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Assistive mobile robots, such as intelligent wheelchairs, that can navi-

gate autonomously in response to high level commands from a user can greatly

help people with cognitive and physical disabilities by increasing their mobility.

In this work, we address the problem of safe, comfortable, and customizable

motion planning of such assistive mobile robots.

We recognize that for an assistive robot to be acceptable to human

users, its motion should be safe and comfortable. Further, different users

should be able to customize the motion according to their comfort. We for-

malize the notion of motion comfort as a discomfort measure that can be

minimized to compute comfortable trajectories, and identify several proper-

ties that a trajectory must have for the motion to be comfortable. We develop
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a motion planning framework for planning safe, comfortable, and customizable

trajectories in small-scale space. This framework removes the limitations of

existing methods for planning motion of a wheeled mobile robot moving on a

plane, none of which can compute trajectories with all the properties necessary

for comfort.

We formulate a discomfort cost functional as a weighted sum of to-

tal travel time, time integral of squared tangential jerk, and time integral of

squared normal jerk. We then define the problem of safe and comfortable

motion planning as that of minimizing this discomfort such that the trajec-

tories satisfy boundary conditions on configuration and its higher derivatives,

avoid obstacles, and satisfy constraints on curvature, speed, and acceleration.

This description is transformed into a precise mathematical problem state-

ment using a general nonlinear constrained optimization approach. The main

idea is to formulate a well-posed infinite-dimensional optimization problem

and use a conforming finite-element discretization to transform it into a finite-

dimensional problem for a numerical solution.

We also outline a method by which a user may customize the motion

and present some guidelines for conducting human user studies to validate

and/or refine the discomfort measure presented in this work.

Results show that our framework is capable of reliably planning trajec-

tories that have all the properties necessary for comfort. We believe that our

work is an important first step in developing autonomous assistive robots that

are acceptable to human users.
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Chapter 1

Introduction

Mobility impairments result in functional limitations and a reduced

sense of physical and emotional well-being for many people [34, 72]. Recent

surveys have concluded that many users with mobility impairments find it

difficult or impossible to operate existing power wheelchairs because they lack

the necessary motor skills or cognitive abilities [18, 85]. Assistive mobile robots

such as smart wheelchairs and scooters that can navigate autonomously can

enormously benefit such users by increasing their mobility [18]. The number of

users who would benefit from at least part-time use of assistive mobile robots

was estimated to be between 2.6 to 3.9 million for 2010 [85].

Significant advances have been made toward solving scientific and tech-

nical problems crucial for developing assistive mobile robots [84]. From a hard-

ware point of view, this includes the development of suitable standards for eval-

uation of wheelchair platforms and design of platforms that meet these stan-

dards [75]. From an autonomous agent point of view, this involves research into

sensory inference (perception) [93], representation of spatial knowledge [47],

spatial inference [7, 92], autonomous navigation [83], and human-robot inter-

action [89, 99].
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This research focuses on autonomous navigation in small-scale space,

that is, space within the robot’s sensory horizon [48]. Specifically, this research

focuses on safe, comfortable, and customizable motion planning of an assistive

mobile robot in small-scale space.

1.1 Background and Motivation

One of the long-term objectives of research in autonomous navigation

of assistive robots is to develop methods that will enable a robot to navigate

autonomously in response to high-level commands from a user (e.g. “take me

to my office”). To navigate autonomously in response to such commands, a

robot should be able to construct a representation of space and should be able

to use this representation to compute the appropriate motions.

The Hybrid Spatial Semantic Hierarchy (HSSH) [6, 7, 47, 48], a hi-

erarchical framework for representing spatial knowledge, draws a distinction

between small-scale and large-scale space. Small-scale space is space whose

structure is within the robot’s sensory horizon. Large-scale space is space

whose structure is beyond the sensory horizon. There exist many methods

that enable a robot to efficiently construct and update a metrically accurate

map of small-scale space as it moves [93]. This map provides information

about free space and occupied and hazardous regions, and can be used to plan

local motions when the goal is within the map region.

While many algorithms have been proposed for accurate metrical map-

ping of large-scale space, they suffer from several structural ambiguity prob-
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(a) (b) (c) (d)

Figure 1.1: Autonomous navigation in small-scale and large-scale space.
(a) A wheelchair in an indoor environment. (b) For navigation in small-scale
space, a goal configuration is provided by a user or a high-level planner. A
locally accurate metrical map constructed from the wheelchair’s sensory data
forms a representation of small-scale space. This map shows accessible re-
gions (in white) and obstacles (in black). A motion planning algorithm uses
this representation to compute local motions of the wheelchair. (c) A global
topological map consisting of places and paths is constructed from a set of
local maps. (d) Autonomous navigation in large-scale space is achieved by
providing a sequence of intermediate states such that each subsequent state
is within the robot’s current sensory horizon. The waypoint corresponding to
one such state is shown (the cross). The motion planning algorithm of (b)
plans a trajectory to reach this state. A sequence of such local trajectories
leads the wheelchair to its eventual goal. Figures (a), (b), and (d) borrowed
from [67]. Figure (c) borrowed from [48].

lems [7, 48]. An alternative way to represent large-scale space is in the form

of topological maps. These maps concisely represent large-scale space as a

graph of places and paths [7]. Autonomous navigation in large-scale space in-

volves moving from one place to another via a path. This can be achieved by

first computing a sequence of intermediate states such that each subsequent

position is within the robot’s sensory horizon, and then using a local motion

planning method to navigate to this intermediate state. See Figure 1.1.

In this work, we are interested in planning local motions in small-scale
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space. Motion planning in small-scale space is the problem of determining the

appropriate motions of a robot, given a representation of the world, so that it

arrives at a goal within its sensory horizon while satisfying task requirements.

Motion planning is a challenging problem and has received significant

attention. Many practical methods for planning motion of mobile robots and

manipulator arms can be found in literature [14, 52, 57]. However, most of the

existing motion planning methods have been developed for autonomous robots

that do not perform any assistive function. Hence, many issues pertinent to

assistive robots that transport a human user have not been considered. We

recognize that one of the issues that determine the human acceptability of

an assistive robot is its ability to plan motions that are comfortable for the

user. This issue becomes even more critical for people with serious injuries,

such as those with spinal chord injuries. Moreover, since the notion of comfort

is subjective, any motion planning method for assistive robots should allow

different users to customize the motion according to their comfort.

1.1.1 Comfort

Comfort - What is it? Comfort has both psychological and physiological

components, but it involves a sense of subjective well-being and the absence of

discomfort, stress or pain [76].

Studies have shown that comfort is one of the factors that influences

choice of mode of transportation [69] and determines acceptability of a mode of

transportation for human users [15]. Hence, many studies have been conducted
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to characterize comfort in ground vehicles including automobiles and trains.

The feeling of comfort in a vehicle is affected by various characteristics of the

vehicle environment including dynamic factors (such as acceleration and jerk),

ambient factors (such as temperature and air quality), and spatial factors (such

as seat quality and leg room) [76].

Although many other factors can contribute to the feeling of comfort

for a human user of an assistive robot, in this work we focus on comfort due to

dynamic factors alone. Here we briefly discuss what comfort means in terms of

dynamic factors. For a fuller discussion, see Section 3.3. Studies of passenger

discomfort in automobiles and trains have shown that discomfort increases as

the magnitudes of acceleration and jerk increase [13, 24, 37, 70, 91]. Various

comfort measures are used in industry, but almost all are either functions

of acceleration or jerk (or both) or prescribe maximum permissible values of

these quantities [12, 24, 37, 70]. This makes intuitive sense since acceleration

is proportional to force, and bounded acceleration implies bounded force. A

high rate of change of acceleration (jerk) means that forces rapidly change in

magnitude or direction or both.

Thus, smooth and bounded acceleration is necessary for comfort. Fur-

ther, for planning in large-scale space, we must be able to join one motion

sequence in small-scale space to the next without causing discomfort. This

means that we must ensure continuity of acceleration at the joining of two

motion sequences. This is possible only when the planned motion attains a

specified velocity and acceleration at its start and end. Additionally, for as-
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sistive robots, the robot should reach a specified goal position and orientation

exactly. This is important for many tasks such as docking at a desk. It is also

desirable that the robot travel from its initial state to a goal state without

stopping in between. This means that the geometric path of the robot should

necessarily have curvature continuity. The planned path should also have a

specified curvature at the ends so that, when two paths in small-scale space

are joined, the combined path retains curvature continuity. It is also desirable

that the motion of the robot is such that the passenger faces the direction of

motion most of the time.

Thus, any motion planning method for assistive mobile robots should,

at the very least, produce motion that attains a specified velocity and accel-

eration at the start and end point, has smooth and bounded acceleration, and

results in geometric paths that avoid obstacles, have curvature continuity, and

attain a specified curvature at the ends. While many of the existing motion

planning algorithms developed for mobile have been applied to navigation of

intelligent wheelchairs [30] in an experimental setting, we will see below in Sec-

tion 1.1.2 that all of these have limitations that preclude their straightforward

application to planning comfortable motion.

1.1.2 Motion Planning

There exists a large body of work on robot motion planning. Before

reviewing this work, we define some terms. The space of all possible positions

and orientations of a robot is called configuration space. The space of all
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possible positions and orientations and their first derivatives is called state

space. The space of input velocities (or forces or torques, as appropriate) is

called control space. The physical space in which the robot moves is called task

space. A trajectory is a function that describes the configuration of the robot

at every instant of time during the robot’s motion. A control trajectory is a

function that describes the control inputs at every instant of time during the

robot’s motion. The differential equation relating the robot’s configuration,

its first derivatives, and control inputs, is called the kinematic model of the

robot.

Motion planning is the problem of finding either a trajectory, or a con-

trol trajectory, or both, given the initial and final configuration, and possibly

both initial and final velocity and acceleration, such that the geometric path

of the robot does not intersect any obstacles in its task-space, and its trajec-

tory satisfies kinematic and dynamic constraints. Kinematic constraints refer

to constraints on configuration and dynamic constraints refer to constraints

on velocity and its higher derivatives). These constraints arise from physics,

engineering limitations, or comfort requirements.

This problem has received attention from multiple directions. One set

of methods, called path planning methods, treat robot motion planning as a

purely geometric problem and disregard dynamics. Another set of methods,

stemming from differential geometric control theory, focus on controllability

issues. The primary focus of these methods has been on computing control

inputs that steer a robot to a specified position and orientation or that make
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a robot follow a specified path. These methods usually do not consider ob-

stacle avoidance. Another set of methods, referred to as kinodynamic motion

planning methods, consider both dynamics and obstacles. See [14, 52, 57] for

excellent presentation of all three kinds of methods, [54] for differential geo-

metric control methods, and [16, 25, 33, 59] for kinodynamic planning.

Motion planning has been variously defined in literature and is some-

times used interchangeably with the purely geometric problem of path plan-

ning. In this work, we use motion planning in the sense of [16], that is, we

speak of kinodynamic motion planning.

Broadly speaking, there are two major paradigms of motion planning.

One paradigm is to decouple motion planning into path planning and velocity

planning [57]. First, dynamic constraints are ignored and a geometric collision-

free path is computed (path planning). Second, the path is transformed into

a new path such that it is possible for the robot to follow the path without

violating dynamic constraints (path transformation) [19, 78]. Third, a velocity

on the path is computed such that dynamic constraints are satisfied [9], some

performance measure is optimized [9] or moving obstacles are avoided [39]

(velocity planning).

