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Abstract—Adaptively monitoring the states of nodes in a large
complex network is of interest in domains such as national
security, public health, and energy grid management. Here,
we present an information theoretic adaptive tracking and
sampling framework that recursively selects measurements using
the feedback from performing inference on a dynamic Bayesian
Network. We also present conditions for the existence of a
network specific, observation dependent, phase transition in the
updated posterior of hidden node states resulting from actively
monitoring the network. Since traditional epidemic thresholds
are derived using observation independent Markov chains, the
threshold of the posterior should more accurately model the true
phase transition of a network. The adaptive tracking framework
and epidemic threshold should provide insight into modeling the
dynamic response of the updated posterior to active intervention
and control policies while monitoring modern complex networks.

I. INTRODUCTION

This paper treats the important problem of monitoring
the states of nodes in large computer, social, or power
networks where these states dynamically change due to
viruses, rumors, or failures that propagate according to the
graph topology [4], [7], [10]. This class of network dynamics
has been extensively modeled as a percolation phenomenon,
where nodes on a graph can randomly “infect” their neighbors.

Percolation across networks has a rich history in the field
of statistical physics, computer science, and mathematical
epidemiology [10], [15], [17]. Here, researchers are typically
confronted with a network, or a distribution over the
network topology, and extract fixed point attractors of node
configurations, thresholds for phase transitions in node states,
or distributions of node state configurations [2], [6], [11]. In
the field of fault detection, the nodes or edges can “fail”,
and the goal is to activate a subset of sensors in the network
which yield high quality measurements that identify these
failures [14], [18]. While the former field of research concerns
itself with extracting offline statistics about properties of
the percolation phenomenon on networks, devoid of any
measurements, the latter field addresses online measurement
selection tasks.

Here, we propose a methodology that actively tracks a
causal Markov process across a complex network (such as
the one in Figure 3(a)), represented as a dynamic Bayesian
network, where measurements are adaptively selected using
feedback from the updated posterior distribution. We establish
conditions such that the updated posterior probability of all
nodes “infected” is driven to one as the number of time
samples goes to infinity. The proposed epidemic/percolation
threshold on the updated posterior distribution over the
hidden states is a function of structural properties of the
network, epidemiological parameters, and sensor likelihoods
corresponding to those nodes that were sampled.

The proposed percolation threshold should more accurately
reflect the true conditions that cause a phase transition in
a network, e.g., node status changing from healthy/normal
to infected/failed, than traditional thresholds derived from
conditions on predictive distributions which are devoid of any
measurements. As the conditions of a threshold are extracted
by inspecting the dominant mode of decay of the updated
posterior, this permits specification of best and worst case
convergence rates of that a network clears the infection.
Additionally, the decay dynamics of the updated posterior
can yield insight into the asymptotic detection performance
of the system for a given false alarm rate.

Since most practical networks of interest are large, it
is usually infeasible to sample all nodes continuously and
exhaustively. Given sampling constraints, we present an
information theoretic sampling strategy that selects specific
nodes that will yield the largest information gain, and thus,
better detection performance.

The proposed sampling strategy balances the trade-off
between trusting the predictions from the assumed model
dynamics and expending precious resources to select a set of
nodes for measurement.

We present the adaptive measurement selection problem
and give two tractable approximations to this subset selection
problem based upon the joint and marginal posterior



distribution, respectively. A set of decomposable Bayesian
filtering equations are presented for this adaptive sampling
framework and the tractable inference algorithms for complex
networks are discussed. We present analytical worst case
performance bounds for our adaptive sampling performance,
which can serve as sampling heuristics for the activation
of sensors or trusting predictions generated from previous
measurements.

We believe that this is the first attempt to extract condi-
tions of percolation thresholds in actively monitored dynamic
Bayesian networks where the updated posterior distribution
is the sufficient statistic of interest rather than observation
independent predictive distributions.

II. PROBLEM FORMULATION

The objective of actively monitoring the n node network is
to recursively update the posterior distribution of each hidden
node state given various measurements. Specifically, the next
set of m measurement actions (nodes to sample), m � n,
at next discrete time are chosen such that they yield the
highest quality of information about the n hidden states. The
condition on m � n simulates the reality of fixed resource
constraints, where typically only a small subset of nodes in a
large network can be observed at any one time.

