Visualizing the Temporal Evolution of Dynamic Networks

Kevin S. Xu Mark Kliger Alfred O. Hero I
EECS Department Medasense Biometrics Ltd. EECS Department
University of Michigan PO Box 633 University of Michigan

1301 Beal Avenue
Ann Arbor, MI 48109 USA
xukevin@umich.edu

ABSTRACT

Many developments have recently been made in mining dy-
namic networks; however, effective visualization of dynamic
networks remains a significant challenge. Dynamic networks
are typically visualized via a sequence of static graph lay-
outs. In addition to providing a visual representation of the
network topology at each time step, the sequence should pre-
serve the “mental map” between layouts of consecutive time
steps to allow a human to interpret the temporal evolution
of the network and gain valuable insights that are difficult
to convey by summary statistics alone. We propose two
regularized layout algorithms for visualizing dynamic net-
works, namely dynamic multidimensional scaling (DMDS)
and dynamic graph Laplacian layout (DGLL). These algo-
rithms discourage node positions from moving drastically
between time steps and encourage nodes to be positioned
near other members of their group. We apply the proposed
algorithms on several data sets to illustrate the benefit of
the regularizers for producing interpretable visualizations.

Keywords

Dynamic network, visualization, graph drawing, multidi-
mensional scaling, graph Laplacian

1. INTRODUCTION

The study of networks has emerged as a topic of great
interest in recent years, with applications in the social, com-
puter, and life sciences among others. Dynamic networks are
of particular interest because networks often grow or evolve
over time [21]. Many developments have been made in min-
ing dynamic networks, including the detection of groups or
communities and how they evolve over time [27,31,33]. How-
ever, the fundamental task of visualizing dynamic networks
has remained an open problem. Visualization is an impor-
tant tool that can provide insights and intuition about net-
works that cannot be conveyed by summary statistics alone.

Visualizing static networks is a challenge in itself. Static
networks are typically represented by graphs, which have no

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

MLG '11 San Diego, CA, USA

Copyright 2011 ACM 978-1-4503-0834-2 ...$10.00.

Ofakim, 87516 Israel
mark@medasense.com

1301 Beal Avenue
Ann Arbor, MI 48109 USA
hero@umich.edu

natural representation in a Euclidean space. Many graph
drawing or layout algorithms have been developed to cre-
ate aesthetically pleasing 2-D representations of graphs [16].
Common layout methods for general graphs include force-
directed [13,18] and spectral layouts [19].

Dynamic networks are typically represented by a sequence
of graph snapshots; thus, visualizing dynamic networks in 2-
D presents an additional challenge due to the temporal as-
pect. If one axis is used to represent time, then only a single
axis remains to convey the topology of the network. Brandes
and Corman [8] presented a possible solution to this problem
by creating a pseudo-3-D visualization that treats 2-D lay-
outs of each snapshot as layers in a stack. Unfortunately, the
resulting visualization is difficult to interpret. The more con-
ventional approach is to present an animated 2-D layout that
evolves over time to reflect the current snapshot [2,6,22,26].
A challenge with this approach is to preserve the “mental
map” [24] between snapshots so that the transition between
frames in the animation can be easily interpreted by a hu-
man. In particular, it is undesirable for a large number of
nodes to drastically change positions between frames. The
mental map can be preserved by a combination of two tech-
niques. The first is to choose node positions at a particular
time step so that they are close to their respective positions
at neighboring time steps. The second is to use transition
frames to smooth the movement between time steps. The
latter is usually achieved by creating interpolated transition
layouts [6,26].

The contribution of this paper is in the former area. While
interpolation does make an animation more aesthetically
pleasing, it does not constrain the successive layouts, so
there could be many node movements between time steps.
We constrain movements between time steps by adding a
temporal penalty to the cost function of a static graph layout
method. In addition, we add a group penalty that encour-
ages nodes belonging to the same group to be positioned
near each other in the layout, which also helps a human
to interpret the network structure. We propose two regu-
larized layout methods, dynamic multidimensional scaling
(DMDS) and dynamic graph Laplacian layout (DGLL) for
dynamic networks. DMDS is a regularized version of multi-
dimensional scaling, which is a family of methods for static
graph layout that includes the popular Kamada-Kawai (KK)
method of force-directed layout [18], while DGLL is a regu-
larized version of spectral layout using the graph Laplacian.

The proposed regularized methods for visualizing dynamic
networks can be used together with other graph mining tech-
niques to integrate additional knowledge mined from the

network into the visualization. For example, in many real
networks, group information is not available a priori. The
groups could be learned from the network topology by com-
munity detection [27,31,33] and then incorporated in the
layout via the proposed group regularization. This approach
of integrating mining methods with visualization has also
been used in [14,30] for visualization of groups in static net-
works. Vice versa, the regularized visualization can also con-
tribute to graph mining; for example, consider the problem
of change detection. Significant node movements between
layouts of consecutive time snapshots even in the presence
of temporal regularization can indicate changes in the net-
work structure.

To the best of our knowledge, this is the first work which
incorporates both temporal and group regularization in MDS
and graph Laplacian layout. Existing methods for tempo-
ral regularization in MDS [2] and group regularization in
Laplacian layout [9] are subsumed by DMDS and DGLL,
respectively. The methods for group regularization in MDS
and temporal regularization in Laplacian layout proposed
in this paper are novel. We apply the proposed algorithms
on a selection of dynamic network data sets to demonstrate
the contributions of the group and temporal regularizers in
creating interpretable visualizations.

