
nent which is very narrow in frequency. Then,

P00
— I R3(t)s2(t)dtILave —

J—00 (6.2)

The selection of kernels for instantaneous fre-
quency representation8 may be aided by this
form of the information measure.

7. CONCLUSIONS
The new information measure derived in this

paper may be a useful tool in time-frequency
analysis. It has properties similar to the time-
bandwidth product in that it indicates the re-
quired separation to resolve two elementary sig-
nals. In addition it indicates the separation re-
quired to completely resolve multiple elemen-
tary signals. It may be useful in assessing
candidates for the elementary signal role as
well. The terms mono-component and multi-
component are used in time-frequency analysis.
Perhaps a mono-component signal should only
be considered to be the one with the minimum
uncertainty under an information measure such
as described here. The new measure may be a
useful tool in designing kernels and comparing
distributions. Since complicated signals may be
derived from assemblages of elementary signals
this new measure should also provide useful in-
formation concerning the resolution of comi 1-
nations of these complicated signals. Rényi in-
formation of the third order was utilized in this
study. It may be profitable to consider other
orders as well. Second order Rényi informa-
tion would count the cross terms as well as the
auto terms. This may serve as an index of cross
term interference. Few objective measures ex-
ist to answer these questions. It is worthwhile
to explore a variety of possibilities.

8. REFERENCES
1. B. Boashash, P. O'Shea and M. J.

Arnold, "Algorithms for Instantaneous
Frequency Estimation," SPIE Advanced
Signal-Processing Algorithms, A rchitectures
and Implementations, vol. 1348, pp. 126-
148,1990.

SPIE Vol. 1566 Advanced Signal Processing Algorithms, Architectures, and Implementations 11(1991) / 151



2. H.I.Choi and W. J. Williams, "Improved
Time-Frequency Representation of Multi-
component Signals Using Exponential Ker-
nels," IEEE Trans. Acoust., Speech, Signal
Proc., vol. ASSP-37, no. 6, pp. 862-871,
1989.

3. L. Cohen, "Time-Frequency Distributions -
A Review," Proc. IEEE, vol. 77, No. 7, pp.
941-981, July 1989.

4. L. Cohen, "Distributions Concentrated
Along the Instantaneous Frequency," SPIE,
Advanced Signal-Processing Algorithms,
Architectures and Implementations, vol.
1348, pp. 149-157,1990.

5. J. M. Combes, A. Grossmann
and P. Tchacmitchian (Eds.), Wavelets,
Time-Frequency Methods and Phase Space,
Springer-Verlag, Berlin, 1989.

6. I. Daubchies, "Time-Frequency Localiza-
tion Operators: A Geometric Phase Space
Approach," IEEE Trans. on Information
Theory, vol. 34, No. 4, pp. 605-612, 1990.

7. B. Friedlander and B. Porat, "Detection of
Transient Signals by the Gabor Represen-
tation," IEEE Trans. Acoustics, Speech and
Signal Proc., ASSP, vol. 37, No. 2, pp. 169-
179, 1989.

8. J. Jeong, G.S. Cunningham and W.J.
Williams, "Instantaneous Frequency and
Kernel Requirements for Discrete Time-
Frequency Distributions ," SPIE Advanced

Signal-Processing Algorithms, Architectures
and Implementations, vol. 134&, pp. 149-
157,1990.

9. J. Jeong and W.J. Williams, "Kernel Design
for Reduced Interference Distributions," ac-
cepted for publication (in press, Feb. 1992)
IEEE Trans. Signal Proc.

10. D. Gabor, "Theory of Communication," J.
of lEE (London), vol. 93, part III, No. 26,
pp. 429-459, 1991.

11. T. W. Parks and R. G. Shenoy, "Time-
Frequency Concentrated Basis Functions,"
Proc. IEEE Intl. Conf. on Acoustics Speech
and Signal Proc., vol. 5, pp. 2459-2462,
1990.

12. A. Rényi, Probability Theory. Elesevier,
Amsterdam, 1970

13. C. E. Shannon, and W. Weaver, The Math-
ematical Theory of Communication, Uni. of
Chicago Press, Chicago, 1949.

14. M. I. Skolnik,Introduction to radar systems
2nd Ed., McGraw-Hill, New York, 1980.

15. D. Slepian and H. 0. Pollack, "Prolate
Spheroidal Wave Functions, Fourier Anal-
ysis and Uncertainty-I," Bell Systems Tech-
nical Journal, vol. 40, pp.43-63, 1961.

16. H. J. Landau and H. 0. Pollack, "Prolate
Spheroidal Wave Functions, Fourier Analy-
sis and Uncertainty-Il," Bell Systems Tech-
nical Journal, vol. 40, pp.€i5-84, 1961.

17. W.J. Williams and J. Jeong, "New Time-
Frequency Distributions: Theory and Ap-
plications," IEEE Int. Symp. Circuits and
Systems, pp. 1243-1247, 1989.

18. W.J. Williams and J. Jeong, "New Time-
Frequency Distributions for the Analysis of
Multicomponent Signals," SPIE, Advanced
Algorithms and Architectures for Signal
Processing V, vol. 1152, pp. 483-495, 1990.

19. W.J. Williams and J. Jeong, "Reduced In-
terference Time-Frequency Distributions,"
to appear in Time-Frequency Signal Anal-
ysis: Methods and Applications, ed. B.
Boashash, Longman and Cheshire, 1991.

152 / SPIE Vol. 1566 Advanced Signal Processing Algorithms, Architectures, and Implementations 11(1991)



3.444
3.344
3.244
3.144
3.044

Bits 2.944
2.844
2.744
2.644
2.544
2.444

Figure l.b. Gabor logon frequency
marginal

SPIE Vol. 1566 Advanced Signal Processing Algorithms, Architectures, and Implementations II (1991) / 153

0.6

0.5

0.4

s(t) 0.3

0.2

0.1

0

1.2

1

0.8

S(w) 0.6

0.4

0.2

0
.10 -8 -6 -4 -2 0 2 4 6 8 10

Time
(Standard Deviations)

Figure l.a. Gabor logon time marginal

.3 -2 -1 0 1 2 3

Frequency
(Standard Deviations)

0 Information

-X- TBP

p.
S

3

2.5

2

1.5

1

0.5

TBP

Figure l.c. Gabor logon WD

012345678
Time Separation of Logons

(Standard Deviations)

Figure 2. Information and time-bandwidth
product (TBP) as a function of logon
separation in time standard deviations
for two logons.



Figure 3.a. Information in the WD as a function of time separation and frequency separation in
standard deviations for two logons.
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Figure 3.b. WD result for the most over-estimated amount of information (1.35 bits).
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