Here, the hidden states are discrete random variables that
correspond to the states encoded by the percolation process on
the graph. Here, the graph G = (V, E), with V representing
the set of nodes and E corresponding to the set of edges.
Formally, we will assume a state-space representation of a
discrete time, finite state, partially observed Markov decision
process (POMDP). Here,

Zk = {Z1
k , . . . , Z

n
k } (1)

represents the joint hidden states, e.g., healthy or infected

Yk = {Y(1)
k , . . . ,Y(m)

k } (2)

represents the m observed measurements obtained at time k,
e.g., biological assays or PINGing an IP address, and

ak = {a1
k, . . . , a

m
k } (3)

represents the m actions taken at time k, i.e., which nodes
to sample. Here, Y(j)

k , continuous/categorical valued vector of
measurements, which is induced by action ajk, ajk ∈ A, with
A = {1, . . . , n} confined to be the set of all n individuals
in the graph, and Zik ∈ {0, 1, . . . , r}. Since the topology
of G encodes the direction of ”flow” for the process, the
state equations may be modeled as a decomposable partially
observed Markov process:

Yik = f(Zik) + wik (4)
Zik = h({Zjk−1}j∈η(i)∪i). (5)

Here, η(i) = {j : E (Vi,Vj) /∈ ∅} is the neighborhood of i,
f(Zik) is a non-random vector-valued function, wik is measure-

ment noise, and h({Zjk−1}j∈η(i)∪i) is a stochastic equation
encoding the transition dynamics of the Markov process (see
Figure 1 for a two node graphical model representation).
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Fig. 1. Partially Observed Markov Structure for i and j for E (Vi,Vj) /∈ ∅

A. Bayesian Filtering

In our proposed framework for actively monitoring the
hidden node states in the network, the posterior distribution
is the sufficient statistic for inferring these states. The general
recursion for updating the joint posterior probability given all
past and present observations is given by the standard Bayes
update formula:

p(Zk|Y0:k) =
f(Yk|Zk)

g(Yk|Y0:k−1)
p(Zk|Y0:k−1) (6)

with

p(Zk|Y0:k−1) =
∑

z∈{0,1,...,r}n

p(Zk|Zk−1 = z)p(Zk−1 = z|Y0:k−1).

(7)
and

g(Yk|Y0:k−1) =
∑

z∈{0,1,...,r}n

f(Yk|Zk = z)p(Zk = z|Y0:k−1). (8)

The Chapman-Kolmogorov equations provide the connection
between the posterior update (7) and the distribution resulting
from the standard percolation equations. In the former, the
updates are conditional probabilities that are conditional on
past observations, while in the latter, the updates are not
dependent on observations.

The local interactions in the graph G imply the following
conditional independence assumptions:

f(Yk|Zk) =
n∏
i=1

f(Yik|Zik). (9)

p(Zk|Zk−1) =
n∏
i=1

p(Zik|{Zjk−1}j∈η(i)∪i) (10)

where the likelihood term is defined in (4) and the transition
dynamics are defined in (5). This decomposable structure al-
lows the belief state (posterior excluding time k observations)



update, for the ith node in G, to be written as:

p(Zk|Y0:k−1) =
∑

z∈{0,1,...,r}‖pa‖

p(Zk|Zpa
k−1 = z)p(Zpa

k−1 = z|Y0:k−1)

(11)
with the parent set, pa = {η(i), i}. Unfortunately, for highly
connected nodes in G, this marginal update becomes in-
tractable. It thus must be approximated [5], [12], [16].

B. Information Theoretic Adaptive Sampling

In most real world situations, acquiring measurements from
all n nodes at any time k is unrealistic, and thus, a sampling
policy must be exploited for measuring a subset of nodes [1],
[3], [8], [14]. Since we are concerned with monitoring the
states of the nodes in the network, an appropriate reward is
the expected information gain between the updated posterior,
pk = p(Zk|{Yik}i∈ak

,Y0:k−1), and the belief state, pk|k−1 =
p(Zk|Y0:k−1):

ak = argmaxa⊂AE
[
Dα
(
{Yik}i∈a

)
|Y0:k−1

]
(12)

Dα
(
{Yik}i∈a

)
= Dα

(
pk||pk|k−1

)
, 0 < α < 1 (13)

with α-Divergence defined by

Dα(p||q) =
1

α− 1
log (Eq [(p/q)α]) (14)

for any distributions p and q with identical support.

