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ABSTRACT

Like many biomedical applications, flow cytometry is a field
in which dimensionality reduction is important for analysis
and diagnosis. Through expression patterns of various flu-
orescent biomarkers, flow cytometry is often used to char-
acterize the malignant cells in cancer patients, traced to the
level of the individual cell. Typically, diagnosticians ana-
lyze cytometric data through a series of 2-dimensional his-
tograms of the expression of various marker combinations,
which does not exploit the high-dimensional nature of the
data. In this paper we utilize a form of dimensionality re-
duction — which we refer to as Information Preserving Com-
ponent Analysis (IPCA) — that preserves the information dis-
tance between multi-dimensional data sets. As such, we of-
fer a method for clinicians to visualize patient data in a low-
dimensional projection space defined by a linear combination
of all available markers. We illustrate these results on actual
patient data.

Index Terms— Flow cytometry, statistical manifold, in-
formation geometry, multivariate data analysis, dimensional-
ity reduction

1. INTRODUCTION

Clinical flow cytometry typically involves data retrieved from
cancerous blood samples which have been treated with dif-
ferent fluorescent markers. This offers a high-dimensional
data set which contains simultaneous analysis of several mea-
surements, such as marker expression and light scatter angle.
Typically, diagnosis of flow cytometry data is performed by
analyzing a series of 2-dimensional projections onto the axes
of the data, which correspond to different biomarker combina-
tions determined through years of clinical experience. These
projections methods do not fully exploit the high-dimensional
nature of the data, and are typically used due to the critical
importance of visualization in diagnosis.
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Given the desire for visualization, dimensionality reduc-
tion is important in flow cytometry analysis. The key princi-
ple of the low-dimensional space is that it must preserve the
relationship between data sets such that patients with the same
disease should exhibit similar expression patterns in the pro-
jected space. This requirement leads directly to a projection
method which maintains the similarity between multiple data
sets, rather than preserving similarities between the elements
of a single set, which is goal of common dimension reduction
methods such as [1,2]. We are interested in finding some low-
dimensional characterization of each patient data set such that
their full-dimensional similarities and differences are main-
tained and may be visualized in the low-dimensional space.

In this paper we present the utilization of a method of di-
mensionality reduction — which we refer to as Information
Preserving Component Analysis (IPCA) — that preserves the
Fisher information distance between data sets. Information-
based dimensionality reduction has been previously presented
[3,4], but focuses solely on the supervised case. Given the de-
sire for assisted diagnosis, in which class labels would gener-
ally be unavailable, we focus on the unsupervised case. IPCA
ensures that the low-dimensional representation maintains the
similarities (i.e. information distances) between data sets that
are contained in the full-dimensional data. This low dimen-
sional representation is a linear combination of the various
markers, enabling clinicians to visualize all of the data simul-
taneously, rather than the current process of axes projections,
which only relays information in relation to two markers at a
time. Additionally, analysis of the loading vectors within the
IPCA projection matrix offers a form of variable selection,
which relays information describing which marker combina-
tions may be of the most importance. This has the significant
benefit of allowing for exploratory data analysis.

This paper proceeds as follows: In Section 2 we give a
background of flow cytometry as well as a formulation of the
problem we will attempt to solve. We present our methods for
finding the IPCA projection in Section 3. Simulation results
for actual clinical data are illustrated in Section 4, followed
by a discussion and areas for future work in Section 5.
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Fig. 1. Historically, clinical flow cytometric analysis relies on a series of 2-dimensional scatter plots in which cell populations
are selected for further evaluation. This process does not take advantage of the multi-dimensional nature of the problem.

2. BACKGROUND

Clinical flow cytometry is widely used in the diagnosis and
management of malignant disorders of the blood, bone mar-
row, and lymph nodes (leukemia and lymphoma). At the basic
level, flow cytometry is the process of analyzing a blood sam-
ple with a collection of different fluorescent markers, selected
due to known expression patterns with certain disease types.
In routine flow cytometric immunophenotyping, the expres-
sion patterns of each marker in a given sample can be traced
to the level of the single cell.

When measurements of forward and side angle light scat-
ter characteristics are included, each cell analyzed via 4-color
flow cytometry can be thought of as occupying a unique point
in 6-dimensional space, with the dimensions of each point de-
fined by the magnitude of expression of each antigen or light
scatter characteristic. For visualization, diagnosticians typi-
cally analyze a series of 2-dimensional histograms defined by
any 2 of the 6 characteristics measured in a given tube (see
Fig. 1). Often one or more measured characteristics are used
to restrict immunophenotypic analysis to a specific subset of
cells in a process commonly known as gating, which allows
for limited exploitation of the dimensionality of the flow cy-
tometry data set.