2. BACKGROUND

We begin by specifying the notation we shall use in this
paper. Time-indexed quantities are indicated using square
brackets, e.g. X[t]. We represent a dynamic network by a
discrete-time sequence of graph snapshots. Each snapshot is
represented by a graph adjacency matrix A[t] where a;;[t] =
1 if an edge is present between nodes i and j during time
step ¢, and a;;[t] = 0 otherwise. We assume all graphs are
undirected, so that a;;[t] = aj;[t]. For simplicity of notation,
we typically drop the time index for all quantities at time
step t, i.e. A is assumed to denote A[t].

We refer to a graph layout by a matrix X € R™*° where
each row x(;) corresponds to the s-dimensional position of
node i. We are most interested in 2-D visualization (s =
2), although the proposed methods can also be applied to
other values of s. The ith column of X is denoted by xi,
and the individual entries by x;;. The superscript in xgh)
is used to denote the value of x; at iteration hA. Unless
otherwise indicated, the norm operator || - || refers to the
l2-norm. The all ones column vector of length n is denoted
by 1n. tr(-) denotes the matrix trace operator, and diag(-)
creates a diagonal matrix from its vector argument.

We now summarize the static graph drawing methods of
MDS and spectral layout using the graph Laplacian, which
operate on a single graph snapshot.

2.1 Multidimensional scaling

Multidimensional scaling (MDS) is a family of statistical
methods that aim to find an optimal layout X € R™** such
that the distance between x(;y and x(;) for all i # j is as
close as possible to a desired distance d;;. There are a vari-
ety of different cost functions and associated algorithms for
MDS; we refer interested readers to [7]. Here we describe the
cost function known as stress and its associated majorization
algorithm. The stress of a layout X is given by

1 n n 2
stress(X) = 3 ZZwij (6i5 — %@y —xpll)~, (1)

i=1 j=1

where w;; denotes the weight or importance of maintaining
the desired distance d;;. Stress MDS can be used for graph
layout by defining a distance metric over the graph. The
desired distance d;; is typically taken to be the length of
the shortest path between nodes ¢ and j in the graph. The
weights also play a crucial role in the aesthetics of the lay-
out. The KK force-directed layout [18] simply corresponds
to choosing w;; = 5;2 for i # j and ws; = 0.

The objective of stress MDS is to find a layout X that
minimizes (1). (1) can be decomposed into

% Z Zwijéfj + % Z Zwijﬂx(i) - X(J’)”2

i=1 j=1 i=1j=1
n n
=30 S widislixey — x5l
i=1 j=1

Note that the first term of (2) is independent of X. The
second term of (2) can be written as tr(X” RX) where the
n X n matrix R is given by

Zk#i wig 1= 7.

(2)

tr(XTRX) is quadratic and convex and is easily optimized.

The third term of (2) cannot be written as a quadratic
form. It is typically majorized by a convex quadratic func-
tion, and the resulting upper bound for the stress is then
optimized by differentiation. Define the matrix-valued func-
tion S(Z) by

—wijdij/||Z¢y — 2l @ F# J,
() = 394 J 4
2 {—zmsik(Z) i=i. @

Then, it is shown in [7,15] that

1 n n
—tr(XTS5(2)2) > -3 SN widilxay —xpll - (5)

i=1 j=1

so that an upper bound for the stress is

% SO S widd + e(XTRX) - 26:(XTS(2)2). (6)
i=1 j=1
By setting the derivative of (6) with respect to X to 0, the
minimizer of the upper bound is found to be the solution to
the equation RX = S(Z)Z.
The algorithm for optimizing stress is iterative. Let X©
denote an initial layout. Then at each iteration h, solve

Rx) = § (X00) £ ¢

for xflh) for each a = 1,...,s. R is rank-deficient because
the stress function is translation-invariant. The translation-
invariance can be removed by fixing the location of one point,
e.g. by setting x(;y = 0, removing the first row and column
of R, and removing the first row of S(X"~ D)X "~V [15].
(7) can then be solved using a standard method for solving
linear equations, such as Cholesky factorization. Alterna-
tively, (7) can be solved directly by using the Moore-Penrose
pseudoinverse [7]. The iteration can be terminated when

stress (X(hfl)) — stress (X(h))
stress (X(hfl))

where € is the tolerance of the process.

<, (8)

2.2 Graph Laplacian layout

The family of spectral layout methods involve using the
eigenvectors of a matrix representation of the graph. Typ-
ically this is the graph Laplacian, obtained from the adja-
cency matrix by L = D — A, where D is the diagonal ma-
trix of node degrees defined by d;; = Z;.l:l a;;. The graph
Laplacian spectral layout problem can be solved sequentially
in each dimension. In dimension i, the problem can be for-
mulated as [19]:

min x; Lx; (9)

X
subject to x; x; = 1 (10)
X 1, =0 (11)
X/ x;=0,7=1,2,...,i—1. (12)

By the definition of the graph Laplacian L, it can be shown
that for any vector y € R",

TLy—2ZZaU '_yJ . (13)

=1 j=1

Hence (9) can be viewed as the energy of the layout, and
the minimization aims to make edge lengths short [19]. (11)
removes the trivial solution x; = 1,/ \/ﬁ, which collapses all
nodes to a single point. It can also be viewed as removing
a degree of freedom in the layout due to translation invari-
ance [4] by setting the mean of x; to 0. Since x; has zero-
mean, (10) can be viewed as a constraint on the variance of
the layout. Finally, (12) forces each dimension of the layout
to be orthogonal to all previously obtained dimensions to
provide as much additional information as possible. By a
generalization of the Rayleigh-Ritz theorem [23], the min-
imizer is X; = v;y1, the eigenvector corresponding to the
(i + 1)th smallest eigenvalue of L.