The reward in (12) has been widely applied to multi-
target, multi-sensor tracking for many problems including,
sensor management and surveillance [8], [13]. Note that
limα→1Dα(p||q) → DKL(p||q), where DKL(p||q) is the
Kullback-Leibler divergence between p and q. The expectation
in (12) is taken with respect to the conditional distribution
g(Yk|Y0:k−1) given the previous measurements Y0:k−1 and
actions ak. In practice, the expected information divergence
in (12) must be evaluated via Monte-Carlo methods. Also,
the maximization in (12) requires enumeration over all

(
n
m

)
actions (for subsets of size m), and therefore, we must resort
to approximations. We propose incrementally constructing the
set of actions at time k, ak, for j = 1, . . . ,m, according to:

ajk = argmaxi∈A\ak
E
[
Dα
(

Yik, {Yjk}j∈ak

)
|Y0:k−1

]
. (15)

Both (12) and (15) are selecting the nodes to sample which
yield maximal divergence between the percolation prediction
distribution (belief state) and the updated posterior distri-
bution, averaged over all possible observations. Thus (12)
provides a metric to assess whether to trust the predictor and
defer actions until a future time or choose to take action,
sample a node, and update the posterior.

1) Lower Bound on Expected α-Divergence: Since the
expected α-Divergence in (12) is not closed form, we could
resort to numerical methods for estimating this quantity.
Alternatively, one could specify an analytical lower-bound
that could be used in-lieu of numerically computing the
expected information gain in (12) or (15).

We begin by noting that the expected divergence between
the updated posterior and the predictive distribution (con-
ditioned on previous observations) differ only through the
measurement update factor, fk/gk|k−1 ((12) re-written):

Egk|k−1

[
Dα
(
pk||pk|k−1

)]
]

= Egk|k−1

[
1

α− 1
log Epk|k−1

[(
fk

gk|k−1

)α]]
(16)

where fk = f(Yk|Zk) and gk|k−1 = g(Yk|Y0:k−1). So, if
there is significant overlap between the likelihood distributions
of the observations, the expected divergence will tend to
zero, implying that there is not much value-added in taking
measurements, and thus, it is sufficient to use the predictive
distribution for inferring the states.

It would be convenient to interchange the order of the
conditional expectations in (16). It is easily seen that Jensen’s
inequality yields the following lower bound for the expected
information gain

Egk|k−1

[
Dα
(
pk||pk|k−1

)]
≥ 1
α− 1

log Epk|k−1

[
Egk|k−1

[(
fk

gk|k−1

)α]]
. (17)

Here, the inner conditional expectation can be obtained from
Dα
(
fk||gk|k−1

)
, which has a closed form for common distri-

butions (e.g., multivariate Gaussians) [8].

III. ASYMPTOTIC ANALYSIS OF MARGINAL POSTERIOR

For tracking the percolation process across G, we have
discussed recursive updating of the posterior. However, com-
puting these updates is generally intractable. For the remainder
of the paper, we will use (4) and (5) to directly update
the marginal posterior distribution using the following matrix
representation:

pk(z) = Dk(z)pk|k−1(z) (18)

with updated marginal posterior pk(z) =
[p1,k(z), . . . , pn,k(z)]T with pi,k(z) = p(Zik = z|Yik,Y0:k−1),
Dk(z) = diag

(
f

(z)
i,k /gi,k|k−1

)
, and marginal belief

state pk|k−1(z) = [p1,k|k−1(z), . . . , pn,k|k−1(z)]T with
pi,k|k−1(z) = p(Zik = z|Y0:k−1).

Note that for i /∈ ak, (Dk(z))i,i = 1, and pi,k(z) =
pi,k|k−1(z). Given that we can find an efficient way of
updating pk|k−1(z), according to the transition dynamics (5),
we can solve a modified version of (15), for j = 1, . . . ,m:

ajk = argmaxi∈A\ak
E
[
Dα
(
Yik
)
|Y0:k−1

]
(19)

Dα
(
Yik
)

= Dα
(
pi,k(z)||pi,k|k−1(z)

)
, 0 < α < 1. (20)

A. Pearson χ2 Divergence of Updated Marginal Posterior

One interesting property of the Bayesian filtering equations
is that the updated posterior can be written as a perturbation
of the predictive percolation distribution through the following



relationship (z omitted for clarity):

pk = Dkpk|k−1 = pk|k−1 + (Dk − I) pk|k−1. (21)

Hence, when the sensors do a poor job in discriminating the
observations, Dk ≈ I, we have pk ≈ pk|k−1. It is of interest
to determine when there is significant difference between the
posterior update and the prior update specified by the standard
percolation equations. Recall that the updated posterior is, in
the mean, equal to the predictive distribution, E [pk|Y0:k−1] =
pk|k−1. The total deviation of the updated posterior from the
percolation distribution can be summarized by computing the
trace of the following conditional covariance:

tr (Cov [pk|Y0:k−1]) = (22)

tr
(
E
[
(pk − E [pk|Y0:k−1]) (pk − E [pk|Y0:k−1 ])T |Y0:k−1

])
.