One of the advantages of using such a decoupled approach is that any

of the existing efficient path planning algorithms can be used in the path plan-

ning step. However, since dynamic constraints are ignored in the path plan-

ning phase, a collision-free path computed by a path planning algorithm may

not be dynamically realizable by the robot. In the next step, when the colli-
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sion free path is transformed into a path that satisfies dynamic constraints, the

transformed path may result in collisions with obstacles. Hence, it is often nec-

essary to also consider obstacle avoidance at this stage. This usually requires

an iterative procedure where the path is transformed using some heuristic, the

transformed path is checked for collisions, and if there are collisions, another

transformation is carried out [53]. Further, this decoupling makes it difficult

to achieve optimality of the trajectory with respect to a performance measure

because it is non-trivial to design performance measures for each step such

that when these are individually optimized, the resulting trajectory optimizes

the overall performance measure.

The other motion planning paradigm is to plan trajectories in one

step while considering all dynamic constraints and avoiding obstacles. We

will refer to these methods as direct trajectory planning methods. Two ap-

proaches that have been found to be of practical are sampling-based methods

and optimization-based methods.

Sampling-based methods find a trajectory by sampling the state space [16,

59] or state-time space [25, 33] to iteratively construct a search graph rooted at

the initial state. Earlier methods [16, 25] first discretize the space into a grid.

The set of admissible controls is also discretized and a fixed time interval is

chosen. The differential equations of the system are integrated over the chosen

time interval for each of the discretized controls, starting at the initial state,

to obtain a set of reachable states. Each trajectory segment connecting the

initial state to a newly reached state is checked for collisions with obstacles. If
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the trajectory segment is collision free, the grid cell that contains the new state

is determined and marked visited. This grid cell is not visited again. The new

state is added to the tree as a vertex and the trajectory segment is added as

an edge. This process of generating and adding new states is repeated for all

the newly added vertices. The search graph continues to grow till a state that

is within a specified tolerance of the goal is reached. A graph search algorithm

is then used to find a trajectory from the initial state to the goal state such

that the trajectory is optimal with respect to some criterion such as minimum-

time. These grid-based approaches become computationally expensive as the

dimension of the state space increases (for example, in the case of manipulator

arms). To alleviate this problem, methods that construct a search graph by

randomized sampling of state space [59] or state-time space [33] were developed

and have found many practical applications. Randomized sampling methods,

however, sacrifice optimality for efficiency and find feasible but non-optimal

paths.

Since all of the sampling-based methods discretize the time, the state

space or the control space or both, the accuracy of reaching a goal increases

as the resolution of discretization is increased. A goal state cannot be reached

exactly in finite time. If it is desired to reach a goal state exactly, then a two-

point boundary value problem has to be solved where the goal state reached by

the algorithm is the initial state and the exact goal state is the final state. This

is a non-trivial problem since the solution must avoid obstacles and satisfy

dynamic constraints. Since a fixed value of control input is applied for a
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finite length of time to compute a trajectory segment, the paths planned by

these methods for wheeled robots usually consist of a sequence of straight-line

segments and circular arcs. These paths lack curvature continuity and have

to be smoothed in a post-processing step so that they can be followed by a

wheeled robot without frequent stopping and reorienting wheels.

In general, there exist infinitely many trajectories that satisfy boundary

conditions at the start and end points and possess properties such as satisfy-

ing dynamic constraints and avoiding obstacles. Optimal control methods

have traditionally been used for computing the “best” trajectory for systems

subject to dynamic constraints [11, 96]. These methods find a trajectory that

minimizes a cost functional. A functional is an operator that maps a function

to a real or complex number. These methods either solve the first order differ-

ential equations derived from the cost functional using Pontryagin’s maximum

principle, or use various approximations methods such as the Ritz method

or the Finite Element Method to directly minimize the cost functional in a

finite-dimensional space.

Optimal control formulations for trajectory planning of wheeled mobile

robots have focused primarily on minimum-time trajectories. These trajecto-

ries result in geometric paths that consist of a sequence of straight-line and

arc segments [4, 17, 74]. These paths do not have curvature continuity and

the robot cannot be driven on these paths without stopping and changing

orientation while stopped. Thus, minimum-time trajectories, while important

from a theoretical perspective, are of little practical use for assistive robots
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where comfort is important. Several other cost functionals have been used for

trajectory planning, such as the integral of L2 norm of the controls [2, 21, 97],

or a weighted sum of travel time and integral of L2 norm of controls [79].

All of these formulations make several limiting assumptions, such as known

travel time, or known path, or boundary conditions on configuration but not

its derivatives. To the best of our knowledge, there exists no optimal con-

trol formulation of trajectory planning for mobile robots that has produced

demonstrable results with obstacle avoidance constraints.

Thus, none of the existing motion planning approaches can plan tra-

jectories that satisfy all the requirements for user comfort as described in

Section 1.1.1.

1.2 Overview of Approach

We develop a motion planning framework that removes the limitations

of existing work and plans safe, comfortable, and customizable motion for a

wheeled mobile robot moving on a plane. The main idea is to characterize

user discomfort in terms of dynamic properties such as jerk (time derivative

of acceleration) of the robot, formulate this discomfort as a mathematically

meaningful cost functional, and minimize this cost functional to find a tra-

jectory. We incorporate dynamic and obstacle-avoidance constraints into the

optimization problem and impose the appropriate boundary conditions. The

steps involved in our approach are described below.
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• Formulate user discomfort as a mathematically meaningful cost func-

tional. Based on existing literature, and making the assumption that

the user would like to reach the goal as fast as is consistent with com-

fort, we define a measure of discomfort as a weighted sum of the following

three terms: total travel time, time integrals of squared tangential jerk

and squared normal jerk.

Each weight used in the discomfort measure to add different quantities

is a product of two factors. The first factor has physical units so that the

physical quantities with different dimensions can be added together. It

is a fixed function of known length and velocity scales. The second factor

is a dimensionless parameter that can be varied according to user pref-

erences. The dimensional part is derived using the standard technique

of dimensional analysis [51].

• Define the problem. We formulate our motion planning problem as fol-

lows: “Given the start and end boundary conditions on pose, speed and

acceleration, the values of bounds on curvature, velocity and accelera-

tion, the weights in the cost functional, and the locations of obstacles,

find a trajectory that minimizes the user discomfort measure such that

bounds are not violated and the geometric path does not pass through

obstacles”. This description is transformed into a precise mathematical

problem statement using a general nonlinear constrained optimization

approach.
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• Choose a parameterization of the trajectory. Mathematically, one can use

different functions to fully describe a trajectory. For example, one way is

to provide the position vector as a function of time and the final time [28].

Another way is to represent the path separately, using either position

vector or orientation as function of arc-length. The speed is provided

separately. Both ways are equivalent in that all physical quantities can be

written in terms of the selected primary unknowns. We have found that

expressing the trajectory solely in terms of speed and orientation leads

to a relatively simple expression for discomfort. We use a scaled arc-

length parameterization where the scaling factor is an additional scalar

unknown to be solved for. This is necessary since we don’t know the

arc-length until the problem is solved.

• Analyze the boundary conditions. A complete analysis of boundary con-

ditions shows that for the optimization problem to be well-posed, we

need to impose boundary conditions on position, orientation, curvature,

speed, and tangential acceleration on each end. Further, we find that

three different types of boundary conditions on velocity and accelera-

tion on each end describe all types of motion tasks of interest such as

starting/ending at rest or not.

• Choose a representation of obstacles. To incorporate obstacle avoidance,

we make the assumption that each obstacle can be modeled as a star-

shaped domain with a boundary that is a piecewise smooth curve with
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continuous second order derivative. If an obstacle within the map is not

star-shaped, our framework can still handle it if it can be expressed as a

finite union of piecewise smooth star-shaped domains. It is assumed that

a representation of each obstacle is known in polar coordinates where the

origin lies in the interior of the kernel of the star-shaped domain. Since

each obstacle is assumed star-shaped, the constraint that the robot not

collide with obstacles can be easily cast as an inequality.

For efficient incorporation of obstacle avoidance constraints, we have to

introduce position on the path as an additional unknown. This leads to a

sparse Hessian of constraint inequalities, which otherwise would be dense.

The position as an unknown is redundant in that it can be computed

from the two primary unknowns (orientation and speed). Hence that

relation is included as an extra equality constraint.

• Discretize the problem. We use finite elements to convert the infinite-

dimensional minimization problem to a finite dimensional one. For dis-

comfort to be mathematically meaningful and bounded, both speed and

orientation must have square-integrable second derivatives. We use a

uniform mesh and cubic Hermite polynomial shape functions on each el-

ement for speed and orientation. Starting or stopping with zero velocity

is a special case that requires that speed have an infinite derivative (with

respect to scaled arc-length) with a known strength on the corresponding

boundary point. In this case we use singular shape functions for speed

only on elements adjacent to the corresponding boundary.
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In the non-discretized version of the optimization problem the obstacle

avoidance constraint can be expressed as the condition that each point

on the trajectory should be outside each obstacle. We discretize this

into a finite dimensional set of inequalities by requiring that some fixed

number of points on the trajectory be outside each obstacle.

• Compute a good initial guess. A good initial guess is necessary for ef-

ficiently solving any nonlinear optimization problem. In general, there

exist infinitely many paths between any given pair of start and end con-

figuration. Based on our analysis of this non-uniqueness, we compute

a set of four good quality initial guesses by solving another, simpler,

optimization problem. These initial guesses do not incorporate obstacle-

avoidance constraints. Four discomfort minimization problems, corre-

sponding to these four initial guesses, are solved to find four trajectories.

The lowest cost trajectory can be chosen as the final solution.

• Implement and solve. We use Ipopt, a robust large-scale nonlinear con-

strained optimization library [98] written in C++ to solve the discretized

problem.

1.3 Contributions

To the best of our knowledge, this is the first work that addresses the

problem of planning comfortable and customizable motion for assistive mobile

robots. Our main contributions are described below.
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• We recognize that for a robotic wheelchair to be acceptable to human

users, its motion should not only be safe, it should also be comfortable.

Based on analysis of user comfort studies in other disciplines, we de-

velop a measure of discomfort for users of assistive mobile robots. This

discomfort measure is a sum of total travel time and time integrals of

squared tangential jerk and squared normal jerk. The weights can be

changed by a user to change the relative contributions of travel time and

jerk. We expect that future studies with human subjects will lead to

validation and/or refinement of this measure of discomfort.

• We develop a framework for safe and comfortable motion planning of as-

sistive robots that removes the limitations of existing work. We present

a precise mathematical formulation of kinodynamic motion planning of

a wheeled mobile robot moving on a plane as a nonlinear constrained

optimization problem. This includes an in-depth analysis of conditions

under which the cost-functional is mathematically meaningful, and anal-

ysis of boundary conditions. Such a formulation of kinodynamic motion

planning for wheeled robots is absent from the literature. The closest

existing work to ours is for manipulator trajectory planning [97]. The

trajectories planned by our framework have several useful properties –

they exactly satisfy boundary conditions on position, orientation, cur-

vature, velocity and acceleration, satisfy kinematic and dynamic con-

straints, and avoid obstacles while minimizing discomfort. Further, this

framework is capable of planning a family of trajectories between a start
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and a goal state and can be customized by different users to obtain a

trajectory that satisfies their comfort requirements.

Our motion-planning framework is not limited to assistive robots. It

applies equally well to motion planning of other wheeled robots including

robotic cars.

