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What are Screening Trials?

Evaluate large number of agents to identify promising

ones for further study.

Typically agents are potential medical therapies, but approach also

applies to non-medical applications.

Each agent tested independently of all others.

Want average trial to be inexpensive, accurate.
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Assume screening test (pilot study) has binary response, each

agent has an unknown success parameter π.

Given cut-point C ∈ [0,1], an agent is positive if π ≥ C.

Use a Bayesian approach: assume prior distribution on π. Beta

priors are used in our examples and were used in related work by

others, but techniques apply to any priors.
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Previous Work

We focus on the work in three papers:

1. Yao, Begg, Livingston (1996, Biometrics)

2. Yao and Venkatraman (1998, Biometrics)

3. Wang and Leung (1998, Biometrics)

These researchers concentrated on designs optimized for fixed type

I and type II error rates: F+ and F−
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1-Stage

Yao, Begg, Livingston (1996): given fixed F+ and modified F−

(discussed later), determine fixed (1-stage) agent sample size that

minimizes total sample size until first promising agent identified.

• Historical data showed that sample sizes used in practice were

far too small.

• They noted benefit of early stopping (curtailment).
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2-Stage

Yao and Venkatraman (1998): same constraints and goal, but for

2-stage design. 2nd stage size fixed, but may be omitted

(truncation or optional stopping).

• Expected agent and total sample sizes significantly smaller

than 1-stage design of Yao, Begg, Livingston.
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Fully Sequential (∞ stage)

Wang and Leung (1998): minimize total sample size until first

promising agent identified, for fully sequential design with optional

stopping.

• Expected total sample size minimal, but time maximal.

• Use costs of type I, II errors, not fixed error rates. However,

these are not intended to represent true costs, but rather to

act like Lagrangian multipliers.

• Optimize total cost = error cost + sample size.

• Unlike the relatively straightforward calculations need for the

previous work, here they employ a complex and slow iterative

approach, much like a Gittins index calculation.
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Our Approach

Optimize a cost-based model that is realistic, very flexible, and

computationally feasible.

Decision-theoretic approach incorporating

• Trial constraints, such as

– maximum observations per stage

– maximum number of stages

– maximum number of observations

• Trial costs, such as

– setup cost per stage

– cost per observation

– cost per failure

• Decision costs, i.e., costs of false positive, false negative

decisions. May increase with distance from cut-point.
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Goal

Minimize expected total cost per agent

I.e., obeying the trial constraints, minimize the sum of the trial

and decision costs.

Note that screening designs are used internally to make

proceed/stop decisions, rather than for convincing regulatory

agencies that a therapy is efficacious. Thus cost analysis more

natural than test of hypotheses.

Computational technique: Dynamic programming.
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Example Design

Given prior, cost structure, constraints, trial might be:
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Multistage design. Variable stage sizes,

Variable number stages

Structure determined by costs and constraints, not by fixing F+

and F− in advance.

Each step determined by prior and observations.

Optional stopping (truncation) is designed in.
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Cost-based approach explicitly incorporates relevant factors.

Previously, one specified false positive and negative rates

(F+ and F−), trying to take into account the costs of such

mistakes versus costs of the screening tests. Typically just a rough

guess, especially since cost of screening trial not known.

Making tradeoffs more explicit, and directly optimizing them,

improves the decision-making process and quality of the results.
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Illustrative Results

• Trial: Unit cost per item, no setup cost per stage.

• Decision: Cut-point = 0.7, FNC (false negative cost) =

FPC (false positive cost), use 500, 1000, 2000, 4000.
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Some Bayesian Operating Characteristics

FPC = FNC = 1000

sample

stages cost size F+ F−

1 95 29 0.110 0.047

2 76 29 0.075 0.036

3 69 28 0.064 0.031

∞ 58 26 0.051 0.025

FPC = FNC = 4000

sample

stages cost size F+ F−

1 242 79 0.068 0.029

2 178 69 0.045 0.020

3 157 66 0.037 0.017

∞ 125 56 0.028 0.013
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Comparison of 2-Stage Designs

Yao and Venkatraman 2-stage design versus our optimal 2-stage

design.