The use of each single measured characteristic as an axis
on a 2-dimensional histogram is a convenient method for vi-
sualizing results and observing relationships between cell sur-
face markers, but is equivalent to viewing a geometric shape
head-on, and therefore does not necessarily take full advan-
tage of the multidimensional nature of flow cytometry. Just
as it is possible to rotate an object in space to more effectively
observe that object’s characteristics, so too is it possible to
“rotate” the 2-dimensional projection of a 6-dimensional flow
cytometry analysis to optimally view the relationships among
the 6 measured characteristics.

2.1. Problem Formulation

Given the critical importance of visualization in the task of
flow cytometric diagnosis, we wish to find the low-dimensional
projection which best preserves the relationships between pa-
tient data sets. Rather than viewing a series of axes projec-
tions determined by clinical experience, a projection which is
a linear combination of several biomarkers will allow a clin-
ician to visualize all of the data in a single low-dimensional
space, with minimal loss of information.

Specifically, given a collection of flow cytometer outputs
X ={X1,..., Xy} in which each element of X; exists in
RY, we can define similarity between data sets X; and X ;
(e.g. patients ¢ and j) with some metric as D(X;, X ;). Can
we find a mapping

A: X =Y

in which the elements of Y existin R™, m < d (m = 2or 3
for visualization) such that

Can we define this mapping as a linear projection A € R™*%?
Can we ensure that the projection minimally alters the data
itself (i.e. ensure A is orthonormal)? Additionally, by analyz-
ing the loadings in A, can we determine which biomarkers are
best at differentiating between disease classes?

3. METHODS

Flow cytometry data is often analyzed through the statistics
of the patient data set. Essentially, each patient can be viewed
as a realization of some overriding probability density func-
tion (PDF) lying on a statistical manifold [5]. The Kullback-
Leibler (KL) divergence, defined as

p(z)

KL(pllq) = / pla)log 2 do. (1)



is a common, nonparametric, means of determining a simi-
larity between PDFs p(x) and ¢(x). The KL-divergence is
a very important metric in information theory, and is com-
monly referred to as the relative entropy of one PDF to an-
other. This divergence stresses the differences in PDFs, yield-
ing very large values when p(z) and ¢(z) are highly dissimi-
lar, specifically at the tails of the distributions.

It should be noted that the KL-divergence is not a dis-
tance metric, as it does not satisfy the symmetry properties
of a distance metric, K L(p||q) # KL(p||q). To obtain this
symmetry, we utilize the symmetric KL-divergence:

Dk r(p,q) = KL(pllg) + KL(q|p). (2)

Using the KL-divergence, we are able to define a similar-
ity measure between patient data sets. In order to calculate the
KL-divergence, the generative PDF for each patient needs to
be approximated, and there are a multitude of nonparametric
methods for this task, such as kernel density estimation and
k-NN density estimation.

3.1. Objective Function

We define the Information Preserving Component Analysis
(IPCA) projection as one that preserves the Fisher informa-
tion distance (or some approximation thereof, such as the KL-
divergence [6]) between data sets. As such, the divergence be-
tween data PDFs should be minimally altered when projecting
from the full data dimension to the low-dimensional space.
Specifically, let X = {X,..., Xy} where X; € R¥"i is
the 5™ data set, containing n; elements of dimension d; esti-
mating the PDF of X; as p;. With an abuse of notation, we
refer to Dxr,(pi,p;) a8 D (X, X ), with the knowledge
that the divergence is calculated with respect to PDFs, not re-
alizations. We wish to find a single projection matrix A such
that

Dk (AX;,AX;) = Dk (X, X;), Vi,j.

Formatting as an optimization problem, we would like to solve:

A= i D(X) — D(X: A)||2 3
arg min [|D(X) = D(X; A)[F,  G)

where [ is the identity matrix, D(X’) is a dissimilarity matrix
such that D;;(X) = Dk (X, X;), and D(X; A) is a simi-
lar matrix where the elements are perturbed by the projection
matrix A, i.e. D;;j(X;A) = D (AX,;, AX).

3.2. Gradient Descent

Gradient descent (or the method of steepest descent) allows
for the solution of convex optimization problems by travers-
ing a surface or curve in the direction of greatest change, iter-
ating until the minimum is reached. Specifically, let J(z) be
a real-valued objective function which is differentiable about
some point x;. The direction in which J(z) decreases the

fastest, from the point z;, is that of the negative gradient of
J at z;, —%J (z;). By calculating the location of the next
iteration point as

0
Tiy1 = Tq — M%J(%‘),

where p is a small number regulating the step size, we en-
sure that J(x;) > J(x;41). Continued iterations will result
in J(x) converging to a local minimum. Gradient descent
does not guarantee that the process will converge to a global
minimum, so typically it is important to initialize x( near the
estimated minimum.