• We represent obstacles as star-shaped domains with piecewise C2 bound-

ary. This choice allows treatment of non-convex obstacles without sub-

dividing them into a union of convex shapes. This reduces the number

of constraints imposed due to obstacles and leads to a faster optimiza-

tion process. This is unlike most collision-detection modules used with

sampling-based algorithms that assume polygonal obstacles, and detect

collisions between non-convex polygons by subdividing them into convex

polygons [61, 65, 73].

• We use the Finite Element Method to discretize the above infinite-

dimensional problem into a finite dimensional problem. Using the Fi-

nite Element Method along with other careful choices (See Chapter 3)

results in a nice sparsity structure of the Hessian, making the problem

amenable to fast numerical solution by an optimization algorithm. The

use of Finite Element Method to solve such optimization problems is rare

in robotics, and to our knowledge, has only been done for manipulator

trajectory planning [97].

Part of the work in this dissertation has been presented in [28, 29, 68].
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Chapter 2

Background and Related Work

Chapter 1 provided an overview of existing motion planning methods

that are relevant to our work. This chapter reviews the rich body of literature

on robot motion planning in some more detail.

2.1 Fundamental Concepts

This section introduces the concepts of configuration space and phase

space fundamental to understanding the motion planning literature.

2.1.1 Configuration Space

Consider an object moving in a two or three dimensional world, or

task space, that has one or more obstacle regions. The configuration of an

object is a specification of all points comprising the object in a global frame

of reference. For example, the configuration of a rigid body that can translate

and rotate in R2 can be specified by the position (x, y) ∈ R2 and orientation

θ ∈ [0, 2π) of a body-fixed frame with respect to the world frame (Figure 2.1).

The configuration space C is the set of all possible configurations. Thus the

configuration space C of the rigid body is R2 × S1.
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Figure 2.1: The position of any point on a rigid body in R2 can be determined
if the position and orientation of body-centered coordinate frame B in a world
coordinate frame W is known. Thus, the configuration of the rigid body can
be completely specified by specifying the position (x, y) and orientation θ of
B with respect to W .

The configuration space obstacle region Cobs is the set of all configura-

tions that intersect with an obstacle in the task space. The set of the remaining

configurations is the free configuration space Cfree. The configuration space

for a circular translating robot in R2 is shown in Figure 2.2.

Let q ∈ C represent the configuration of a robot. The kinematic model

is given by the state transition equation

q̇ = f(q,u, t), (2.1)

where the dot represents the derivative with respect to time, u ∈ U(q) is the

control or input velocity vector, U(q) is the set of all controls, f is smooth func-

tion and t is time. The set U(q) is usually assumed to be state independent.

Hence we will drop the notation U(q) and use U for the control set.

A trajectory is a function, q(t), that describes the configuration of the

robot at every instant of time during the robot’s motion. A control trajectory
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Robot

Obstacles

(a) (b)

Figure 2.2: (a) A circular translating robot in a two dimensional workspace.
(b) The configuration space of the robot. The circular robot shrinks to a point
while the obstacles have “grown” by the radius of the robot. The white space is
Cfree and the gray space is Cobs. The mapping from workspace to configuration
space for arbitrary shaped robot and obstacles where the robot can also rotate
is much more complicated.

is a function, u(t), that describes the control inputs at every instant of time

during the robot’s motion

A holonomic constraint can be expressed purely as a function of the

configuration variables and is of the form

g(q, t) = 0.

A holonomic constraint reduces the dimension of the configuration space by

one. A nonholonomic constraint is a constraint involving velocities and is of

the form

g(q̇,q, t) = 0.

A nonholonomic constraint cannot be integrated to yield a constraint involv-
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ing configuration variables alone and does not reduce the dimension of the

configuration space. One example of a system with nonholonomic constraints

is a disk rolling on plane (Figure 2.3).

xw
yw

zw

ω
v

θ

(x, y)

xb

yb

zb

Figure 2.3: A disk rolling on a plane. The body centered frame has axes
xb, yb, and zb. The disk can translate along xb and rotate about zb, but
cannot translate sideways along yb. This is an example of a nonholonomic
constraint. Suppose that a translational speed v and a rotational speed ω are
applied as inputs. Then the kinematics of the disk are given by Equation 2.2

.

The configuration of the disk is given by q = [x, y, θ]T , and external

inputs in the form a linear speed v and angular speed ω can be applied to it.

Thus u = [v, ω]T . The kinematic model of the rolling disk is

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω,

(2.2)

where v and ω are the linear and angular velocity inputs respectively. This
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disk is subject to the nonholonomic constraint

ẋ sin θ − ẏ cos θ = 0. (2.3)

This constraint means that the disk can roll forward and backward but cannot

move sideways. Many wheeled mobile robots, including most wheelchairs are

governed by this kinematic model.

2.2 Phase Space

To fully model the motion of a rigid body, its momentum must also be

taken into account. This gives rise to second-order differential equations.

A dynamic model of the system is

q̈ = f(q̇,q,u, t),

where u ∈ U(q) is the control or input force vector, U(q) is the set of all

controls, f is smooth function and t is time. Like the kinematic model, the

control set will be assumed to be state-independent.

Constraints on second-order derivatives can be converted to constraints

on first-order derivatives by introducing the phase space. The phase space X

is the set of all possible values of [q, q̇]T . If the dimension of the configuration

space is n, the dimension of the phase space is 2n.

Let x ∈ X . Then x = [q, q̇]T , and constraints on q̈ in configuration

space become constraints on ẋ in phase space. x is called the state of the
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system. The dynamic model in phase space is

ẋ = f(x,u, t). (2.4)

2.3 Motion Planning and Control

Motion planning for an autonomous robot refers to the problem of

computing either a trajectory, or a control trajectory, or both, given the ini-

tial and final configurations and possibly their higher derivatives such that the

geometric path of the robot does not intersect any obstacles in its task-space.

In addition, the trajectory must satisfy kinematic and dynamic constraints.

Kinematic constraints refer to constraints on configuration and dynamic con-

straints refer to constraints on first and higher derivatives of configuration.

Let qd(t) t ∈ [0, τ ] be a planned or desired trajectory where τ ∈ R is

the motion duration. An open-loop control trajectory for executing this state

trajectory can be computed from the inverse model of the system:

u = g(qd, q̇d, t) (2.5)

It is usually not possible to model a system exactly. Hence, open loop

control may lead to a trajectory that is significantly different from the desired

trajectory qd(t). Therefore, feedback control is used for most real systems.

The feedback controller uses an error measure between the current state and

the desired state along with the inverse model to compute closed-loop control

inputs. Some methods such as optimal control incorporate a forward model
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of the system in the planning stage and compute both an open-loop control

trajectory and a state trajectory.

2.4 Decoupled Motion Planning

Decoupled planning approaches break the motion planning problem

into two components – path planning and velocity planning. This is also

referred to as the path-velocity decomposition approach [39]. First, a path-

planning algorithm is used to find a collision free path in configuration space.

Then, this path is modified to satisfy dynamic constraints so that it is possible

for the robot to follow the path. Finally, a velocity on the path is computed

such that dynamic constraints are satisfied [9], some performance measure is

optimized [9] or moving obstacles are avoided [39]. The trajectories found in

this way are not optimal, in general, because while the path, and velocity on

the path may separately be optimal, their composition may not be optimal.

We discussed some of the advantages and disadvantages of this ap-

proach in Section 1.1.2. Here we discuss some of the more influential path-

planning algorithms.

2.4.1 Path Planning

A basic path planning problem that does not consider dynamic con-

straints is defined as follows: Given (i) the geometry of a robot moving in

a two or three dimensional world (ii) the geometry and position of obsta-

cles in the world (iii) the initial and final configuration of the robot, find a
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continuous sequence of configurations (path) connecting the initial and final

configurations, such that the interior of the robot’s body does not intersect

with any obstacle at any configuration specified by the path. It is assumed

that the obstacles are stationary. Despite the simplification achieved by ne-

glecting dynamic constraints, this is a challenging problem and has received

significant attention.

The problem of finding a path for an object with dimensions can be

transformed into that of finding a path for a point in an appropriate space

using the concept of configuration space [52, 63]. With this transformation,

the path planning problem becomes that of finding a continuous curve in Cfree

that connects the initial and final configurations in Cfree. Path planning in

configuration space has been a very active field and some excellent references

are [14, 52, 57]. We discuss two approaches that have been more useful in

practice.

2.4.1.1 Potential Functions

Potential functions have been one of the more influential path plan-

ning techniques. These were first introduced as a reactive obstacle avoidance

method [42] but were later extended to path planning [5]. A potential function

is a differentiable real valued function φ : Cfree 7→ R and is designed such that

the goal configuration is a minimum. For example, one may specify a potential

function as the sum of an attractive potential that decreases as the distance

from the goal decreases, and a repulsive potential around each obstacle that
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(a) (b)

Figure 2.4: (a) Potential function over a two dimensional configuration space.
The goal is to the far right and is the minimum of the potential function in
the domain. The “hill” is the repulsive potential around an obstacle. (b)
Contour plot of the potential function. One possible path to the goal from an
initial configuration is shown.

increases as the configuration comes close to the obstacle. Figure 2.4 illustrates

one such potential function. One might also specify a potential function that

assigns a cost to each point such that the cost is minimum at the goal [57].

There are many variants of algorithms that use potential functions for

path planning. In one formulation, similar to gradient descent optimization, a

step is taken in the direction of the negative gradient of the potential function

to reach a new point in the configuration space [14]. This process is contin-

ued till the goal configuration is reached (to within a specified tolerance). In

another formulation, the potential function is thought to induce a vector field

on the configuration space from which the velocity at any point x ∈ Cfree is

computed as q̇ = −∇φ [57]. In yet another formulation, the gradient of the

potential function is combined with dynamics of the system to compute the
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forces that must be applied [42, 77].

A potential function can have many local minima causing a planning

algorithm to become stuck. Randomized potential fields (RPPs) [5] alleviate

this by performing random walks to escape the minima. However, it is easy

to construct examples where RPPs fail to find paths [40]. Navigation func-

tions [77] were also introduced as a solution to the problem of local minima.

Navigation functions are defined so that there is only a single minimum at

the goal, except at a few saddle-point configurations. However, navigation

functions have been found to be difficult to construct in practice for domains

with arbitrary shaped robot and obstacles or high dimensional configuration

spaces [41, 44].

While the potential function approach appears attractive due to its

apparent mathematical simplicity, it presents several theoretical and practical

difficulties. This approach requires many heuristics in specifying a potential

function [52]. For example, defining a repulsive potential around an obstacle

requires choosing an appropriate form of the function and parameters that

determine the region of influence of the obstacle. This becomes difficult if

the number of obstacles is large or if the obstacles have arbitrary shapes.

In addition, various heuristics are needed to escape from the local minima

of the potential function. If the potential function is used to compute control

velocities or forces, the resulting values may not be physically meaningful. This

is because the potential function is an artificially defined function and has no

relation to the dynamics of the body. This leads to the need for scaling these
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values using multiplicative constants which have to be tuned. Some practical

difficulties were also identified after experiments with a mobile robot in [45]

and include oscillations while moving between two closely-spaced obstacles and

oscillations near the goal.