Using (21) and properties of the trace operator, we obtain the
following measure of total deviation of the updated posterior
from the predictive distribution in terms of fk and gk|k−1:

tr (Cov [pk|Y0:k−1]) = tr
(
E
[
(Dk − I)2 |Y0:k−1

]
Pk|k−1

)
(23)

with Pk|k−1 = pk|k−1pTk|k−1. The conditional expectation in
(23) is the Pearson χ2 divergence between distributions fi,k
and gi,k|k−1, for all i. This joint measure of deviation is
analytical for particular families of distributions and thus can
be used as an alternative measure of divergence for activation
of sensors [8].

B. Decay Dynamics of Updated Posterior Distribution

There has recently been significant interest in deriving
the conditions of a percolation/epidemic threshold in terms
of transition parameters and the graph adjacency matrix
spectra for two state causal Markov processes [2], [6],
[11]. Such thresholds yield conditions necessary for phase
transition in the probability of local infections becoming
epidemics. Knowledge of these conditions are particularly
useful for designing “robust” networks, where the probability
of epidemics is minimized.

Epidemic thresholds are typically obtained by extracting
the sufficient conditions of the network and model parameters
for the node states to be driven to their stationary point, with
high probability. The probability of these events are computed
using the observation independent distribution encoding the
stochastic dynamics of the process [2], [6], [11].

We use the results in [2], [6] to derive a percolation
threshold based upon the updated posterior distribution (6)
assuming a restricted class of two-state Markov processes. The
dominant mode of decay characterizing the conditions of a
threshold should more accurately model the current dynamic
response of the posterior distribution since the updated
posterior tracks a particular “disease” trajectory better than
the observation independent predictive distributions.

Formally, Zik ∈ {0, 1}, f
(z)
i,k = f(Yik|Zik = z) is the con-

ditional likelihood for node i, pi,k = p(Zik = 1|Yik,Y0:k−1),
and pi,k = p(Zik = 1|Y0:k−1). Here, we will assume that
Zk = 0 is the unique absorbing state of the system.

The Bayes update for pi,k can be written as (i subscript
omitted for clarity):

pk =
f

(1)
k

f
(1)
k pk|k−1 + f

(0)
k (1− pk|k−1)

pk|k−1

=
f

(1)
k /f

(0)
k

1 + f
(1)
k −f

(0)
k

f
(0)
k

pk|k−1

pk|k−1

=
f

(1)
k /f

(0)
k

1 + ∆fk

f
(0)
k

pk|k−1

pk|k−1. (24)

There are three different sampling/observation dependent
possibilities for each individual at time k: case (1), i is not
sampled and therefore, pk = pk|k−1, case (2), ∆fk > 0,
and case (3), ∆fk < 0. We first derive a tight-upper
bound for cases (2) and (3) of the form pk ≤ ck pk|k−1.
For the remainder of the analysis we will assume that
|∆fk

f
(0)
k

pk|k−1| < 1 for cases (2) and (3).

In case (2), when ∆fk > 0, we can re-write (24) in terms
of an alternating geometric series:

pk =
f

(1)
k

f
(0)
k

 ∞∑
l=0

(−1)l
(
|∆fk|
f

(0)
k

pk|k−1

)l pk|k−1

≤ f
(1)
k

f
(0)
k

[
1 +
|∆fk|
f

(0)
k

pk|k−1

]
pk|k−1 (25)

where we have used the fact that 1/(1 + |a|) ≤ 1 + |a|.
Recalling that p ≥ p2 for 0 ≤ p ≤ 1, we have

pk ≤
f

(1)
k

f
(0)
k

[
1 +
|∆fk|
f

(0)
k

]
pk|k−1. (26)

In case (3), when ∆fk < 0, (24) can be expanded as a
geometric series:

pk =
f

(1)
k

f
(0)
k

 ∞∑
l=0

(
|∆fk|
f

(0)
k

pk|k−1

)l pk|k−1

=
f

(1)
k

f
(0)
k

1 +
|∆fk|
f

(0)
k

pk|k−1 +
∞∑
l=2

(
|∆fk|
f

(0)
k

pk|k−1

)l pk|k−1.