Using gradient descent, we are able to solve (3). Specif-
ically, let J = ||[D(X) — D(X; A)||% be our objective func-
tion, measuring the error between our projected subspace and
our full-dimensional space. The direction of the gradient is
solved by taking the partial derivative of J with respect to a
projection matrix A,

B%J = ZZ 6%1 [Dij (X3 A)? = 2Dy;(X) Dij (X3 A)] .

Given the direction of the gradient, the projection matrix can
be updated as
0 =~
A=A—u—J(4), 4
pagd(A4) )

where

o - 0 1(/0 r o \"
is the direction of the gradient, constrained to force A to re-

main orthonormal (we omit the derivation of this constraint).
This process is iterated until the error J converges.

3.3. Algorithm

The full method for IPCA, specialized towards the current
problem, is described in Algorithm 1. We note that A is ini-
tialized as a random orthonormal projection matrix due to the
desire to not bias the estimation. While this may result in
finding a local minimum rather than an absolute minimum,
experimental results have shown the flow cytometry problem
is sufficiently convex, at least for our available data, yielding
significantly similar convergence values.

4. SIMULATION

We now present simulation results for using IPCA to find a
projection matrix for flow cytometric data analysis. By using
IPCA and projecting the data down to 2 dimensions, pathol-
ogists can obtain this visualization through a linear combina-
tion of all available markers, weighted by importance in pre-
serving information distance, rather than just 2 at a time. We
offer this as a proof of concept for diagnosis and exploratory
research. Patient data was obtained and diagnosed by the De-
partment of Pathology at the University of Michigan.



Algorithm 1 Information Preserving Component Analysis
Input: Collection of data sets X = {X4,...,Xn}, X; €
R¥*7i: projection dimension m; search step size s
1: Calculate D(X'), the KL-divergence dissimilarity matrix
2: Initialize A; € R™*9 as a random orthonormal projec-
tion matrix
3: Calculate D(X; A;), the Kullback-Leibler dissimilarity
matrix in the projected space
4: for i = 1to oo do
Calculate aiAi,j , the direction of the gradient, con-
strained to AAT =T
6: A1 =Ai — MaiAzj
7. Calculate D(X; A;11)
s J=[D(X) - D(X; A1) |2
9:  Repeat until convergence of J
10: end for
Output: Projection matrix A € R™*?_ which preserves the
information distances between sets in X'.

W

Dimension | Marker

1 Forward Light Scatter
2 Side Light Scatter

3 FMC7

4 CD23

5 CD45

6 Empty

Table 1. Data dimensions and corresponding markers for
analysis of CLL and MCL.

4.1. Lymphoid Leukemia Study

In this study, we compare patients with two immunopheno-
typically similar forms of lymphoid leukemia — mantle cell
lymphoma (MCL) and chronic lymphocytic leukemia (CLL).
These diseases display similar characteristics with respect to
many expressed surface antigens, but are generally distinct
in their patterns of expression of two common B lymphocyte
antigens: CD23 and FMC7. Typically, CLL is positive for
expression of CD23 and negative for expression of FMC7,
while MCL is positive for expression of FMC7 and negative
for expression of CD23. These distinctions should lead to a
difference in densities between patients in each disease class.

The dataset X = {X 1, ..., X 43} consists of 43 patients,
23 of which have been diagnosed with CLL and 20 diagnosed
with MCL. Each X; is a 6 dimensional matrix, with each di-
mension corresponding to a different marker (see Table 1),
and each element representing a unique blood cell, totaling
n; ~ 5000 total cells per patient. We first estimate the PDFs
of each X; using kernel density estimation (bandwidths de-
termined with the maximal smoothing principle [7]), then cal-
culate the matrix of Kullback-Leibler divergences between
PDFs D(X). Our desire is to find the projection matrix A
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Fig. 2. Evaluating the objective as a function of time. As
the iterations increase, the objective function eventually con-
verges.

that will preserve those similarities when all data sets are pro-
jected to dimension d = 2.
Using the methods described in this paper, we found the
IPCA projection as
—0.084 )

0.064
A= ( —0.019 —0.011
)

This projection was calculated by minimizing the objective
function with respect to A, as illustrated in Fig. 2 in which
the squared error (per element pair) is plotted as a function
of time. As the iteration ¢ increases, J converges and A; is
determined to be the IPCA projection matrix. We note that
while dimension 6 corresponds to no marker (it is a channel of
just noise), we do not remove the channel from the data sets,
as the projection determines this automatically (i.e. loading
values approach 0). Additionally, due to computational com-
plexity issues, each data set was randomly subsampled such
that n; = 500. While we would not suggest this decimation
in practice, we have found it to have a minimal effect during
experimentation.