2.4.1.2 Sampling-based Planning

In general, it is not easy to explicitly obtain a representation of Cobs for

obstacles that are not polygonal or polyhedral in shape, especially in high di-

mensional configuration spaces. Hence, many algorithms have been developed

that do not need an explicit representation of Cobs [33, 40, 41, 43, 56]. These

algorithms build a representation of the free configuration space in the form of

a topological search graph by incrementally sampling the space, checking for

collisions, and adding collision-free configurations to the search graph. Colli-

sion checking is done in the task space by means of an independent collision-

detection module.

Sampling-based algorithms follow two paradigms – multiple-query and

single-query. In the multiple-query paradigm, algorithms are designed to an-

swer multiple path planning queries. The algorithms consist of two steps: the

roadmap construction phase and the query phase [40]. In the roadmap con-

struction phase, the configuration space is preprocessed to build a roadmap

representing the connectivity of Cfree. The roadmap is an undirected graph

G = (V,E) in the configuration space where the vertices V are configurations

in Cfree and the edges E are paths between pairs of free configurations. The
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roadmap is usually constructed by sampling the configuration space to obtain

a set of collision-free configurations and connecting each configuration to k-

nearest configurations by collision-free paths. In the query phase, the roadmap

is used to find paths between specified configurations. Once a roadmap has

been constructed, multiple queries can be quickly answered by searching the

roadmap. Multiple query algorithms are efficient for static environments since

once a roadmap has been constructed, it is computationally cheap to find a

path.

In the single-query paradigm, algorithms are designed to find a path

between a pair of configurations only once. These algorithms start construct-

ing a topological graph when such a planning query is received. Let (qi, qf )

be the initial and goal configurations in a new query. The search graph G

begins with the initial configuration qi as the only vertex. The configuration

space is sampled for a new collision-free configuration qnew and a local planner

computes a path between qnew and an existing vertex qcurr in the graph. A

collision-detection algorithm checks the path and if the path is collision free,

an edge (qcurr, qnew) is added to the graph. Sampling is biased towards con-

figurations that are close to the initial and goal configurations. The graph

continues to grow till a solution path is found. The single-query paradigm

is, in general, more efficient for cases where the environment changes because

extra computational effort is not wasted in constructing a roadmap through

the entire configuration space.

Many different sampling-based algorithms have been proposed, the key
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difference being the sampling strategy. Grid based sampling [43, 80] is one the

earliest sampling techniques. The configuration space is discretized into a grid

and samples are chosen from these grid points. Here, the main difficulty is in

choosing a suitable resolution of the discretization. If the resolution is too fine,

the search in the query phase may take a long time since the graph will consist

of a large number of vertices. If the resolution is too coarse, the solution may

never be found since the goal configuration may be too far from any vertex in

the graph [81].

The Rapidly Exploring Random Tree (RRT) [56, 60] algorithm does not

discretize the configuration space into a grid but chooses new configurations by

randomized sampling. The sampling scheme may also be biased toward regions

of the configuration space near the initial or goal configurations. The RRT

algorithm has been found to be very efficient and RRT and its variants have

been used in many applications involving high degree of freedom manipulator

arms [60, 82]. RRT sacrifices optimality of paths for efficiency and feasibility.

RRT was originally developed for motion planning with dynamic con-

straints. This version of RRT, called Rapidly Exploring Dense Trees (RDTs),

is discussed later in Section 2.5.1.

2.5 Direct Trajectory Planning

This section discusses methods that directly find a trajectory without

going through the intermediate step of planning a path. The trajectory plan-

ning problem is defined as follows: Given (i) the geometry of a robot moving
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in a two or three dimensional world (ii) the geometry and position of obstacles

in the world, and (iii) the initial and final configuration and possibly higher

derivatives of configuration, find a continuous trajectory connecting the initial

and final configurations, such that the interior of the the robot’s body does

not intersect with any obstacles at any time. Dynamic constraints should be

satisfied. Moving obstacles may be considered, and some performance mea-

sure may be optimized. Two trajectory planning approaches that have found

practical applications are discussed below.

2.5.1 Sampling-based Planning

Sampling-based planning methods of Section 2.4.1.2 can be extended

to planning in phase space. The planning problem is to find a path in phase

space such that its projection in configuration space does not intersect any

obstacles. The general framework is similar to that of sampling-based path

planning in configuration space. The key difference is in the way new vertices

are added to the graph. Any new sampled point in phase space cannot be

added to the graph since it may be impossible to reach the point while also

satisfying dynamic constraints.

Sampling-based methods find a trajectory by sampling the state space [16,

59] or state-time space [25, 33] to iteratively construct a search graph rooted

at the initial state. We described these methods in Section 1.1.2. Like the

grid-based methods of Section 2.4.1.2, these methods discretize the space into

a grid and construct a search graph. These approaches suffer from the curse
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of dimensionality and become computationally expensive as the dimension

of the state space increases. To alleviate this problem, methods that con-

struct a search graph by randomized sampling of state space [59] or state-time

space [33] were developed.

We describe one such randomized sampling algorithm, the Rapidly Ex-

ploring Dense Tree (RDT) algorithm here. A new vertex is added as follows (i)

a sample point qnew is chosen from a randomized sequence (ii) a vertex qcurr in

the graph that is closest to the sample point, according to a distance metric,

is selected (iii) all controls from a set of discretized controls are applied to

qcurr and the system is allowed to evolve for a time ∆t (iv) out of all the new

points that can be reached via collision-free trajectories satisfying differential

constraints, the point nearest qnew is chosen and added to the the graph. An

example application of RDT for a mobile robot with dynamic constraints is

shown in Figure 2.5.

There are several challenges to applying sampling-based methods for

trajectory planning. First, defining a good distance metric is difficult be-

cause it is not easy to choose meaningful weights for dimensionally different

terms such as position, orientation, linear and angular velocity, to make up a

weighted sum. Second, the dimension of the phase space is twice that of the

configuration space which increases the time taken for obtaining a dense cover-

age. Third, the choice of a suitable time step ∆t and a suitable discretization

of the action space may involve many problem-specific heuristics.

Because of discretization, a goal state cannot be reached exactly in
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(a) (b)

Figure 2.5: (a) An example of a path generated by RDT for a car-like robot
with dynamic constraints. The robot can move forwards or backwards but
cannot move sideways. The maximum radius of curvature is bounded because
of the limited steering angle of the car. (b) Path found by RDT for the car-like
robot in an obstacle strewn environment. Notice that the path involves many
backing-up and “wavy” maneuvers because the each of the path segments is
obtained by applying a constant control for a fixed interval of time. Figures
reproduced with permission from [58].

finite time. The accuracy of reaching a goal increases as the resolution of

discretization is increased. To reach the goal exactly, a two-point boundary

value problem has to be solved to compute a trajectory that connects the goal

state to the search graph. This is non-trivial problem since this trajectory

must avoid obstacles and satisfy dynamic constraints. Bidirectional search

strategies grow the search graph simultaneously from both the start and goal

configurations. In this case a boundary value problem has to be solved to

connect the two graphs [57].

Since a constant control input is applied for a finite length of time to

compute a trajectory segment, the paths planned by these methods for wheeled

robots usually lack curvature continuity. These paths have to be smoothed in
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a post-processing step so that they can be followed by a wheeled robot without

frequent stopping.

2.5.2 Optimal Control Methods

Optimal control methods have been traditionally used to plan trajec-

tories for systems subject to dynamic constraints. The formulation consists of

constructing a cost functional representing the cumulative cost over the du-

ration of motion and minimizing the cost functional to find a desired state

trajectory or control trajectory or both. Optimal control methods can be

thought of as planning in continuous space as opposed to sampling methods

that plan in an artificially discretized space.

Optimal control methods have been widely applied to trajectory plan-

ning in aerospace engineering and control-systems engineering. The general

formulation of an optimal control problem is as follows:

Determine a state-control trajectory {x(t),u(t) : 0 < t < τ}, and

possibly the final time τ that minimize the cost functional

J(x(.), u(.), τ) = h(x(τ), τ) +

∫ τ

0

l(x(t),u(t), t)dt,

given the boundary conditions

x(0) = x0, x(τ) = xτ ,

u(0) = u0, u(τ) = uτ ,

subject to the dynamic constraints

ẋ(t) = f(x(t),u(t), t),
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and other constraints on state and control variables

g(x(t),u(t), t) ≤ 0.

Sufficient conditions for a solution of this system are given by the Hamilton-

Jacobi-Bellman (HJB) equation. HJB is a second-order partial differential

equation with end-point boundary conditions. Analytic solutions of the HJB

equation for linear systems with quadratic cost have long been known [11].

In general, most real systems are nonlinear and the HJB equation has to be

solved numerically.

Necessary conditions for optimality are derived using Pontryagin’s prin-

ciple and consist of a set of first-order ordinary differential equations. These

differential equations convert the optimization problem into a two-point bound-

ary value problem. The system of differential equations can either be solved

analytically (where possible) or numerically using methods such as the shoot-

ing method or finite-difference methods.

Analytical solution to the problem of finding minimum length paths

for Dubins [17] car and Reeds and Shepp [74] car (see [87]) was found using

such an approach. Dubins car is only allowed to move forward while Reeds

and Shepp car is also allowed to move backward. These paths are comprised

of straight line and arc segments and minimize the distance traveled by the

mid-point of the rear axle. Each path segment is traversed at a fixed speed, so

the trajectories corresponding to these paths are also time-optimal for a given

speed. More recently, shortest paths for a differential drive wheeled robot
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were developed by including a rotation cost in the cost functional [4] (since a

differential drive robot can turn in place). Such minimum-time paths, while of

theoretical interest, are of little practical use in motion planning for wheeled

mobile robots because they lack curvature continuity and require frequent

stopping and reorienting of wheels.

In general, more complex problems require a numerical solution. One

frequently used numerical method is the “shooting method” where the two

point boundary value problem is converted into an initial value problem. The

objective now is to guess the initial state and improve upon this guess till

the actual final state is close to the specified final state. Numerically, this is

accomplished by discretizing the control function u(t), estimating the state

at the end point by integrating the state-transition equation, and perturbing

the unknown control parameters and the initial state to minimize the distance

between actual final state and specified final state. This nonlinear optimiza-

tion problem is solved using well-known techniques such as Newton’s method.

Shooting methods have been used for trajectory planning for nonholonomic

mobile robots [20, 32]. However, in shooting methods, it is extremely challeng-

ing to specify a good initial guess of the unknown parameters that produce a

final state reasonably close to the specified state. This problem arises because

the final state is obtained by integrating the state equations starting from the

initial state and hence it can be very sensitive to changes in the initial state.

Instead of of solving the differential equations representing necessary

conditions, approximation methods that discretize the infinite-dimensional

37



problem into a finite-dimensional one and optimize the cost functional di-

rectly in this finite-dimensional space can be used. Either only the control

function u(t) or both the state and control functions x(t) and u(t) can be

discretized. Such methods have been used for planning optimal trajectories

of mobile robots. In [21], control inputs that minimize total control energy to

travel between a given pair of boundary states are computed. Here Fourier ba-

sis functions are used for discretization. In [97], trajectories that minimize the

integral of square of L2 norm of end-effector jerk and the square of L2 norm

of time derivatives of joint torque vector, subject to torque constraints, are

computed. Here a finite-element discretization is used. Other discretization

are also possible, such as B-spline [10] and spectral [90] discretization.

Very few of the existing optimal control approaches include obstacle-

avoidance. Obstacle-avoidance is achieved in [80], but by adopting a path-

velocity decomposition approach. First the configuration space is discretized

into a grid and an obstacle-free path is found by searching this grid, then a

time-optimal path in the neighborhood of this path is computed, and finally a

time-optimal velocity on the path is determined. Obstacles were included as

hard constraints for a two-dimensional translating robot in [95].