In practice, it has been found that using degree-normalized
eigenvectors often results in more aesthetically pleasing lay-
outs [4,19]. The degree-normalized layout problem differs
only in that the dot product in each of the constraints is
replaced with the degree-weighted dot product, i.e. (10) to
(12) become x! Dx; = 1, x{ D1,, = 0, and x; Dx; = 0,
respectively. The minimizer is X; = u;4+1, the generalized
eigenvector corresponding to the (i 4+ 1)th smallest general-
ized eigenvalue of (L, D). A discussion on the merits of the
degree normalization can be found in [19].

3. REGULARIZED LAYOUT METHODS

We now introduce the regularized methods DMDS and
DGLL for layout of dynamic networks. The two regularizers
we use consist of a penalty to keep nodes that are in the same
group together and a penalty to prevent a node’s position
from deviating too far from its position at the previous time
step. We assume that group memberships are known (or
mined from the network) for at least some nodes. If the
group membership of a particular node is not known, no
group penalty is applied to that node.

3.1 Dynamic multidimensional scaling

Assume that there are n nodes and k groups. Define the
group membership by an n X k matrix C' where

(14)

1 node 7 is in group j at time step t,
Cij = .
0 otherwise.

We introduce group regularization using the augmented ad-
jacency matrix defined by

e (15)

where 0 denotes the k x k all-zero matrix. The added nodes
can be thought of as centroids of the groups, and an edge is
added between each node and its associated centroid. Let
A = [0;;] denote the matrix of shortest-path distances be-
tween each pair of nodes in B (including the centroids).

Define the regularized stress of an (n+k) x s layout matrix
X by

7L+k n+k

stress(X Z > wiy (85— [[x) =% [)°
=1 j=1
§ (16)
2
+6_eillxw —x@lt = 1|
i=1
where the weight matrix W is given by
0 i1=7
wij =62 i j<ni#j (17)
adif otherwise,
and the indicator vector e is given by
1 node i was present at time step ¢t — 1,
0 otherwise.

The first term of (16) is the usual MDS stress function aug-
mented with group regularization, and the second term is the
temporal regularization. « and § are the group and tempo-
ral regularization parameters, respectively. Notice that in
(17), we have used the KK choice of weights discussed in
Section 2.1; however, other weighting schemes can be triv-
ially substituted. Define the diagonal matrix

E = diag(e). (19)
Then the second term in (16) can be written as
3 [tr(XTEX) + (X[t — YEX[t - 1))
—2tr(XTEX[t — 1])].
Following the derivation in Section 2.1, for any (n+k) X s

matrix Z, (16) can be majorized by

n+k: n+k
= Z > wi;6y +tr(XTRX) — 2tx(XTS(2)2)
=1 j=1

+8 [tr(XTEX) + (T — X — 1) Y

—2te(XTEX[t — 1])],

where R and S are defined in (3) and (4), respectively. (20)
is quadratic and convex in X so the minimizer is found by
setting the derivative of (20) to 0, resulting in the equation

(R+ BE)X = S(2)Z + BEX|t — 1. (21)

This can be solved sequentially over each dimension. As
in Section 2.1, we solve this iteratively using the previous
iteration as the majorizer, i.e. at iteration h, solve

(R+BE)x{ = S(x{")%V 4+ BEx [t — 1] (22)

(22) is solved for each dimension a = 1,...,s, and the pro-
cess is iterated until the convergence criterion in (8) is at-
tained. The first iterate can be taken to be simply the pre-
vious layout x,[t — 1]. Unlike in ordinary MDS, the system
of linear equations in (22) has a unique solution provided
that at least a single node was present at time step ¢t — 1,
because R 4 SFE has full rank in this case. Hence there is
no need to compute a pseudo-inverse to solve (22) except
at the initial time step when no temporal regularization is
performed. At all subsequent time steps, a standard method
for solving linear equations, such as Cholesky factorization
can be used to solve (22).

3.2 Dynamic graph Laplacian layout

Define C, e, and E as in (14), (18), and (19), respectively.
The augmented adjacency matrix B is defined slightly dif-

ferently as

B= [aé’T O‘OC } . (23)
Notice that the group regularization parameter « is directly
incorporated into B. Define the augmented diagonal ma-
trix of node degrees D by d;; = Z;ilk bij, and the graph
Laplacian by L = D — B.

We derive the solution for the degree-normalized Lapla-
cian layout. The unnormalized Laplacian layout can simply
be obtained by replacing D with I in the derivation. The
regularized Laplacian layout in dimension ¢ is given by the
solution to

min x; Lx; + B|E (xi — xift — 1))]7, (24)
subject to xZTDxi — xZTMxi =1 (25)
X;Dxj —x; Mx; =0, j=1,2,...,i—1, (26)
where ||x||3 = x7Dx, the norm induced by the degree-
weighted dot product, and M is defined by
T
M- DlnlnD‘
17D1,

Again, the first term of (24) is the usual Laplacian layout
cost function augmented with group regularization, and the
second term is the temporal regularization. Unlike the un-
regularized Laplacian layout problem presented in Section
2.2, the trivial solution of the scaled all ones vector is no
longer optimal due to the temporal penalty, so we do not
restrict the solution to have zero mean. Thus the variance
constraint (25) is slightly more complex. (24) can be re-
written as

x¥ Lx; + ﬂXiTEDXi — QﬂXiTEDXi t—1]
+ Bx} [t — 1]EDx;[t — 1]

The final term is independent of x;, so it can be dropped
from the cost function. Due to the presence of the linear
term in x;, the problem cannot be solved using eigenvectors
as in the static case. Using the method of Lagrangian mul-
tipliers, a necessary condition for the optimizer is given by
the equations
1 it
Lxi - 5 ZM(D — M)x; = BEDx,[t — 1]
Jj=1
x; Dx; —x; Mx; =1

X, Dxj—x; Mx; =0, j=1,2,...,i—1,

(27)

where
L=L+BED — (D — M),

and p = [/,Lj];':l is the vector of Lagrangian multipliers. We
propose to solve (27) using Newton’s method [3]. Although
there any many solution pairs (x;, p) to (27), we find empir-
ically that initializing Newton’s method with x;[t — 1] and
randomly chosen p allows it to converge to a local minimum
near x;[t — 1], which is a desirable solution because the ob-
jective of the temporal regularization is to ensure that x;
does not deviate too far from x;[t — 1]. At the initial time
step, there is no temporal penalty, so the usual spectral lay-
out approach of using generalized eigenvectors of (L, D), as
described in Section 2.2, is applied.