(27)

Exploiting the fact that p ≥ p2 for 0 ≤ p ≤ 1, we obtain:

pk ≤
f

(1)
k

f
(0)
k

[
1 +
|∆fk|
f

(0)
k

]
pk|k−1 +O

(
|∆fk|
f

(0)
k

pk|k−1

)
(28)



where the higher order terms of |∆fk|
f
(0)
k

pk|k−1 are captured in

O(
|∆fk|
f

(0)
k

pk|k−1) =
∞∑
l=2

(
|∆fk|
f

(0)
k

pk|k−1

)l
. (29)

Now that an upper-bound has been established for conditions
when a node is sampled (under both scenarios on the signed
difference of the sensor likelihoods), we can state the general
equality/inequality (equality for case (1)) of pk ≤ ck pk|k−1

with

bk =

1 , i /∈ ak
f
(1)
k

f
(0)
k

[
1 + |∆fk|

f
(0)
k

]
, |∆fk| > 0

with ck = bk for cases (1) and (2) and

ck = bk +O
(
|∆fk|
f
(0)
k

pk|k−1

)
for case (3).

After gathering all n nodes into vector notation, we have
the following element-wise upper-bound on the updated belief
state:

pk ≤ Ckpk|k−1 = (Bk +Ok) pk|k−1. (30)

with
Bk = diag (bi,k) (31)

and

Ok = diag

(
I{∆fi,k<0}O

(
|∆fi,k|
f

(0)
i,k

pi,k|k−1

))
(32)

where I{∆fi,k<0} is the indicator function for the event
∆fi,k < 0.

Thus far, we have established, under the assumptions of
|∆fk

f
(0)
k

pk|k−1| < 1, an upper-bound for the updated posterior
in terms of observation likelihoods and the belief state (30).

Next, consider the restricted class of two-state Markov
processes on G, for which we can produce a bound of the
form

pk|k−1 ≤ Spk−1 (33)

where S contains information about the transition parameters
and the topology of the network.

A class of models where such a bound exist is the
Susceptible-Infected-Susceptible (SIS) model of mathematical
epidemiology [2]. The SIS model on a graph G, assumes
that each of the n individuals are in states 0 or 1, where 0
corresponds to susceptible and 1 corresponds to infected. At
any time k, an individual can receive the infection from their
neighbors, η(i), based upon their states at k − 1.

Under this SIS model, the matrix S is given by

S = (1− γ)I + βA (34)

where the Markov transition parameters γ is the probability of

i transitioning from 1 to 0, β is the probability of transmission
between neighbors i and j, and A is the graph adjacency
matrix (see Figure 2).

Returning to the derivation, using the bound on updating
the belief state (33) and updating the posterior (30), we have
by induction, the following recursion:

pk ≤ Ckpk|k−1 ≤ CkSpk−1 ≤ (CkS · · ·C1S) p0

= (BkS · · ·B1S) p0 +OCkS (35)

where we have lumped the higher order modes and higher
order cross-terms into OCkS.

The dominant mode of decay of the updated posterior may
be found by investigating the following eigen-decomposition:

BkS =

 n∑
j=1

bj,kejeTj

 n∑
j=1

λjujuTj

 (36)

with ej = [0, . . . , 0, 1, 0, . . . , 0]T (1 at jth element). Without
loss of generality, we can assume the eigenvalues of S are
listed in decreasing order, |λ1| ≥ · · · ≥ |λn|. Now rewriting
(36), we have

BkS =
(
bjk ejk eTjk +OB

) (
λ1u1uT1 +OS

)
=

(
λ1bjk ejk eTjk u1uT1 +OBS

)
(37)

where bjk = maxj∈{1,...,n}bj,k and the OB ,OS ,OBS vari-
ables corresponds to the higher order terms. Inserting (37)
into (35), and matching the largest eigenvalues of Bk with λ1

we obtain

pk ≤ (BkS . . .B1S) p0 +OCkS

=λk1

k∏
l=1

bjl

(
k∏
l=1

(
ejle

T
jl

u1uT1
))

p0 +O(ϕk). (38)

Thus, at large k, the dominant mode of the posterior goes
as λk1

∏k
l=1 bjl (the modes in O(ϕk) decay faster than the

dominant mode presented above).