Thus, optimal control methods have primarily been used for trajectory

planning in the absence of obstacles. Further, while some special problems

such as that of finding time-optimal trajectories have been solved, a com-

prehensive formulation of kinodynamic motion planning problem for wheeled

mobile robots is absent.
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2.6 Collision Detection and Obstacle Avoidance

Obstacle avoidance is inherent in the definition of path planning. The

planning algorithms discussed in the previous sections deal with obstacles in

two ways. One set of algorithms, such as the potential function methods, map

the obstacles to configuration space to obtain a representation of Cobs. Then

the representation of Cobs is used to define a repulsive potential function that

is added to the overall potential function. The other set of algorithms, such as

sampling-based algorithms, do not construct an explicit representation of Cobs.

They generate a path (or trajectory) segment and test it for collisions using a

collision detection module that tests for collisions in the task-space (instead of

the configuration space). Many collision detection algorithms developed in the

field of computational geometry have been adopted in robotics. An obstacle is

modeled as a shape (e.g. polyhedron) or hierarchy of primitive shapes (e.g. as

in constructive solid geometry) or as a parametric or implicit curve. The robot

is modeled in a similar way. Then, the robot model is tested for intersection

with the obstacle models. Some excellent references on collision detection

algorithms are [38, 61, 62, 65]. In the optimal control approach, obstacles can

be included as hard constraints, or added to the cost functional in the form of

barrier functions.

2.7 Summary

There are two main approaches to trajectory planning that have been

found to be of practical use for kinodynamic motion planning – sampling-
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based methods and optimal control methods. Existing formulations of these

methods cannot compute trajectories that satisfy all requirements of comfort-

able motion. While sampling-based methods are computationally efficient, the

trajectories computed by these methods cannot reach a goal exactly in finite

time, lack curvature continuity, and generally sacrifice optimality for efficiency.

Optimal control methods compute trajectories that exactly satisfy boundary

conditions, but there is no comprehensive formulation of the full kinodynamic

motion planning problem for wheeled mobile robots, and none of the optimal

control formulations show demonstrable results with obstacle avoidance.
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Chapter 3

Formulating Motion Planning as a

Constrained Optimization Problem

This chapter presents the mathematical foundation of our motion-

planning framework for planning safe, comfortable, and customizable motion

of assistive wheeled mobile robots. The main idea is to formulate a math-

ematically meaningful measure of discomfort and pose the motion-planning

problem as that of minimizing this discomfort subject to appropriate bound-

ary conditions and constraints.

We begin by an analysis of motion of a wheeled mobile robot mov-

ing on a plane. We then provide a brief introduction to parametric curves

and arc-length parameterization of curves. Next, we review literature from

various disciplines to formulate a measure of discomfort. We then present a

mathematical formulation of the motion-planning problem as a constrained

optimization problem.

3.1 Motion of a Wheeled Mobile Robot on a Plane

We saw in Section 2.1.1 that the configuration of a rigid body moving

on a plane at any time t can be completely specified by specifying the position
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vector r(t) = {x(t), y(t)} and orientation θ(t) of a body-fixed frame with

respect to a fixed reference frame. Suppose the rigid body starts from an

initial configuration at time t = 0 and reaches a final configuration at time

t = τ . To fully specify the motion of the body it is necessary to specify the

functions x(t), y(t) and θ(t) on I = [0, τ ]. If this body is a physical system,

it cannot change its position instantaneously. Further, since forces of infinite

magnitude cannot be applied in the real world, the acceleration of the body

must be finite. Hence x(t), y(t), and θ(t) must be at least C1 on I.

If this rigid body has directional wheels, its motion should obey the

following nonholonomic constraint

ẋ sin θ − ẏ cos θ = 0. (3.1)

Here dot, (˙), represents derivative with respect to t. For motion planning, it

is common to model a wheeled mobile robot as a wheeled rigid body, and we

will do the same. A motion of such a body can be specified by specifying a

travel time τ and a trajectory r(t) for t ∈ [0, τ ]. The orientation θ(t) can be

computed from Equation 3.1. Essentially, θ(t) = arctan2(ṙ(t)). If ṙ(t) is zero,

which means the velocity is zero, then this equation cannot be used. If the

instantaneous velocity is zero at t = t0, and non-zero in a neighborhood of t0,

then θ(t0) can be defined as a limt→t0 arctan2(ṙ(t)).

We now present a brief introduction to parametric curves and the arc-

length parameterization since it is relevant to our formulation ahead. The

reader can refer to any book on differential geometry of curves for more details.
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3.2 Parametric Curves and the Arc-length Parameter-
ization

Let qa < qb and I = [qa, qb] ⊂ R. A planar parametric curve is a

mapping r : I 7→ R2. If components of r are of class C1, the vector space

of functions with continuous first derivatives, the tangent vector at r(q) for

q ∈ [qa, qb] is r′(q). In this section, we denote derivatives with respect to the

parameter q by a prime ( ′).

Let the length of a curve be denoted by λ, where

λ =

∫ qb

qa

||r′(q)|| dq. (3.2)

Define a function s = s(q), which is the length of the curve between [qa, q].

Then,

s(q) =

∫ q

qa

||r′(q)|| dq. (3.3)

Note that the integrand ||r′(q)|| is non-negative throughout I. We make an

assumption that it is zero only at a finite number of q’s in I. If q were time

t, the physical interpretation is that the velocity is equal to zero only at a

finite number of discrete instants in time. This assumption implies that s is

an increasing function of q. That is, if q2 > q1, then s(q2) > s(q1). This, in

turn, means that for any given s ∈ [0, λ], a unique q = q(s) can be found

that corresponds to that s. If components of r are of class C1, then ||r′(q)||

is continuous, and thus s = s(q) is also in C1. Thus, ds
dq

is defined and is a

continuous function. Obviously, ds
dq

= ||r′(q)||.
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With the assumption above that ||r′(q)|| can be zero only at a finite

number of q’s, it is possible to introduce the arc-length parameterization. For

s ∈ [0, λ] define

r̂(s) = r(q) where s = s(q). (3.4)

The function r̂ is well-defined because for each s ∈ [0, λ] a unique q can be

found. Using the chain-rule for differentiation,

dr̂

ds
=
dr

dq

dq

ds
.

Now dr
dq

exists and is continuous and dq
ds

= 1
ds
dq

= 1
||r′(q)|| also exists (and is

continuous) if ||r′(q)|| is not zero. Thus, at points where ||r′(q)|| > 0,∣∣∣∣∣∣∣∣dr̂ds
∣∣∣∣∣∣∣∣ = ||r′(q)|| / ||r′(q)|| = 1.

On points where ||r′(q)|| = 0,
∣∣∣∣dr̂
ds

∣∣∣∣ cannot be computed by the expression

above. However, the choice that makes it continuous for all s is 1. This is

analogous to computing the limiting value of the orientation when velocity is

zero as shown earlier in this section.

Symbolically, the curve has been parameterized by the arc-length. Since∣∣∣∣dr̂
ds

∣∣∣∣ = 1, the tangent vector computed in the new parameterization is a unit

vector. The tangent vector is T(s) and the unit normal vector is N(s), where

T(s) =
dr̂

ds

N(s) =
dT
ds∣∣∣∣dT
ds

∣∣∣∣ (3.5)
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Figure 3.1: Tangent and Normal to a curve

See Figure 3.1. The signed curvature κ(s) is defined as

κ(s) =
dθ

ds
(3.6)

where θ(s) is the tangent angle.

3.3 A Characterization of Discomfort

To characterize comfortable motion, we review literature from trans-

portation design, elevator design, robot motion planning, and neuroscience.

Studies of passenger discomfort in automobiles and trains have shown that

discomfort increases as the magnitude of acceleration increases [24, 37, 70].

Two separate components of acceleration effect discomfort – tangential com-

ponent along the direction of motion and normal component perpendicular to

the direction of motion [24, 37, 70]. The normal component is zero in a straight

line motion but becomes important when traversing curves. The actual values

of comfortable bounds of the two components may be different [91], may vary

across people, may depend on the mode of transportation, and may depend on
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the passenger’s position [24, 70]. Hence, guidelines for ground transportation

design prescribe maximum values of accelerations [13, 36, 91], or maximum val-

ues of comfort indices that are functions of accelerations [12, 35]. Studies also

show that discomfort increases as the magnitude of jerk increases [24, 70]. Up-

per bounds on jerk for comfort have been proposed for road [13] and railway

vehicles [91]. In elevator design, motion profiles are designed for user comfort

by choosing profiles with smooth accelerations and low jerk [31, 46, 88]. In

neuroscience, studies of point-to-point human arm movements show a velocity

profile that is consistent with minimizing time integral of squared jerk over

the motion duration [23, 94]. Later a similar model was shown to replicate

grasping actions of fingers [86].

From a geometric standpoint, it has been known for more than a cen-

tury that sharp changes in curvature of roads and railway tracks can be dan-

gerous and can cause passenger discomfort [27, 50, 55]. In robotics, planning

continuous curvature paths for mobile robots has received significant attention

and has primarily been motivated by the desire to drive the robot with non-

zero speed from start to goal [8, 9, 26, 49, 71]. This is because a discontinuity

in curvature requires the speed to go to zero for continuity of speed at that

point.

Thus, we can conclude that for motion comfort, it is necessary to have

continuous and bounded acceleration along the tangential and normal direc-

tions. It is possible that the actual values of the bounds on the tangential

and normal components are different. It is also desirable for paths to have
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curvature continuity so that the robot can travel on the path without having

to stop and reorient wheels.

Based on the above analysis, we define a measure of discomfort as a

weighted sum of the following three terms: total travel time, time integral

of squared tangential jerk and time integral of squared normal jerk. Travel

time is included because we make the justifiable assumption that a user would

prefer to reach a goal as fast as is consistent with comfort. Thus, longer

travel time implies greater discomfort. Jerk is included because we saw above

that discomfort increases with the magnitude of jerk [24, 70]. We separate

jerk into components – tangential and normal and give them separate weights

because the actual values of these two components that cause discomfort may

be different, just as the bounds on tangential and normal acceleration may be

different [24, 37, 70, 91]. If studies show later that these values need not be

different, both the weights can be set equal. We will see later in Section 3.8 that

this cost functional is mathematically meaningful only when both tangential

and normal acceleration are continuous. Thus, we get continuous accelerations

by construction. To keep accelerations within comfortable bounds, we impose

explicit constraints on the maximum and minimum values.
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3.4 The Discomfort Cost Functional

We construct a cost functional J to precisely define the above discom-

fort measure as follows:

J = τ + wT

∫ τ

0

(
...
r ·T)2 dt + wN

∫ τ

0

(
...
r ·N)2 dt. (3.7)

Here τ is the total travel time and r is the position of robot at time t ∈

[0, τ ].
...
r represents the jerk.

...
r · T and

...
r ·N are the tangential and normal

components of jerk respectively. We assume that r(t) is smooth enough for the

cost functional to be well-defined. This means (at least) that the acceleration

vector is continuous and normal and tangential components of jerk are square

integrable.

The term τ is necessary. If it is not included in the functional, the

optimal solution is to reach the destination at τ = ∞ traveling at essentially

zero speed in the limit (except perhaps at the end-points where the speed is

already specified). Thus, minimizing just the integral terms will not lead to a

good solution.