3.3 Discussion

The form of the group and temporal penalties are chosen
to be consistent with the original cost functions of MDS and
Laplacian layout. Consider first the temporal penalty, which
has the same form

BY eil|xa) — x@lt—1]|° (28)
=1

for both DMDS and unnormalized DGLL!. Recall the cost
function of unnormalized Laplacian layout is given by (9).
By comparing the forms of (13) and (28), it can be seen
that the temporal penalty in DGLL corresponds to placing
anchor nodes at the previous node positions and minimiz-
ing the distance between current node positions and their
respective anchors with weight .

Similarly, by comparing the forms of (1) and (28), it can
be seen that the temporal penalty in DMDS also corresponds
to placing anchor nodes at the previous node positions. The
desired distance between current node positions and their
respective anchors is simply taken to be 0 and has weight 5.
For both DMDS and DGLL, increasing 8 has the effect of
pulling each node towards its previous position.

The group penalty differs slightly between DMDS and
DGLL. The group penalty for DGLL can be written as

n n+k

ay > bilxe —xpll*

i=1 j=n+1

where x(;),j > n represent the positions of the group cen-
troids. Thus the group penalty in DGLL attempts to pull
nodes within a group towards their centroid with weight a.
As « increases, this results in nodes in the same group being
collapsed onto the same point, while the distance between
nodes in different groups increases to satisfy the variance
constraint of (25).

On the other hand, the group penalty for DMDS is more
complicated. By inserting k centroids with desired distance
1 from all nodes in their respective groups, we have essen-
tially created shortcuts between distant nodes within the
same group. That is, the distance between two nodes i, j
in the same group is now min(2, d;;), where d;; denotes the
shortest-path distance between ¢ and j before the insertion
of the centroids. The insertion of these shortcuts has the
effect of lowering the desired distance between nodes in the
same group that were previously far apart, which pulls them
closer together in the layout. Unlike the group penalty in

YFor normalized DGLL, replace the la-norm with || - ||p.

DGLL, however, increasing a does not collapse all nodes
within a group because it increases the weights of the desired
distances between nodes and centroids, which is 1 between
a node and the centroid of the group it belongs to. As a
result, increasing a tends to give groups a more spherical
appearance while pulling nodes in the same group together.

Since the cost functions of DMDS and DGLL encourage
different appearances, the decision of which type of layout
to use depends on the type of network and user preferences.
Kamada-Kawai MDS layouts are often preferred because
they discourage nodes from overlapping, and this is true of
the group penalty in DMDS as well. On the other hand, if
a 1-D layout is desired, so that the entire sequence can be
plotted as a time series, node overlap is a lesser concern. For
such applications, Laplacian layout may be a better choice.

Another decision that needs to be made by the user is the
choice of the parameters « and (3, which can be tuned as
desired to create a meaningful animation. Unlike in super-
vised learning tasks such as classification, there is no ground
truth in visualization so the selection of parameters in lay-
out methods is typically done in an ad-hoc fashion. Fur-
thermore, multiple layouts created by differing choices of
parameters could be useful for visualizing different portions
of the network or yielding different insights [32]. We explore
the effect of changing parameters on the resulting animation
in Section 5.1.

4. RELATED WORK

The regularized dynamic network layout algorithms pro-
posed in this paper are designed to achieve two goals: to
place nodes belonging to the same group together and to
place nodes near their positions at neighboring time steps.
The former problem has been investigated, albeit in a static
setting, in the related field of supervised dimensionality re-
duction. The latter problem has been formulated as an ob-
jective in several other papers on dynamic network layout.

4.1 Supervised dimensionality reduction

The objective of dimensionality reduction (DR) is to find
a mapping ¢ : R? — R®* p > s from a high-dimensional
space to a lower-dimensional space while preserving many
of the characteristics of the data representation in the high-
dimensional space [20]. For example, MDS is a DR method
that attempts to preserve pairwise distances between data
points. In the supervised DR setting, one also has a priori
knowledge of the group structure of the data. Supervised
DR methods pose the additional constraint that data points
within the same group should be closer together in the low-
dimensional space than points in separate groups. Notice
that this is the same group constraint we pose in our regu-
larized layout algorithms.

Witten and Tibshirani [32] proposed a supervised version
of MDS (SMDS) that optimizes the following cost function
over X:

1 n n
3 D> 65— Ik — %)?

i=1 j=1

tao > (y —yz‘)i: (% - (l”ja—f”ia)>27

4,51y >Yq a=1

(29)

where y; is an ordinal value denoting the group membership
of data point . Notice that the first term in (29) is the

ordinary MDS stress with w;; = 1 for all 7,7, while the
second term provides the group regularization. « controls
the trade-off between the two terms.

The key difference between the SMDS group penalty and
the DMDS group penalty proposed in this paper is in the
way groups are treated. SMDS assumes that groups are la-
beled with an ordinal value that allows them to be ranked,
and the form of the group penalty in (29) does indeed tend
to rank groups in R® by encouraging zjq > Tia,a =1,...,s
for all 7,5 : y; > yi. On the other hand, our proposed group
penalty of adding k centroid nodes to the graph and connect-
ing them to their respective group members treats group la-
bels as categorical. Thus, our proposed group penalty does
not rank groups in R® but simply pulls nodes belonging to
the group together.

