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Outline

√
Simple problem of determining the better of two therapies

???

√
Discuss potential problem constraints — e.g.

? Costs for time, subject, failures, errors

√
Present response-adaptive approaches:

? using accrued data

? incorporating awareness of future decisions

? optimization vs. competing goals

√
Describe increasingly intelligent designs.

√
Results, references and comments −→ done!



3

Basic Model

Imagine 2 populations of Bernoulli response data that represent patient

responses to treatment arms 1 and 2, (T1, T2).

From T1 we get X11, X12, . . . ∼ B(1, P1) ↘

Independent with (P1, P2) ∈ Ω = (0, 1)× (0, 1)

From T2 we get X21, X22, . . . ∼ B(1, P2) ↗

Assume that we know we want a fixed total sample size of n.
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What Do We Mean by Design?

? An experimental “design” is an algorithm that specifies how to allocate re-

sources during the study.

? Note that we may require computer algorithms to generate the sampling algo-

rithms that define our designs

? This is the case not only for certain adaptive designs discussed here, but also

for such simple considerations as randomization.

? Given a model, an optimal design typically addresses a single criterion.

? But −→ it may be desirable to evaluate a design on criteria for which it was

not optimized . . .

We may lose a bit of optimality on 1 criterion to achieve better trade-offs

overall.
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So What’s Analysis?

? A main part of analysis is deciding how to treat the resulting data.

? A key focus of this talk is to show that one can design clinical trials

using Bayesian methods, but still analyze the data using frequentist

perspectives. (Hardwick and Stout, 1999 “Path Induction”)

? More generally, analysis involves evaluating general operating charac-

teristics of a design. (Error rates, distributions of interesting statis-

tics, robustness to departures from assumptions, etc.)
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Back to our problem · · · Simple Goal

√
Terminal Decision: Select T1 or T2 at end of trial.

√
Goal: Select correctly for |P1−P2| ≥ ∆; ∆ > 0 a clinically significant difference.

√
In classical allocation designs, it is usual to sample equally from the two treat-

ment populations. This is Equal Allocation (EA).

√
In general, no allocation procedure maximizes power under the alternative

HA : |P1 − P2| ≥ ∆, for all (P1, P2).

√
One approach is to restrict the notion of an optimal design.

? max min(|P1−P2|≥∆) P(Correct Selection). [For this EA is optimal.]

? Eξ[P(Correct Selection)], for ξ a prior distribution on (P1, P2)
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Since EA is easy and can be useful for optimizing P(CS) in some special cases →

Q : Why extend beyond classical schemes?

A : Most clinical trials have multiple objectives and EA rules may perform arbi-

trarily badly with respect to other trial criteria:

 Incorporate sampling costs: Valuable resources

 Minimize length of study: Time

 Limit patient suffering during the study: Ethics

 Induce balance within groups: Covariates

 Reduce variance of estimators: Inference

Alternatives? −→ Adaptive Designs
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Q : What are adaptive sampling (allocation) designs?

A : Sampling schemes that allow investigators to adjust resource expendi-

tures while the experiment is being carried out.

Q : Why is adaptive allocation better?

A :  Most interesting objective functions depend on parameters.

 These are unknown or the solution would be trivial.

 Adaptive designs use accruing results to estimate parameters

and guide future allocations.
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Q : Are there problems associated with adaptive designs?

A :  Analytically, the data that arise from adaptive designs are less friendly

than those we get from fixed sampling designs.

 Sample sizes tend to be random variables and the obs are not necessarily

independent =⇒ unknown sampling distributions for standard statistics.

 Historically, analysis of adaptive designs has been based on asymptotic

approximations =⇒ may not apply well in practice.

 In our work, we generally use computers to carry out exact evaluations of

interesting quantities (Hardwick and Stout, 1995).

 However, simulations are becoming more and more popular as methods for

evaluating (and even designing) adaptive designs. [V. Dragalin’s Sim Toolkit!]
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A Simple Adaptive Design

? Suppose we’re interested in a secondary criterion of patient survival

during the trial.