The weights (wT and wN) are non-negative known real numbers. We

separate tangential and normal jerk to allow a choice of different weights (wT

and wN).

The weights serve two purposes. First, they act as scaling factors for

dimensionally different terms. Second, they determine the relative importance

of the terms and provide a way to adjust the robot’s performance according to

user preferences. For example, for a wheelchair, some users may not tolerate

48



high jerk and prefer traveling slowly while others could tolerate relatively high

jerks if they reach their destination quickly. The typical values of weights will

be chosen using dimensional analysis.

3.5 Dimensional Analysis of Cost Functional and De-
termination of Characteristic Weights

Choosing the weights in an ad hoc manner does not provide weights

that lead to similar comfort levels independent of the input (the boundary

conditions). Moreover, since the different components of the total discomfort

are different physical quantities, choice of weights should reflect this. In other

words, for the total discomfort to make physical sense, the weights cannot

be dimensionless numbers but should have physical units. We determine the

weights using dimensional analysis [51]. If the weights are chosen without

the dimensional analysis step, the optimal trajectory will be different just

by specifying the input in different physical units. In addition, using the

same numerical weights for different tasks will not lead to similar quantitative

discomfort level.

All the physical quantities in the cost functional (time, jerk) depend on

only two units − length L and time T . From Equation 3.7 we see that J has

dimensions L0T 1 due to the first term (τ). Thus wT should have dimensions

T 6/L2. Similarly, the dimensions of wN is T 6/L2. Alternatively, since T =

L/V , wT and wN has dimensions L4/V 6.

We now determine the base values of weights analytically. The main
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idea behind determining the base values is that the correct base values should

keep the maximum speed below the maximum allowable speed. A user can

then customize the weights by multiplying the base values by a dimensionless

constant that indicates user preference.

3.5.1 Weight for Tangential and Normal Jerk

We first determine wT . Consider a one dimensional motion with a tra-

jectory that starts from origin and travels a distance L > 0 in an unknown

time τ > 0. The starting and ending speeds and accelerations are zero. We

choose the exact form of the trajectory to be a quintic polynomial in time

t ∈ [0, τ ]. This choice uniquely determines the trajectory. The reason we have

chosen a quintic is that it minimizes integral of squared jerk (a third deriva-

tive), just like a cubic spline minimizes integral of squared second derivative.

Additionally, we choose the quintic to satisfy the boundary conditions.

Let s(t) be the distance traveled in time t. It is easily seen that the

quintic

s(t) =
Lt3

τ 5

(
6t2 − 15tτ + 10τ 2

)
satisfies all the boundary conditions. For such a trajectory, the discomfort

functional is

J = τ + wT

∫ τ

0

...
s (t)2dt = τ +

720L2wT

τ 5
.

We do not know τ and wT yet. We first choose a τ that minimizes J

for all wT . This means

τ =
(
3600L2wT

)1/6
.

50



Obviously, choosing a large value of wT will increase τ , which is natural because

doing so penalizes jerk and would slow down the motion. We now choose a wT

so that the maximum speed during the motion is V , a dimensional velocity

scale. It can be seen that the maximum speed occurs at t = τ/2 and it is(
225

2048

)1/3(
L4

wT

)1/6

.

Hence we choose

wT =

(
225

2048

)2
L4

V 6
. (3.8)

The base value for the weight corresponding to the normal jerk (wN)

is chosen to be the same. We emphasize that both wT and wN will be present

in a real problem and the maximum speed constraint is imposed explicitly

rather than relying on weights. The analysis done here is to get dimensional

dependencies of the base weight and reasonable proportionality constants using

a simple problem that can be treated analytically.

3.5.2 Factoring the Weights for Customization

In the preceding discussion, we determined the base values of weights

using simple analytical problems. We will refer to these base values as ŵT and

ŵN . Let R∗ be the minimum turning radius of the robot. For any given input,

we determine the characteristic length L∗ as max(∆L, πR∗) where ∆L is the

straight line distance between the start and end points. The characteristic

speed V∗ is the maximum allowable speed of the robot. The base values of
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weights are then computed as

ŵT = ŵN =

(
225

2048

)2
L4
∗

V 6
∗
. (3.9)

The weights for the actual problem are chosen as a multiple of these base

weights where the multiplying factors fT and fN are chosen by a user.

wT = fT ŵT ,

wN = fNŵN .
(3.10)

3.6 Problem Statement

We formulate the problem of planning safe and comfortable motion

planning as a constrained optimization problem as follows: Given the start and

end conditions on position, orientation, speed, and acceleration, the values of

bounds on curvature, speed and acceleration, the locations and representation

of obstacles, the weight factors fT and fN (Equation (3.9)), find a trajectory

that minimizes the cost functional of Equation (3.7) such that bounds are not

violated and the geometric path does not pass through obstacles.

We model the robot as a wheeled rigid body moving on a plane and

assume that the robot moves with non-zero speed except at a finite number of

points. Let the robot start from r0 at t = 0 and reach rτ in time τ (Figure 3.2).

From the discussion in Section 3.1, we see that to fully specify the motion of

the robot, we need only to specify a curve r(t) on t ∈ [0, τ ] such that the curve

is at least C1 continuous. Henceforth, in this chapter, we will use trajectory

to refer to a function of robot position with respect to time.
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Figure 3.2: Illustration of the optimization problem.
(a) The initial configuration of the robot at time t = 0 is given by the position
r0 and orientation θ0. The final configuration at time t = τ is given by the
position rτ and orientation θτ . The speed at an end point, when non-zero,
is necessarily along the vector q. (b) There exist infinitely many trajectories
that satisfy boundary conditions and respect constraints, illustrated by the
solid and dotted curves. Infinitely many of such trajectories will not result in
comfortable motion, illustrated by the dotted curves. Our objective is to find a
trajectory r(t) that additionally minimizes the cost functional of Equation 3.7
and results in comfortable motion. Such a trajectory is illustrated by the solid
curve.

We now transform the above problem description into a precise mathe-

matical problem statement using a general nonlinear constrained optimization

approach. Our objective is formulate a mathematically meaningful infinite-

dimensional optimization problem with a complete analysis of boundary con-

ditions and constraints.

The steps involved are: (i) choosing an appropriate parameterization of

the trajectory (Section 3.7), (ii) choosing the function space to which the tra-

jectory should belong for the cost functional to be well-defined (Section 3.8),

(iii) analysis of boundary conditions to determine the boundary conditions that
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should be imposed for the problem to be well-posed (Section 3.9), (iv) choosing

a representation of obstacles and imposing constraints for obstacle avoidance

(Section 3.10), and finally, (v) formulating the full infinite-dimensional con-

strained optimization problem (Section 3.11).

3.7 Parameterization of the Trajectory

Mathematically, one can use different primary variables to describe a

trajectory. For example, assuming the trajectory starts at zero time, one way

to describe a trajectory is to provide the final time and the position vector

as a function of time in between. Another way is to provide the final time

and specify the orientation and velocity as functions of time. Another way

is to represent the geometric path separately, using either position vector or

orientation as a function of arc-length. The velocity at each point on the path

is provided separately in this case.

We have found that making the assumption that speed be non-zero ex-

cept at boundaries and expressing the trajectory solely in terms of speed and

orientation as functions of a scaled arc-length parameter leads to relatively

simple expressions for all the remaining physical quantities (such as acceler-

ations and jerks). We shall see below, that with this parameterization, the

primary variables (speed and orientation) and their derivatives enter the cost

functional polynomially. This would not have been the case if everything were

expressed in terms of r as a function of time as we did in our previous work [28].

In the following discussion, we implicitly assume that all the quantities
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being differentiated have sufficient smoothness for differentiation to be mathe-

matically meaningful. In some cases, the derivatives appear not as point-wise

values but inside an integral sign. In such a case we will assume that the

integrands belong to an appropriate space of functions so that the integrals

are well-defined. We explicitly state the requirements on the regularity when

posing the optimization problem later in Section 3.8.

3.7.1 Scaled Arc-length Parameterization

Let u ∈ [0, 1]. The trajectory is parameterized by u. The starting point

is given by u = 0 and the ending point is given by u = 1. Let r = r(u) denote

the position vector of the robot in the plane. Let v = v(u) be the speed. Both

r and v are functions of u. Let λ denote the length of the trajectory. Since

only the start and end positions are known, λ cannot be specified in advance.

It has to be an unknown that will be found by the optimization process.

Let s ∈ [0, λ] be the arc-length parameter. We choose u to be a scaled

arc-length parameter where u = s
λ

so that the unknown constant λ is not used

in defining an unknown sized interval (as would be the case if u was chosen as

the arc-length parameter).

In the following discussion we will see that the trajectory, r(t), t ∈ [0, τ ]

is completely specified by the trajectory length λ, the speed v = v(u), and the

orientation or the tangent angle θ = θ(u) to the curve. λ is a scalar while

speed and orientation are functions of u. These are the three unknowns which

will be determined by the optimization process.
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Since speed is the rate of change of arc length, we have

v(u) =
ds

dt
. (3.11)

Using u = s
λ

in the above equation, we get

du

dt
=
v(u)

λ
. (3.12)

This gives,

t = t(u) =

∫ u

0

λ

v(u)
du. (3.13)

If v(u) is zero only at a finite number of points in [0, 1], then t(u) is well defined

for all u ∈ [0, 1].

Equation 3.13 is a key relation and gives us the means to convert be-

tween the time domain and scaled arc-length domain. We now introduce the

third unknown – the orientation or the tangent angle to the curve θ = θ(u).

Using the results of Section 3.2, we can show that

||r′(u)|| = λ. (3.14)

The tangent vector r′(u) to the curve r(u) is given by

r′(u) = ||r′(u)||T(u) = λT(u) (3.15)

where T(u) is the tangent function.

T(u) = {cos(θ(u)), sin(θ(u))} . (3.16)

The braces {} enclose the components of a 2D vector.
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Thus, r(u) can be computed via the following integrals.

r(u) = r(0) + λ

{∫ u

0

cos θ(u) du,

∫ u

0

sin θ(u) du

}
. (3.17)

Now, if θ(u) is known, r(u) can be computed from Equation (3.17). If

v(u) and λ are known, t(u) can be computed from Equation (3.13). Using

these two, we can determine the function r(t), t ∈ [0, τ ].

We now have all the basic relations to use chain-rule to derive expres-

sions for all the physical quantities needed to pose the constrained optimization

problem. We drop explicit references to u as a function parameter to keep the

expression concise.

We compute first, second, and third derivatives of r with respect to

time. These expressions are easily derived in one or two steps of algebra and

so we do not present the intermediate steps in detail.

ṙ = v {cos θ, sin θ} (3.18)

r̈ =
v

λ
(v′ {cos θ, sin θ}+ vθ′ {− sin θ, cos θ}) (3.19)

...
r =

v

λ2

(
(v′2 + vv′′ − v2θ′2) {cos θ, sin θ}

)
+

v

λ2

(
(3vv′θ′ + v2θ′′) {− sin θ, cos θ}

)
(3.20)

From the equations above, the expressions for tangential acceleration aT and

normal acceleration aN are

aT = r̈ ·T =
vv′

λ
. (3.21)

aN = r̈ ·N =
v2θ′

λ
(3.22)
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The tangential jerk jT is

jT =
...
r ·T =

v

λ2
(v′2 + vv′′ − v2θ′2) (3.23)

and the the normal jerk jN is

jN =
...
r ·N =

v2

λ2
(3v′θ′ + vθ′′). (3.24)

Here N is the direction normal to the tangent (rotated π
2

anti-clockwise). The

signed curvature is given by

κ(u) =
θ′

λ
(3.25)

We can use the Equations 3.23 and 3.24 to express the total discomfort

J(r, τ) =

∫ τ

0

dt+ wT

∫ τ

0

(
...
r ·T)2dt+ wN

∫ τ

0

(
...
r ·N)2dt (3.26)

in terms of v, θ, and λ. First, we express the travel time τ in terms of the

primary unknowns.