Their requirements:

• False positive rate F+ ≤ 0.1

• Prob false negative on any agent until promising agent found

≤ 0.1.

This is not the same as setting F− value: if k agents examined

until promising agent found, then need (1-F−)k ≥ 0.9.

We artificially manipulated error costs to achieve their goals.

The Yao and Venkatraman design fixes the size of the second

stage, while our design allows it to depend on the outcome of the

first stage.
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Cut- Beta Opt Y & V Y & V

point Mean E(N) E(N) Excess

0.3 0.2 28.70 35.00 22%

0.3 0.3 24.20 32.80 36%

0.3 0.4 13.46 18.30 36%

0.3 0.5 7.10 7.90 11%

0.6 0.2 65.93 77.10 17%

0.6 0.3 96.35 100.60 4%

0.6 0.4 70.62 81.50 15%

0.6 0.5 37.74 44.50 18%

Prior is Beta with given

Mean and Variance = 0.08

(their choices)
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Optimization Technique

Optimal design obtained via dynamic programming, working from

end of trial towards beginning. All optimization is exact.

For all possible (sample size, successes observed) endings,

determine expected false positive and false negative costs. The

terminal decision is the one with least cost.

At each intermediate stage, for each (sample size, successes) pair

try all options satisfying the constraints, determine which

optimizes costs from there to end. This uses costs and decisions

computed for the next stage. Note that one option is to stop.

Bayesian framework is critical, allowing one to compute

probabilities of outcomes and hence expected cost.

Program efficient, no need for slower iterative computation used

by Wang and Leung.
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Evaluating Designs

The designs are optimized with respect to given priors, and the

operating characteristics shown so far have been determined with

respect to these priors.

Some additional evaluations one may desire

• Bayesian: robustness against misspecification of priors

• Frequentist: pointwise determination of costs and F+, F−

rates.

Exact evaluations are provided for all examples shown, using path

induction (Hardwick & Stout 1999).

A wide range of other exact evaluations can be easily performed.
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Example Bayesian Robustness Evaluation

Suppose have

• Trial: unit cost per observation, ≤ 2 stages

• Decision: FPC = FNC = 1000, cut-point = 0.7

Design Prior Be(1,1)

sample

cost size F+ F−

76 28.7 0.076 0.036

Evaluation Prior Be(3,3)

94 31.9 0.199 0.034

Design Prior Be(3,3)

90 30.4 0.145 0.045

Evaluation Prior Be(1,1)

79 33.2 0.051 0.049
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Example Pointwise Operating Characteristics
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Reexamining Error Costs

Typically cutoff indicates value where it is expected to be

worthwhile to continue.

However, agents below but near cutoff might have payoff if

continued, while agents above but near are less likely to have large

payoff. I.e.,

Costs of false positives and false negatives for agents near

the cutoff are less than for those far from the cutoff.

Despite this, all previous work, including our examples above, uses

step-function costs.
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Example Continuous Cost Function
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Comments

A unified approach to optimizing true costs, given trial constraints.

• There are a variety of costs and constraints for conducting a

trial.

• Decision costs need not merely correspond to type I, type II

error probabilities, e.g., distance from cutoff may be significant.

• Our 2-stage design superior to Yao and Venkatraman design,

even using their objectives, because our 2nd stage size can

depend upon outcome of 1st stage.

• More generally, this approach yields designs with significantly

reduced costs because trial structure not artificially restricted.

• 2-stage designs significantly better than 1-stage, and fully

sequential better still.

• We provide optimal designs and wide range of exact

evaluations.
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• Prior researchers noted usefulness of curtailment (early

stopping) if responses have variable delays. A program is being

developed to optimize designs for such situations.

• In other work, we’ve incorporated some costs and experimental

constraints into clinical trial designs.

• Cost and constraint model may be appropriate for other

experimental situations. We are interested in learning about

these, as well as general adaptive situations.
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