Another related method for supervised DR is classification
constrained dimensionality reduction (CCDR) [9], which is
a supervised version of Laplacian eigenmaps [4]. CCDR op-
timizes the following cost function over (X,Y):

n n k n
% DS ey —x 1P +ad Y callya) —x@ I

i=1 j=1 =1 i=1

where C is as defined in (14), x(;) denotes the position of
the ith data point in R®, and y(;) denotes the position of
the Ith centroid in R®. The solution [9] is given by the ma-
trix of generalized eigenvectors U = [ug, ..., ust1] of (L, D)
where the graph Laplacian L and diagonal degree matrix
D are calculated with respect to the augmented adjacency
matrix B defined in (23). The first n rows of U correspond
to the positions of the data points X, and the last k rows
correspond to the positions of the centroids Y.

Notice that the group penalty in CCDR is identical to the
group penalty in DGLL. Indeed, DGLL can be viewed as
an extension of CCDR to time-varying data. Although the
addition of the temporal regularization due to the anchoring
presence of the previous layout X[t — 1] prevents the DGLL
layout problem from being solved by eigendecomposition,
it discourages large node movements between time steps in
order to preserve the mental map.

4.2 Layout of dynamic networks

There have been several previous studies on the problem
of laying out dynamic networks while preserving the mental
map between time snapshots. As mentioned in the introduc-
tion, the problem separates into two areas: choosing node
positions at successive time steps so that node movement is
minimized and generating transition layouts that interpolate
between layouts of consecutive time snapshots. The former
is more closely related to the contribution of this paper.

Moody et al. [26] proposed to generate dynamic layouts
using a static layout method such as KK and to initialize
at each time step using the layout generated at the previous
time step. The idea of this approach is to anchor the nodes
initially so that the entire layout does not get rotated. The
anchoring differs from the layout methods proposed in this
paper, which penalize changes in node positions over time
and can be thought of as anchoring all iterations rather than
just the initial iteration. Experimentally, we find that solely
anchoring the initialization is insufficient at preventing dras-
tic node movements over time (see Section 5 for examples).

Baur and Schank [2] proposed a temporally regularized
MDS algorithm that uses the following localized update rule

at each iteration h for each node i at each time step ¢:

~(h—1)

2 — Ty 4 Bleiwialt — 1] + fimialt + 1])7 (30)
Zj;éi wij + B(ei + fi)
where
(h-1) __(h=1)
~(h—1) _ 3 (h—1) - Tia — Tjq
Tig = Zw” (xja + i =1 (h—1)))
i Iy =g

and f is the indicator vector defined by

1 node 7 is present at time step ¢t + 1,
fi= .
0 otherwise.

This algorithm was used in [22] for visualizing similarities
in journal content over time. It was shown in [2] that the
localized update of (30) also optimizes the temporally reg-
ularized stress function in (16) with k = 0, i.e. without a
group penalty. Hence the proposed DMDS layout method
can be viewed as a generalization of the method of [2] with
a group penalty. Note that (30) is an off-line update be-
cause it uses both the node positions at time steps ¢t — 1 and
time steps t + 1 to compute the node position at time step
t, whereas DMDS can be used in the on-line scenario.
Other methods for layout of dynamic networks have also
been proposed [11,12]. TGRIP [11] is a modified force-
directed layout method with added edges between vertices
present at multiple time steps. The user-selected weights
of these added edges control the amount of temporal reg-
ularization in the layouts. The method of Frishman and
Tal [12] is also a modified force-directed layout. It is an
on-line method that uses pinning weights to previous node
positions to achieve temporal regularization and multi-scale
computation to improve scalability. However, these meth-
ods do not incorporate any sort of group regularization to
encourage nodes from the same group to be placed together
in the layout, unlike the methods proposed in this paper.

5. EXPERIMENTS

We demonstrate the the proposed DMDS and DGLL lay-
out methods on three dynamic network data sets. Several
snapshots of the resulting visualizations are presented. The
full, animated visualizations over all time steps can be found
in the supplementary material, available on-line [1].

Summary statistics from applying both DMDS and DGLL
on each of the data sets are presented in Tables 1 and 2, re-
spectively, and are discussed in the individual subsections.
When group regularization is used, o = 1 unless otherwise
specified. Similarly, when temporal regularization is used,
B = 1 unless otherwise specified. We define three mea-
sures of layout quality: snapshot cost, temporal distance,
and group distance. The snapshot cost measures how well
the current layout coordinates fit the current graph snap-
shot. The snapshot cost for DMDS is taken to be that static
MDS stress defined in (1). From (9), the snapshot cost for
DGLL is the layout energy given by tr(XTLX). The tem-
poral distance is a measure of the amount of node move-
ment between consecutive layouts, and the group distance
represents how well the current layout reflects the group
structure. We take the temporal distance to be the squared
Frobenius norm distance between node positions at consec-
utive time steps | X — X[t — 1]||% and the group distance
to be the sum of the squared pairwise Euclidean distances

Data set Regularizer Stress Temporal Group

Both 0.174 0.247 2.49
SBM Temporal 0.173 0.307 4.41
Group 0.160 0.672 3.51
None 0.153 1.07 6.10
Both 0.112 0.107 3.22
Temporal 0.106 0.116 3.49

N b
eweomt Group 0.102 0.493 3.69
None 0.0953 0.681 4.27
Both 0.169 0.369 4.36
MIT Temporal 0.113 0.861 7.59
Group 0.159 1.00 4.58
None 0.0956 3.06 9.28

Table 1: Mean normalized costs and distances of
DMDS layouts for all data sets. The smallest quan-
tity in each column for each data set is bolded.