? Measure this by E[Successes Lost]=[n×max{P1, P2}− # Failures ]

? This suggests sampling more often from the better treatment.

? An intuitive way to do this is to Play the Winner (PW): If the last

response was a success, allocate the next patient to the same treatment,

otherwise switch.

? Note that PW uses only the information in the last observation to

make the next decision.
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Using More Information

? Another intuitive strategy is called Myopic: Estimate the unknown

parameters using all observed data and allocate the next patient to

the treatment that has the highest expected success rate.

? Myopic rules are aka One Stage Look Ahead (1SLA) rules.

? Both Myopic and PW strategies have the advantage of being simple

to compute.

? But we can do better if we think about the future as well as the past.
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Two-Arm Bandit Problem

This is basically a problem in optimal learning theory.

√
Slot machine with two arms

√
At pull i, you win ri = 0 or 1

√
Win w.p. P1 on Arm 1 & P2 on Arm 2

√
You get n pulls

Pull Arm 1 or Arm 2 ??

Bandit solution is the optimal solution to the problem of choosing the

arms to maximize your → E(total reward) = E(Σn
1 ri)
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E(Successes Lost | EA) E(Successes Lost | B)

Uniform Priors for Bandit; n=50



15

E[ Successes Lost | PW] E[ Successes Lost | MY]

n=50
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Technicalities

Formulate as Bayesian decision theoretic problem.

Here use beta prior distributions on (P1, P2).

Solution is obtained using Dynamic Programming (DP)

For k arms, DP solution requires computational space and time of n2k

(2k)!



17

Looking Forward

For a sample of size n: bandit solution ≡ n−SLA rule. For n = 4:
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Solving Bandit Problems

Bandit Strategy = Black Box ?

Heuristically −→ Balancing immediate gain (myopic) vs. information

gathering (exploration for potential future gain)

So, bandits minimize total harm to trial subjects −→

But bandits become myopic near the end of a trial, maximizing successes

but ignoring desire to also make good decision for post-trial patients.
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Incorporating Future Patients

? To improve decision making, incorporate reward for future patients.

? Assume patient k in the future is “worth” βk, for some 0 < β < 1

? Elegant theory for maximizing the total “discounted” reward: E(Σ∞
1 βi ri)

? Theorem: For each arm, given prior and observations to date, compute its

Gittins Index (GI) , pull arm of highest index. (Gittins and Jones, 1974)

? GI is infeasible to compute. Lower bound works well in practice even when

applied to finite sample size problems: β acts as control parameter for n.

? Allocation based on the approximate GI is → Modified Bandit (MB)

(Hardwick, 1986, 1995)
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E(Successes Lost | MB) E(Successes Lost | B)

Uniform Priors for Bandits; n=50, β = 0.99999999
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E(PCS | EA) - E(PCS | MB) E(PCS | EA) - E(PCS | B)

Uniform Priors for Bandits; β = .99999999 for MB; n = 50
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Summary of Design Objectives

Equal Allocation Maximize information about both arms (maximin), no no-

tion of reward nor of when trial stops

Myopic Maximize reward assuming trial stops immediately. No need to gather

information.

Bandit Maximize reward assuming trial is all. Gather enough information to

insure greatest total reward in n trials.

Modified Bandit Maximize reward assuming trial goes on forever, as if to

gather information for an infinite future.
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Summary Measures

Values shown are integrated wrt uniform priors
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comments/future research

Adaptation is good.

√
Does extremely well on more than one objective when not seeking

complete optimization on one of them.

√
There are numerous ways to approach problems adaptively.

√
Often worth it to trade off optimality for better intuition and design

simplicity.

√
Useful to evaluate the designs for robustness.
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−→ Designs are applicable for many problems. Examples we have worked

on include adaptive designs to handle

? Delayed responses

? Censored data

? Sampling in stages

? Dose response models

? Screening models

−→ Future research to focus more on developing adaptive designs to handle

√
classical hypothesis testing problems

√
correlated arms — as in dose response models

√
generally more complex models
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