We can see that if the spectral radius of S is less than
one, |λ1| < 1, then for large k, pk → 0, which is the unique
absorbing state of the system.

This epidemic threshold condition on λ1 has been
previously established for unforced (observation independent)
SIS-percolation processes [2]. However, in the tracking
framework, the rate at which the posterior decays to the
susceptible state is damped by an additional measurement
dependent factor,

∏k
l=1 bjl , resulting from using the updated

posterior distribution.

This measurement-dependent dominant mode of the poste-
rior should more accurately model the true dynamic response
of the node states better than that in [2] since the posterior
better tracks the truth than the unforced predictive distribution.



Additionally, this dominant mode of the updated posterior
distribution allows one to simulate the response of the perco-
lation threshold to intervention and control actions which are
designed to increase the threshold, such that the probability of
epidemics is minimized.

IV. NUMERICAL EXAMPLE

IS

γ

1− γ
q1− q

I(1) I(|η|)

Fig. 2. SIS Markov Chain for Node i Interacting with the Infected States
of its Neighbors

Here, we present results of simulations of our adaptive
sampling for the active tracking of a causal Markov ground
truth process across a random 200 node, scale-free network
(Figure 3(a)). Since most modern networks in which this
method is most applicable, e.g., social networks, tend to be
scale-free in their degree distribution (see Figure 3(b)), the
proposed network shall suffice for extracting various statistics
under the proposed adaptive tracking method. Since the goal
in tracking is to accurately classify the states of each node, we
are interested in exploring the detection performance as the
likelihood of an epidemic increases through the percolation
threshold for this network.

One would expect different phase transitions (thresholds) in
detection performance for various sampling strategies, ranging
from the lowest threshold for unforced predictive distributions
to highest for a continuous monitoring of all n nodes. We
will present a few of these detection surfaces that depict these
phase transitions for the unforced percolation distribution,
random m = 40 node sampling, and our proposed information
theoretic adaptive sampling of m = 40.

Here, we will restrict our simulations to the two-state SIS
model of mathematical epidemiology described above.

The sensor models (4), are of the form of two-dimensional
multivariate Guassians with common covariance and shifted
mean vector. The transition dynamics of the ith individual
(5), for the SIS model is given by:

Zik|Z
{i,η(i)}
k−1 ∼ (1− γ)Zik−1 + (1−Zik−1)

241−
Y
j∈η(i)

(1− βZjk−1)

35 .
(39)

where Zik−1 ∈ {0, 1} is the indicator function of i being
infected at time k − 1. The transmission term between i and
η(i) is known the Reed-Frost model [2], [6], [10]. Since the tail

(a) 200 Node Scale Free Synthetic Network
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(b) Degree Distribution of the 200 Node Scale Free Network

Fig. 3. Structure of the 200 Node Synthetic Network Used in Simulations

of the degree distribution of our synthetic scale-free graph con-
tains nodes with degree greater than 10, updating (11) exactly
is unrealistic and we must resort to approximate algorithms.
Here, we will assume the mean field approximation used by
[2] for this SIS model, resulting in the following marginal
belief state update for the ith node of infected (Zik = 1):

pi,k|k−1 = (1− γ)pi,k−1 + (1− pi,k−1)

"
1−

Y
j∈η

(1− βpj,k−1)

#
.

(40)

Equation (40) allows us to efficiently update the marginal
belief state directly for all n nodes which are then used for
estimating the best m measurements using (19).

As we are interested in detection performance, as a function
of time and epidemic intensity, the Area Under the ROC Curve
(AUR) is a natural statistic to quantify the detection power at
each time and each propensity of epidemic (detection of the
infected state). The AUR is evaluated at each time k, each
SIS percolation intensity parameter

τ = β/γ (41)
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(a) AUR Surface for Unforced Prediction Distribution (no evidence acquired
throughout the monitoring)
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(b) AUR Surface for Updated Posterior Distribution with m = 40 Random
Measurements at Each Time k
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(c) AUR Surface for Updated Posterior Distribution with m = 40 Information
Theoretic Adaptive Measurements at Each Time k

Fig. 4. Detection Performance Surface: Area Under the ROC (AUR) Curve
Surface as a Function of Percolation Parameter τ = β/γ and Time

and over 500 random initial states of the network. For
the SIS model, τ is the single parameter (aside from the
topology of the graph) that characterizes the intensity of
the percolation/epidemic. It is useful to understand how
the detection performance varies as a function of epidemic
intensity, as it indicates how well the updated posteriors
are playing “catch-up” in tracking the true dynamics on the
network.