Data set Regularizer Energy Temporal Group
Both 1.82 0.135 2.99
SBM Temporal 1.89 0.179 10.1
Group 1.48 7.01 8.56
None 1.39 6.94 20.9
Both 3.11 0.332 30.4
Newcomb Temporal 2.97 0.365 30.4
Group 2.19 22.7 28.4
None 2.12 32.7 29.3
Both 0.465 0.530 10.5
MIT Temporal 0.431 2.26 14.6
Group 0.288 8.26 10.2
None 0.253 13.6 19.3

Table 2: Mean normalized costs and distances Qf
DGLL layouts for all data sets. All entries are x1072.

between all pairs of nodes within a group, summed over all
groups. The costs and distances displayed are appropriately
normalized (either by the number of nodes or pairs of nodes,
depending on the quantity) so they are comparable across
different data sets.

As expected, the regularized layouts have lower group and
temporal distance than the unregularized layouts, which is
achieved by choosing node positions with a slightly higher
snapshot cost. The improvement in temporal distance is
lower for DMDS than for DGLL. This is due to the initial-
ization of the unregularized MDS using the previous node
positions, as discussed in Section 3.3, which has some effect
but not as much as the temporal regularization in DMDS.
Also, note that using both regularizers often results in better
performance both in group and temporal distance, but not
always because the two penalties could oppose each other,
which we discuss at the end of Section 5.1.

5.1 Stochastic block model

In this experiment, we generate simulated networks using
a stochastic block model (SBM) [17]. An SBM creates net-
works with k groups, where nodes in a group are stochas-
tically equivalent, i.e. the probability of an edge between
nodes ¢ and j is dependent only on the groups to which ¢
and j belong. An SBM is completely specified by the set

Change point 8
5,270 o g 10
= O =
g 10 OOOOO %00 % .
2 = 10 Change point
R g
< 10 IS O
4 o
E 21
10°° 107
0 5 10 15 20 0 5 10 15 20
Time step Time step

—%— Both regularizers|
Group only
O Temporal only
Unregularized

Change point

[>OO
_ o
2 00y OOOOO
S0 Q004

Group distance
=
o

0 5 10 15 20
Time step

Figure 1: Costs and distances of DGLL layouts in
SBM simulation at each time step.

of probabilities {pc4,c=1,...,k,d =c,c+1,...,k}, which
specify the probability of an edge between any particular
node in group ¢ and any particular node in group d.

We generate 20 independent samples from a 30-node 4-
group SBM with parameters p; = 0.6 and p;; = 0.3 for
all # # j. Each sample corresponds to a graph snapshot at
a single time step. The group memberships are randomly
assigned at the initial time step. At ¢t = 10, 1/4 of the nodes
are randomly re-assigned to different groups to simulate a
change in the network structure. We create layouts of the
network using normalized DGLL with a = 8 = 1.

In Figure 1, we plot the variation over time of the snap-
shot cost, the temporal distance, and the group distance.
The quantities are averaged over 100 simulation runs. As
expected, the snapshot cost is higher for the regularized
layouts than for the static (unregularized) layout. Notice
that temporal regularization allows the temporal distance
to decrease significantly, which is crucial in order to pre-
serve the mental map over time. Finally, it can be seen
that group regularization results in lower group distance, as
expected, but temporal regularization also results in lower
group distance after several time steps have elapsed in this
experiment. This is because the SBM parameters are held
constant from time steps 0 to 9 and from time steps 10 to
19, so that the group structure can be revealed by tempo-
ral regularization alone once enough time samples have been
collected. These findings apply also to the DMDS layouts,
as summarized in Table 1.

We demonstrate the effect of varying the regularization
parameters in Figure 2. We generate layouts using 10 choices
each of o and 3, uniformly distributed on a log scale between
0.1 and 10. As expected, the temporal distance drops for in-
creasing (3, but notice also that for low values of 3, increasing
the group penalty also decreases the temporal distance. This
is a sensible result because nodes can move significantly over
time but must remain close to the group centroid. The result
is different when it comes to group distance. As expected,
increasing o decreases group distance; however, for low val-
ues of a, a moderate value of provides the lowest group
distance. This is also a sensible result in this experiment, as

0.08
g 01 9
c o g o 0.4
©
g 006 &
Z 005 oos 8025 03
= - o
g 3 02
5§ o : 002 &
= 10 = 10 _,ji 0.1

0 10 G 10

10 10° 10

a 1 1 o 1 1

100 100 B 100 100 B

Figure 2: Mean temporal and group distances in
SBM simulation as functions of o and f.

0.2 T T T T T T
Fall break

Time step

Figure 3: Time plots of 1-D DGLL layouts of New-
comb’s fraternity, colored by group.

discussed previously, because the SBM parameters are held
constant before and after the change point. An extremely
low 3 is detrimental because it does not constrain node posi-
tions enough, while an extremely high 8 is also detrimental
because it places too much weight on the initial time step.

From this experiment we can see that there is a coupled ef-
fect between group and temporal regularization, and that a
combination of both penalties can sometimes result in bet-
ter performance with respect to both temporal and group
distance. However, it is important to note that this is not
always true. For example, if a node changes group between
two time steps, then the group and temporal regularization
can oppose each other, with the temporal penalty attempt-
ing to pull the node towards its previous position and the
group penalty attempting to pull the node towards its cur-
rent centroid, which could be quite far from the node’s pre-
vious position. This is reflected by the spike in temporal and
group distances at ¢ = 10 in Figure 1 when both regularizers
are used.

5.2 Newcomb’sfraternity

This data set was collected by Nordlie and Newcomb [28,
29] as part of an experiment on interpersonal relations. 17
incoming male transfer students at the University of Michi-
gan were housed together in fraternity housing. Each week,
the participants ranked their preference of the other individ-
uals in the house, in private, from 1 to 16, where 1 indicates
highest preference. Data was collected over 15 weeks in a
semester, with one week of data missing during week 9, cor-
responding to Fall break.