τ =

∫
dt =

∫ 1

0

dt

du
du =

∫ 1

0

λ

v
du. (3.27)

Using a similar change of variables in the integration (t→ u), the total

discomfort can be written as

J(v, θ, λ) =

∫ 1

0

λ

v
du+wT

∫ 1

0

v

λ3
(v′2+vv′′−v2θ′2)2du+wN

∫ 1

0

v3

λ3
(3v′θ′+vθ′′)2du.

(3.28)

The first integral (Jτ ) is the total time, the second integral (JT ) is total squared

tangential jerk, and the third integral (JN) is total squared normal jerk.
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Note that except for the term due to total travel time, the primary

variables v and θ and their derivatives enter the total discomfort expression

polynomially.

The discomfort J is now a function of the primary unknown functions

v, θ, and a scalar λ, the trajectory length. All references to time t have

disappeared. However, once the unknowns are found via optimization, we must

compute a mapping between t and u. This can be done using Equation (3.13).

3.8 Conditions on v and θ for a Finite Discomfort

Now that we have a concrete expression for the discomfort J in Equa-

tion (3.28), it can be used to define the function spaces to which v and θ can

belong so that the discomfort is well-defined (finite). This will, in turn, lead

to conditions on the physical quantities for safe and comfortable motion. We

have two distinct cases depending on whether the speed is zero at an end-point

on not.

3.8.1 Conditions for Positive Speeds

Let Ω = [0, 1] and H2(Ω) be the Sobolev space of functions on Ω with

square-integrable derivatives of up to order 2. Let f : Ω→ R. Then

f ∈ H2(Ω)
def⇐⇒

∫
Ω

(
djf

dxj

)2

dx <∞ ∀ j = 0, 1, 2. (3.29)

First, we show that if v, θ ∈ H2(Ω), then the integrals of squared tan-

gential and normal jerk are finite. Using the Sobolev embedding theorem [1] it

59



can be shown that if f ∈ H2(Ω), then f ′ ∈ C0(Ω) and by extension f ∈ C1(Ω).

Here Cj(Ω) is the space of functions on Ω whose up to jth derivatives are

bounded and continuous. Thus, if v, θ ∈ H2(Ω), then all the lower derivatives

are bounded and continuous. Physically this means that quantities like the ve-

locity, acceleration, and curvature are bounded and continuous − all desirable

properties for a smooth and comfortable motion.

Expanding all the jerk related terms in Equation (3.28), bounding all

the non-second derivative terms by a constant using the results from the

Sobolev embedding theorem, we immediately see that the jerk part of dis-

comfort is finite if v, θ ∈ H2(Ω). This is a sufficient condition only and not a

necessary one as we shall see below.

We also need that the inverse of v be integrable so that Jτ is finite.

This is trivially true if v is uniformly positive, that is, v ≥ v > 0 for some

constant positive v throughout the interval [0, 1]. However, v can be zero at

one or both end-points because of the imposed conditions. Section 3.9 analyses

the boundary conditions in detail. Here we assume that speed on both end-

points is positive. The cases with zero end-point speed are treated below in

Section 3.8.2.

Thus, consider the case that v is positive on both end-points. Since v

is speed and always non-negative, it can approach zero from above only. We

make a justifiable assumption that v can be zero only at end-points if at all

and not in the interior. Otherwise, the wheelchair would stop and then start

again. This is costly for discomfort since it increases travel time and leads

60



to acceleration and deceleration. Of course, we can choose a motion in which

v = 0 in the interior and it can still be a valid motion with finite discomfort.

The assumption is that the trajectory that actually minimizes discomfort will

not have a halt in between. Thus, if v > 0 on end-points it remains uniformly

positive in the interior the discomfort is finite.

3.8.2 Conditions for Zero Speed on Boundary

Consider the case in which v(0) = 0. The case v(1) = 0 can be treated

in a similar manner. If v(0) = 0, 1
v

must not blow up faster than 1
up

where

p < 1. This is to keep Jτ finite. This can be seen as follows. Lets assume

v(u) = up for some p > 0 (so that v(0) = 0). This implies that Jτ = λ
1−p

provided p < 1, otherwise it is not defined.

For simplicity, assume a 1D motion so that θ(u) ≡ 0. Then JT =

1
λ3

(1−2p)2p2

5p−3
provided p > 3

5
. Taking all conditions into account, if v(0) = 0, the

discomfort is finite if v(u) behaves like up where 3
5
< p < 1. However, in such

a case,
∫ 1

0
v′′2du = (−1+p)2p2

2p−3
is defined and finite only if p > 3/2. This conflicts

with the assumption that v ∈ H2(Ω). Thus, we can have a finite discomfort

even if v /∈ H2(Ω). We see that the reason for this is the zero speed boundary

condition which leads to
∫ 1

0
v3v′′2du being finite for 3

5
< p < 1 even though∫ 1

0
v′′2du (which is the highest order term in JT ) is not finite for such a range

of p.

If we look at the integral JT = 1
λ3

(1−2p)2p2

5p−3
carefully, we see that it can

be finite even if p < 3
5
, provided p = 1

2
. This is a special case because vv′′+ v′2
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is identically zero for such a p and tangential jerk discomfort is finite for a 1-D

motion.

For a mathematically meaningful problem we must treat zero speed

boundary conditions separately from non-zero speed boundary condition. This

analysis will be done in more detail in Section 3.9 and Section 4.1.3 which

are focused on boundary conditions and appropriate singular finite elements

respectively.

3.8.3 Summary

To summarize, the total discomfort is finite if v, θ ∈ H2(Ω) and the

inverse of v is integrable. Inverse of v is integrable if v is uniformly positive in

[0, 1]. If zero speed boundary conditions are imposed, we will have to choose v

outside H2(Ω). In such a case, at u = 0, it is sufficient that v approaches zero

as up where 3
5
< p < 1 or p = 1

2
. For the right end point, where u = 1, replace u

with (1−u) in the condition. We do not lose higher regularity of v throughout

the interval Ω just because v /∈ H2(Ω). Assume v > 0 in the interior, as

justified above. Then v ≥ v > 0 in Ωδ
def
= [δ, 1 − δ] where δ = δ(v) > 0. Thus

v ∈ H2(Ωδ) is necessary to keep total discomfort finite. This implies continuity

and boundedness of velocity and acceleration in Ωδ ∀δ > 0. For zero speed

boundary condition, a similar division of the interval [0, 1] into pieces will be

necessary to create the finite element mesh.
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3.9 Analysis of Boundary Conditions

The expression for the cost functional J in Equation (3.28) shows that

the highest derivative order for v and θ is two. Thus, for the boundary value

problem to be well-posed we need two boundary conditions on v and θ at each

end-point − one on the function and one on the first derivative.

We also have to impose that the robot move from a specific starting

point to a specific ending point. This condition is a set of two equality con-

straints on λ and θ based on Equation (3.17). If the motion is from positions

r0 to rτ , then

rτ − r0 = λ

{∫ 1

0

cos θ du,

∫ 1

0

sin θ du

}
. (3.30)

We now relate the mathematical requirement on v and θ boundary

values above to expressions of physical quantities. We do this for the starting

point only. The ending point relations are analogous.

3.9.1 Positive Speed on Boundary

First, consider the case when v > 0 on the starting point. The speed v

needs to be specified, which is quite natural. The u-derivative of v, however,

is not tangential acceleration. The tangential acceleration is the t-derivative

and is given by Equation (3.21). It is vv′

λ
. Here v is known but λ is not.

Thus specifying tangential acceleration gives us a constraint equation and not

directly a value for v′(0). This is imposed as an equality constraint. Similarly,

fixing a value for θ on starting point is natural. We “fix” the values of θ′(0)
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by fixing the signed curvature κ = θ′

λ
. As before, this leads to an equality

constraint relating θ′(0) and λ if κ 6= 0. Since choosing a meaningful non-zero

value of κ is difficult, it is natural to impose κ = 0. In this case θ′(0) = 0 can

be imposed easily.

3.9.2 Zero Speed on Boundary

We now discuss the v = 0 case. If v(0) = 0, then, as seen in Sec-

tion 3.8.2, v(u) must behave like up for 3
5
< p < 1 or p = 1

2
near u = 0 and

v′(u) ∼ uq for −2
5
< q < 0 or q = −1

2
respectively. This means the limu→0 v

′(u)

is infinite. This leads to a difficulty in analyzing the expression for the tan-

gential acceleration (vv
′

λ
) without using limits. We prove that if v ∼ up at

boundary, then the tangential acceleration is 0 if 3
5
< p < 1 and it is finite but

non-zero if p = 1
2
. If v(u) ∼ up, then, vv′ ∼ u2p−1. If 3

5
< p < 1, it means

1
5
< 2p−1 < 1. Thus as u→ 0, vv′ → 0 because of the allowable range of p. If

p = 1
2
, vv′ behaves like a positive constant as u→ 0. Hence p = 1

2
corresponds

to non-zero tangential acceleration.

We still have to decide with what strength does v′(u) tend to infinity

at an end-point. If v = 0 and a 6= 0, it is clear that v′(u) ∼ u−1/2. If v = 0

and a = 0, The analysis above has only shown that limu→0 v(u)v′(u) = 0, and

limu→0 v
′(u) = ∞. In this case, we need to use the time domain. The reason

we have such a singularity is because of working in the arc-length domain.

Consider starting from origin with zero velocity and acceleration at zero time

(t) in 1D. Expanding the distance traveled (s) as a function of time, we see
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that

s(t) = 0 + 0t+
1

2
0t2 +

1

6
jt3 + . . . .

Here j > 0 is the jerk at t = 0. We ignore the higher order terms. Then, to

the lowest power of t, the velocity as a function of t is

v(t) =
1

2
jt2.

Eliminating t to relate v and s, we get

v =
62/3

2
j1/3s2/3.

Now s = λu because u is the scaled arc-length parameter. Using this we get

v = Cu2/3, where all the constants are absorbed in C. Thus, v(u) ∼ up for

p = 2
3
. This value of p is within the acceptable range of p, the open interval

(3
5
, 1). This also tells us that

v′(u) ∼ u−1/3 (3.31)

is the appropriate strength of the singularity. This will be crucial in designing

the singular finite elements on the boundary in Section 4.1.3.

3.9.3 Summary

To summarize, one must specify the starting and ending poses, orien-

tations, and curvatures. For the motion, one must specify the speeds. If a

specified speed is non-zero, the tangential acceleration must be specified. If

the speed is zero, the tangential acceleration can be zero. If tangential accel-

eration is non-zero, it must be be positive if it is starting point or must be

negative if it is the ending point.
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3.10 Obstacle Avoidance

For safe motion, it is necessary that the robot avoid obstacles while

navigating. Simply speaking, obstacles are regions in the plane of motion

through which the geometric path must not pass. This simple notion can

be translated to mathematically posed constraints in a variety of ways. For

example, convex polygons, rectangular cells, simple closed shapes like ellipses,

or level sets of implicitly defined simple functions of two arguments are some

possibilities.