For this SIS model, the percolation threshold is defined
as τc = 1/λ1(A) where λ1(A) = maxi∈{1,...,n}|λi| is the

spectral radius of the graph adjacency matrix, A [2]. Values
of τ greater than τc imply that any infection tend to become
an epidemic, whereas those values less than τc imply that
small epidemics tend to die out.

For the network under investigation (Figure 3(a)),
τc = 0.1819. We see from Figure 4(a) that a phase transition
in detection power (AUR) for the unforced percolation
distribution does indeed coincide with the epidemic threshold
τc. While the epidemic threshold for the random and adaptive
sampling policies is still τc = 0.1819, the measurements
acquired allow the posterior to better track the truth, but only
up to their respective phase transitions in detection power
(see Figures 4(b) and 4(c)).

Figure 4(c) confirms that the adaptive sampling better
tracks the truth than randomly sampling nodes, while pushing
the phase transition in detection performance to higher
percolation intensities, τ . We see that the major benefit of the
adaptive sampling is apparent when conditions of the network
are changing moderately, at medium epidemic conditions.
Beyond a certain level of percolation intensity, more resources
will need to be allocated to sampling to maintain a high level
of detection performance.

A heuristic sampling strategy based on the topology of G
was also explored (results not shown) by sampling the ”hubs”
(highly-connected nodes). However, detection performance
was only slightly better than random sampling and poorer
than our adaptive sampling method.

It is often useful for developing sampling heuristics and
offline control/intervention policies to inspect what type
of nodes, topologically speaking, is the adaptive sampling
strategy targeting, under various network conditions (different
values of τ ). In Figure 5, the relative frequency of nodes
sampled with a particular degree is plotted against time
(under the m = 40 adaptive sampling strategy) for three
different values of τ (over 500 random initial conditions of
the network).

For the larger of the three values explored (τ = 0.5 > τc)
we see that the sampling is approximately uniform across the
nodes of each degree on the graph (Figure 5(c)). Therefore,
under extremely intense epidemic conditions, the adaptive
sampling strategy is targeting all nodes of each degree equally,
and therefore, it is sufficient to perform random sampling. For
the two lower values of τ , Figure 5(a) and Figure 5(b) (near
τc), we see that adaptive policy targets highly connected nodes
more frequently than those of lesser degree and thus, it is
more advantageous to exploit such a strategy, as compared to
random sampling (see AUR surface in Figure 4(c)).

V. DISCUSSION

In this paper, we have presented an information theoretic
framework for recursively selecting the best subset of nodes
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(a) τ = 0.125 < τc
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(b) τ = 0.2143 ≈ τc
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(c) τ = 0.5 < τc

Fig. 5. Relative Frequency of Nodes Sampled of a Given Degree under
m = 40 Adaptive Sampling Strategy

to sample in a dynamic Bayesian network that yield the
largest expected information gain about the hidden state of
the network. This framework can be applied to a variety of
problem domains, including actively tracking an influenza
outbreak across a population or adaptively monitoring the
diffusion of information across large networks, such as a
terrorism network.

Within the proposed adaptive tracking/sampling framework,
we have derived conditions for a network specific percolation
threshold using an updated posterior distribution rather
than an observation independent predictive distribution.
These conditions recover the unforced percolation threshold
derived in [2] but with an additional factor involving sensor
likelihood terms due to measurements obtained throughout the
monitoring. A term of the form λk1

∏k
l=1 bjl (derived in (38))

was shown to be the dominant mode of the updated posterior
dynamic response to active intervention of immunizing the
nodes (holding node states constant). The conditions of the

threshold, using the updated posterior, should more accurately
model the phase transition in detection performance and thus,
enable a better assessment of immunization strategies and
any subsequent observations resulting from such actions.
The framework and modes of decay of the updated posterior
should provide additional insight into active monitoring of
large complex networks under resource constraints.

Exploring phase transitions in updated posteriors for other
classes of diffusion is the subject of future work. One partic-
ularly interesting question is identifying conditions of phase
transitions between multi-state processes (> 2) and explore
the rates at which a system transitions between various states.
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