The rank data was first symmetrized by taking the average
of participant i’s preference for participant j and vice versa.
Then, graph snapshots were created by connecting each par-
ticipant to his 3 most preferred neighbors. No group infor-
mation is known a priori, so the group structure is learned
using the AFFECT evolutionary spectral clustering algo-
rithm [33]. We first create layouts by normalized DGLL
with « = 8 = 1. In Figure 3, we show a time plot of 1-D

t=7 slice:7 time:8.000-9.000

ol . A13
16012 1810 015 tAg A1
2 17 @10 As
o2 at 017 Als
oo o2 N 016 09
A6 7 04
Al4 A13 012 07
011
At o3
t=8 slice:8 time:9.000-10.000
A
o3 ol as Mt .
16 o!S 4o 10
.2 ol2 .17A10 o15A14 10
.?7 A A5 @16 Ao A5
8
e AB A .1:4 .7.17
/ A13 &> 11
A 03
t=9 slice:9 time:10.000-11.000
A13
3 ol A%
ol5 @15 As
16 @4 Ao A1
o127 017 410 017
02 A5 @16 A10
ot 2946 48 02 A1
1 01
A Al3 dug,
Al
o3
t=10 slice:10 time:11.000-12.000
A13
A5
o3 @15 A6 -ag
16 1015 -
ol2 @ o017 410 O1m9 Al
02 A5 Q16 Al0
o4 o A6 " 48 Q2 g1 | A4
Ald 41 al3 012 o7
o3

Figure 4: Comparison of proposed DMDS layout
(left) with anchored KK layout (right) of Newcomb’s
fraternity at four time steps (animation on-line [1]).

layouts, where the color of a line segment between time steps
t and t41 denotes the group membership of the node at time
step ¢. While a 1-D layout does a poor job of conveying the
topology of the network, some temporal trends can be seen.
For example, three nodes appear to switch from the blue to
the red group around Fall break.

The Newcomb data was also analyzed by Moody et al. [26]
using the method of anchoring the initial iteration as dis-
cussed in section 3.3. In Figure 4, we present a side-by-side
comparison of several snapshots from the DMDS layout and
the anchored KK layout, generated using SoNIA [5]. The
anchored KK layout is equivalent to performing ordinary
MDS at each time step using the weights discussed in Sec-
tion 2.1 and the previous node positions as the initializa-
tion. In both layouts, it can be seen that nodes 9, 10, and
14 break away from the blue group and join the red group.
This change is detected by the clustering procedure and is
reflected in the animation, available on-line [1]. However,
there is a lot of node movement between time snapshots 7
to 9 in the anchored KK layout and is reflected in the high
temporal distance of the unregularized MDS layout in Table
1. The DMDS layout has much less node movement between
snapshots, achieved by a small increase in the static stress.

5.3 MIT Reality Mining

The MIT Reality Mining data set [10] was collected as
part of an experiment on inferring social networks by using

t=5 t=6 t=7
T N A A
A
M:* A m“‘
A A0 °
O, o
SO e
“wr o
Corty ‘d‘:& 5
t=8 t=9 t=10
A saa,
a A A A
A% wita, A A
ad" A o 6r A
A

%

Figure 5: DMDS layout of MIT Reality Mining data
at six time steps (animation on-line [1]). Blue nodes
denote colleagues working in the same building, and
red nodes denote incoming students.

cell phone as sensors. 94 students and staff at MIT were
given access to smart phones that were monitored over two
semesters. The phones were equipped with Bluetooth sen-
sors, and each phone recorded the Media Access Control
addresses of nearby Bluetooth devices at five-minute inter-
vals. Using this proximity data, we construct a sequence of
graph snapshots where each participant is connected to the
5 participants he or she was in highest proximity to during
a time step. We divide the data into time steps of one week,
resulting in 46 time steps between August 2004 and June
2005. From the MIT academic calendar [25], we know the
dates of important events such as the beginning and end of
school terms. We also know that 26 of the participants were
incoming students at the university’s business school, while
the rest were colleagues working in the same building.

Using the affiliations as groups, we apply both DMDS
and DGLL to the dynamic network. The layouts at six time
steps for DMDS with @ = g = 1 are shown in Figure 5.
Node labels are not displayed to reduce clutter in the figure.
We encourage readers to view the animation on-line [1] to
get a better idea of the temporal evolution of this network.
t = 5 corresponds to the first week of classes. Notice that
the two groups are slightly overlapped at this time step. As
time progresses, the group of incoming students separates
quite clearly from the colleagues working in the same build-
ing. This result suggests that the incoming students are
spending more time in proximity with each other than with
the remaining participants, which one might expect as the
students gain familiarity with each other as the semester
unfolds. The benefit of the regularization can be seen once
again from the costs and distances in Tables 1 and 2.

6. CONCLUSIONS

In this paper we proposed two methods for generating lay-
outs of dynamic networks over time. The proposed methods
DMDS and DGLL incorporate group and temporal regu-
larization to encourage nodes in the same group to be posi-
tioned near each other and to discourage nodes from straying
too far from their previous position. We demonstrated the
necessity of the regularizers for preserving the mental map

in multiple experiments. The proposed methods generalize
existing approaches for temporal regularization in MDS and
group regularization in graph Laplacian layout.

In this paper, we chose small networks of less than 100
nodes for demonstrative purposes. An important area for
future work concerns visualization of large dynamic net-
works containing upwards of thousands of nodes. Even when
equipped with temporal and group regularization, dynamic
layouts of large networks may be confusing for a human to
interpret. The integration of additional graph mining meth-
ods into visualization algorithms could be useful in dealing
with these large networks. In addition, there is the issue of
improving the scalability of the proposed algorithms, which
can be accomplished by using multi-scale methods as in [12],
which we plan to investigate in the future.