Given the IPCA projection, we illustrate the 2-dimensional
PDFs of several different patients in the projected space in
Fig. 3. We selected patients based on the KL-divergence val-
ues between patients of different disease class. Specifically,
we selected the CLL and MCL patients with a small diver-
gence (i.e. most similar PDFs), patients with a large diver-
gence (i.e. least similar PDFs), and patients which represented
the centroid of each disease class. These low-dimensional
PDFs, which are what would be utilized by a diagnostician,
are visibly different between disease classes. While the most
similar CLL and MCL patients do share much similarity in
their IPCA PDFs, there is still a significant enough difference
to distinguish them, especially given the similarities to other
patient PDFs.

0.036
—-0.197

0.906
—0.145

0.208  0.355
—0.956 0.165
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Fig. 3. Contour plots (i.e. PDFs) of the IPCA projected data. The top row corresponds to the PDFs the CLL patients, while
the bottom row represents PDFs of MCL patients. The selected patients are those most similar between disease classes, the
centroids of disease classes, and those least similar between disease classes, as illustrated in Fig. 4.

1.5 ‘
+ e CLL
L + MCL||
1
05t . +
o °
.0. 2 . @ +5§ @
N o .'O_ C) 4 ¥ o+ ®
Z ©"° ! +
WL -05F 3
*
-1t B + 1
%,
-15F E
%,
-2 L L L L L
-3 -2 -1 0 1 2 3

FINE1
(a) IPCA Projection

4 T T
e CLL +
+ MCL
3t + 1
2t . . 1
m .
= 1 . 4
T ..' . +
Or ': ° : ° L[] + + f
., . T
-1r ... ++ & + 4
o o +
-2 L L L L
-4 -3 -2 -1 0 1 2 3 4
FINE1

(b) Full Dimension

Fig. 4. Comparison of embeddings, obtained with FINE, using the full dimensional data and the data projected with IPCA.
IPCA preserves the separation between disease classes. The circled points correspond to the density plots in Fig. 3, numbered

respectively.

We now illustrate the embedding of the projected data
obtained with FINE [5, 8], which performs classical multi-
dimensional scaling on the matrix of dissimilarities formed
by the KL-divergence. The embedding results are shown in
Fig. 4(a), in which the separation between classes is preserved
when using the projected data as compared to using the full
dimensional data in Fig. 4(b). In both embeddings, each point
represents the estimated PDF of an entire patient data set,

and those which are circled correspond to the PDFs shown
in Fig. 3. IPCA maintains the relationships between different
sets, allowing for a consistent analysis.

Using the projection matrix for variable selection, the load-
ing vectors are highly concentrated towards the 3*¢ and 4}
dimensions, which correspond to fluorescent markers FMC7
and CD23. This marker combination, which is well known in
the clinical pathology community for differentiating CLL and
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Fig. 5. IPCA performance using subset of collection the
Xs C X, where Ng is the number of randomly selected pa-
tients from each disease class. Results shown over a 5-fold
cross validation, with the IPCA projection determined by X’
shown as a lower bound with the dotted line.

MCL, was able to be independently validated using IPCA.
This is important as it could enable pathologists to experi-
ment with new combinations of fluorescent markers and see
which may have strong effects on the discernment of similar
leukemias and lymphomas.

One concern when implementing IPCA is the number of
data sets necessary to find a proper projection. Specifically,
given a subset of Xs C X, how close does IPCA approach the
value of the objective function obtained when utilizing the en-
tire collection X'? To determine this, we subsample from X,
with Ng patients randomly selected from each disease class
(Ns € [2,5,10,15]), and use IPCA to determine the pro-
jection matrix. We then calculate the value of the objective
function on the entire set X'. The mean results over a 5-fold
cross validation are illustrated in Fig. 5, where we signify the
value of the objection function when using IPCA on the entire
data set with the dotted line. Note that this value is not identi-
cal to that in Fig. 2 as the initial starting matrix was randomly
generated (although held constant for all trials in this exper-
iment). Given that the value of the objection function with
the initial random projection matrix was % = 180.5941, the
relative performance of IPCA with few available data sets is
promising.

5. CONCLUSIONS

In this paper we have shown the ability to find an information-
based projection for high-dimensional data analysis using In-
formation Preserving Component Analysis (IPCA). By pre-
serving the information distance between data sets (through
an approximation with the Kullback-Leibler divergence), we
find a low-dimensional projection which allows for visualiza-

tion in cancer diagnosis. Analysis of the loading vectors of
the IPCA projection matrix may be used as a form of vari-
able selection, which enables the use of IPCA for exploratory
research. In future work we plan to continue applying IPCA
towards flow cytometric analysis, including looking for sub-
groups within disease classes. Additionally, we plan to look
for other applications which would benefit from this form of
dimensionality reduction.
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