7. ACKNOWLEDGMENTS

This work was partially supported by the National Sci-
ence Foundation grant CCF 0830490. Kevin Xu was par-
tially supported by an award from the Natural Sciences and
Engineering Research Council of Canada.

8. REFERENCES

[1] Supplementary material. Available from:
http://tbayes.eecs.umich.edu/xukevin/
visualization_mlg_2011.

[2] M. Baur and T. Schank. Dynamic graph drawing in
Visone. Technical report, 2008.

[3] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty.
Nonlinear programming: theory and algorithms. Wiley,
2006.

[4] M. Belkin and P. Niyogi. Laplacian eigenmaps for
dimensionality reduction and data representation.
Neural Computat., 15(6):1373-1396, 2003.

[5] S. Bender-deMoll and D. A. McFarland. SoNIA -
social network image animator. Available from:
http://www.stanford.edu/group/sonia/.

[6] S. Bender-deMoll and D. A. McFarland. The art and
science of dynamic network visualization. J. Social
Struct., 7(2):1-38, 2006.

[7] 1. Borg and P. J. F. Groenen. Modern
Multidimensional Scaling. Springer, 2nd edition, 2005.

[8] U. Brandes and S. R. Corman. Visual unrolling of
network evolution and the analysis of dynamic
discourse. Inform. Visualiz., 2(1):40-50, 2003.

[9] J. A. Costa and A. O. Hero III. Classification
constrained dimensionality reduction. In Proc. IEEE
Int. Conf. Acoust., Speech, Signal Process., 2005.

[10] N. Eagle, A. Pentland, and D. Lazer. Inferring
friendship network structure by using mobile phone
data. Proc. Nat. Acad. Sci., 106(36):15274-15278,
2009.

[11] C. Erten, P. J. Harding, S. G. Kobourov, K. Wampler,
and G. Yee. Exploring the computing literature using
temporal graph visualization. In Proc. Conf. Visualiz.
Data Anal., 2004.

[12] Y. Frishman and A. Tal. Online dynamic graph
drawing. IEEE Trans. Visualiz. Comput. Graphics,
14(4):727-740, 2008.

[13] T. M. J. Fruchterman and E. M. Reingold. Graph
drawing by force-directed placement. Software:
Practice and Ezperience, 21(11):1129-1164, 1991.

[14] E. R. Gansner, Y. Hu, S. Kobourov, and C. Volinsky.
Putting recommendations on the map — visualizing
clusters and relations. In Proc. 3rd ACM Int. Conf.
Recommend. Sys., 2009.

[15] E. R. Gansner, Y. Koren, and S. North. Graph
drawing by stress majorization. In Proc. 12th Int.
Symp. Graph Drawing, 2004.

[16] 1. Herman, G. Melangon, and M. S. Marshall. Graph
visualisation and navigation in information
visualisation: A survey. IEEE Trans. Visualiz.
Comput. Graphics, 6(1):24-43, 2000.

[17] P. Holland, K. B. Laskey, and S. Leinhardt. Stochastic
blockmodels: First steps. Social Networks,
5(2):109-137, 1983.

[18] T. Kamada and S. Kawai. An algorithm for drawing
general undirected graphs. Inform. Process. Lett.,
31(12):7-15, 1989.

[19] Y. Koren. On spectral graph drawing. In Proc. 9th
Int. Comput. Combinat. Conf., 2003.

[20] J. A. Lee and M. Verleysen. Nonlinear Dimensionality
Reduction. Springer, 2007.

[21] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph
evolution: Densification and shrinking diameters.
ACM Trans. Knowl. Discov. Data, 1(1):2, 2007.

[22] L. Leydesdorff and T. Schank. Dynamic animations of
journal maps: Indicators of structural changes and
interdisciplinary developments. J. American Soc.
Inform. Sci. Techol., 59(11):1810-1818, 2008.

[23] H. Liitkepohl. Handbook of Matrices. Wiley, 1997.
[24] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout
adjustment and the mental map. J. Visual Lang.

Comput., 6(2):183-210, 1995.

[25] MIT academic calendar 2004-2005. Available from:
http:
//web.mit.edu/registrar/www/calendar0405.html.

[26] J. Moody, D. McFarland, and S. Bender-deMoll.
Dynamic network visualization. American J. Sociol.,
110(4):1206-1241, 2005.

[27] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter,
and J. P. Onnela. Community structure in
time-dependent, multiscale, and multiplex networks.
Science, 328(5980):876-878, 2010.

[28] T. M. Newcomb. The acquaintance process. Holt,
Rinehart and Winston, 1961.

[29] P. G. Nordlie. A longitudinal study of interpersonal
attraction in a natural group setting. PhD thesis,
University of Michigan, 1958.

[30] J. Parkkinen, K. Nybo, J. Peltonen, and S. Kaski.
Graph visualization with latent variable models. In
Proc. 8th Workshop Mining Learn. Graphs, 2010.

[31] L. Tang, H. Liu, J. Zhang, and Z. Nazeri. Community
evolution in dynamic multi-mode networks. In Proc.
14th ACM SIGKDD Conf. Knowl. Discov. Data
Mining, 2008.

[32] D. M. Witten and R. Tibshirani. Supervised
multidimensional scaling for visualization,
classification, and bipartite ranking. Computat.
Statist. Data Anal., 55(1):789-801, 2011.

[33] K. S. Xu, M. Kliger, and A. O. Hero III. Adaptive
evolutionary clustering. Submitted, 2011. Available
from: http://arxiv.org/abs/1104.1990.