3.10.1 Modeling Obstacles as Star-shaped Domains

We have chosen to model the “forbidden” region formed by the obsta-

cles as a union of star-shaped domains with boundaries that are closed curves

with piecewise continuous second derivative. A set in Rn is called a star-shaped

domain if there exists at least one point x0 in the set such that the line seg-

ment connecting x0 and x lies in the set for all x in the set. Intuitively this

means that there exists at least one point in the set from which all other points

are “visible”. We will refer to such a point x0 as a center of the star-shaped

domain.

The choice of using star-shaped domains is made so that each point

on the boundary of an obstacle can be treated as coming from a well-defined

function in polar coordinates centered within the particular obstacle. See

Figure 3.3. This also allows treatment of non-convex obstacles without subdi-

viding them into a union of convex shapes. A big advantage is that we reduce
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the number of imposed constraints since the number of inequality constraints

is proportional to the number of obstacles. This leads to a faster optimization

process.

This approach is a special case of using level sets of an implicitly defined

function as an obstacle boundary. What is different here is that given the

description of the boundary in polar coordinates, which is easy to specify for

common shapes, we construct an implicit function (see the following section).

This is done based on the assumption that the boundary encloses a star-shaped

region. The piecewise smoothness property is required to impose the obstacle

constraint in a numerical optimization method. Since up to second derivative

of constraint can be required, the obstacle boundary should also be smooth to

that order (or at least piecewise smooth).

If an obstacle within the map is not star-shaped, our framework can

still handle it if it can be expressed as a finite union of piecewise smooth star-

shaped domains. Efficient algorithms to decompose any polygon into a finite

number of star-shaped polygons exist [3], but it is unknown if any star-shaped

domain can be decomposed in such a way.

3.10.2 Incorporating Constraints for Obstacle Avoidance

We now derive a function for the inequality constraint that a given

point in the plane is not inside the boundary of one star-shaped obstacle. It is

easy to extend this to multiple points and multiple obstacles by just repeating

the inequality with different parameters.
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x

{x, y}
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{x0, y0}

φ

ρ(φ)

Figure 3.3: Notation for star-shaped obstacles.
A non-convex star-shaped obstacle is shown with its “center” {x0, y0} and a
distance function ρ = ρ(φ). The distance function gives a single point on the
boundary for φ ∈ [0, 2π]. The robot trajectory must lie outside the obstacle.

Let an obstacle be specified by its boundary in polar coordinates that

are centered at r0 = {x0, y0}. Each φ ∈ [0, 2π) gives a point on the boundary

using the distance ρ(φ) from the obstacle origin. The distance function ρ must

be periodic with a period 2π. See Figure 3.3.

Suppose we want a point r = {x, y} to be outside the obstacle boundary.

Define C(r) as

C(r) = ||r− r0||2 − ρ(arctan2(r− r0)) (3.32)

where the subscript 2 refers to the Euclidean norm. It is obvious that C(r) ≥

0 ⇐⇒ the point r is outside the obstacle. This can be seen using a 1D graph

of ρ(φ). For example, let an obstacle be represented as shown in Figure 3.4(a).

Figure 3.4(b) shows the same obstacle flattened out as a 1D curve. Then C(r)

is positive in the top region and negative below. The star-shaped property
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leads to a single-valued curve ρ(φ) when flattened like this. The vector r

is related to the primary variables in trajectory optimization problem using

Equation (3.17).

3.10.3 Derivatives of Obstacle Avoidance Constraint

We will need derivatives of C(r) with respect to r for incorporating

C(r) ≥ 0 as a constraint in the trajectory optimization problem. Here r is

any point on the path that we want to lie outside a given obstacle. We can

derive the following expressions for first and second derivatives of C(r). The

derivatives of ρ below are evaluated at φ = arctan2(r − r0). To simplify the

expressions, x, y, r refer to the offsets from obstacle origin r0 instead of absolute

positions in the plane.

∂C

∂r
=

r

||r||2
− ρ′(φ)

{−y, x}
||r||22

(3.33)

∂2C

∂r2
=

1

||r||32

(
1− ρ′′(φ)

||r||2

)[
y2 −xy
−xy x2

]
− ρ′(φ)

||r||42

[
2xy y2 − x2

y2 − x2 −2xy

]
(3.34)

Obviously, the second derivative is a 2× 2 matrix.

The constraint function C(r) is piecewise differentiable for all r except

at a single point r = r0. If r = r0 by chance, which is easily detectable,

we know that the r is inside the obstacle and can perturbed to avoid this

undefined behavior. Note that C(r) remains bounded inside the obstacle. It is

the derivatives that are not bounded as r → r0 Figure 3.4(c) shows a surface
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(a) Obstacle shape
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(b) Obstacle as a 1-D curve

(c) Surface plot of constraint (d) Level sets of constraint

Figure 3.4: Obstacle and constraint plots.
The figures show an obstacle in polar coordinates in (a), and its 1-D repre-
sentation in (b). The region with darker shade is the interior and a feasible
trajectory must not pass through it. The surface plot of the corresponding
constraint function C(r) of Equation (3.32) is shown in (c) and its level set
is shown in (d). The arrow marks the zero level set, which is the obstacle
boundary.
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plot of C(r) for the obstacle shown in Figure 3.4(a). The contours of constant

values are shown in Figure 3.4(d).

3.10.4 Incorporating Robot Shape

The discussion on obstacle avoidance constraints so far has assumed a

point robot. In reality, the robot is not a point. To impose obstacle avoidance

constraints in this case, the robot can be modeled as a closed curve that

encloses the projection of its boundary in the plane of motion. We can choose

a set of points on this curve and impose the constraint that all these points be

outside all obstacles. The distance between any pair of points can be smaller

than the smallest obstacle. We have currently not implemented this and this

is part of future work.

3.11 The Full Nonlinear Constrained Optimization Prob-
lem

We now summarize the nonlinear and constrained trajectory optimiza-

tion problem taking into account all input parameters, all the boundary con-

ditions, and all the constraints. This is the “functional” form of the problem

(posed in function spaces). We will present an appropriate discretization pro-

cedure valid for all input combinations in the next chapter.

Minimize the discomfort functional J , where

J(v, θ, λ) =

∫ 1

0

λ

v
du+wT

∫ 1

0

v

λ3
(v′2+vv′′−v2θ′2)2du+wN

∫ 1

0

v3

λ3
(3v′θ′+vθ′′)2du,
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given the following boundary conditions for both starting point and

ending point

• position (r0, rτ ),

• orientation (θ0, θτ ),

• signed curvature (κ0, κτ ),

• speed (v0 ≥ 0, vτ ≥ 0),

• tangential acceleration (aT ,0, aT ,τ ),

and constraints on allowable range of

• speed (vmin = 0, vmax),

• tangential acceleration (aT ,min, aT ,max),

• normal acceleration (aN,min, aN,max),

• angular speed (ωmin, ωmax),

• curvature, if necessary (κmin = 0, κmax),

and

• number of obstacles Nobs,

• locations of obstacles {ci}Nobs
i=1
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• representation of obstacles that allows computation of {ρi(φ)}Nobs
i=1 , for

φ ∈ [0, 2π)

and

• an initial guess for (v(u), θ(u), λ), in u ∈ [0, 1],

• weights wT > 0 and wN > 0.

The constraint on starting and ending position requires that

rτ − r0 = λ

{∫ 1

0

cos θ du,

∫ 1

0

sin θ du

}
Staying outside all obstacles requires that

||r(u)− ci||2 − ρi(arctan2(r(u)− ci)) ≥ 0 ∀ i ∈ 1, . . . , Nobs, and ∀ u ∈ [0, 1]

where

r(u) = r(0) + λ

{∫ u

0

cos θ du,

∫ u

0

sin θ du

}
.

As a post-processing step, we compute time t as a function of u using

t = t(u) =

∫ u

0

λ

v(u)
du

and convert all quantities (v, θ, r, and their derivatives) from u domain to t

domain.
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Chapter 4

A Finite Element Discretization of the

Trajectory Optimization Problem

In the previous chapter, we posed a constrained nonlinear optimiza-

tion problem to compute a safe, comfortable, and customizable motion of a

wheelchair moving in a plane. We showed that we must be able to impose

two kinds of boundary conditions. In the first kind, the problem is set in

the Sobolev space of functions whose up to second derivatives are square-

integrable. In the second kind, we must allow functions that are singular at

the boundary (with a known strength) but still lie in the same Sobolev space

in the interior.

This optimization problem is infinite dimensional since it is posed on

infinite dimensional function spaces. This means we must discretize it as a

finite dimensional problem before it can be solved numerically. Keeping the

problem setting and requirements mentioned above in mind, it is natural to

use the Finite Element Method (FEM) to discretize it.

In this chapter, we show how to use an appropriate finite dimensional

subspace for both kinds of boundary conditions. We also show the sparsity

structure of the Hessian of the global problem. Some of the discretized in-

74



equality and inequality constraints, if computed naively, lead to a dense global

Hessian. We avoid this and keep the global Hessian sparse by introducing

auxiliary variables.

4.1 Finite Element Discretization

We first discuss the case when there is no singularity in the speed v.

This is the case when the given boundary speeds are positive. In this case,

v ∈ H2(Ω) as shown in Section 3.8.2, where Ω = [0, 1]. We assume that

θ ∈ H2(Ω) always (whether v is singular or not) because it is sufficient for the

discomfort to be finite. Thus, to discretize the problem, it is natural to use

the basis functions in C1(Ω), the space of functions that are continuous and

have continuous first derivatives. This makes the second derivative of v and θ

discontinuous but its square is still integrable.

4.1.1 Basis Functions

We minimize the discomfort and satisfy all the constraints in a finite

dimensional subspace of C1(Ω). We make the following choice.

vh(u) =
N∑
i=1

αviχi(u) (4.1)

θh(u) =
N∑
i=1

αθiχi(u) (4.2)

Here χi(u) ∈ C1(Ω) are basis functions for this problem. The symbol h tradi-

tionally denotes a measure of the “mesh width” to distinguish the approximate

solution from the “exact” infinite dimensional solution. The unknown scalar
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values αvi and αθi for i = 1, . . . , N are the degrees of freedom (DOFs) which

are to be determined via “solving” the optimization problem of Section 3.11.

For reasonable choices of χi(u), as N increases the finite dimensional solution

approaches the exact solution.

Usually, one chooses χi(u) ∈ Ω that are easy (and cheap) to compute,

and have local support. Piecewise polynomial functions (that have sufficient

differentiability) are good candidates. By having local support, we mean the

functions are non-zero only over a limited interval and not on whole Ω. This

has two main advantages. First, while performing integration to compute J ,

the product of χi and χj is zero over most of the interval. This leads to O(n)

rather than O(n2) interactions. Second, the global Hessian matrix is sparse

rather than being dense. Typically for 1D problems, the matrix has a small

constant band-width.

For our problem, we first divide the interval [0, 1] into n equal-size

intervals of length h = 1
n
. Each of these intervals is an element. Thus we have

n elements and n + 1 equidistant points or nodes. The collection of elements

and nodes is the finite element mesh.

At each node we define two piecewise polynomial functions that are

non-zero only on the two elements surrounding the node. This is the standard

cubic Hermite basis for problems posed in the H2 space in 1D. See Figure 4.1

for both the functions and their first and second derivatives. The first kind

of basis function is 1 on the node with which it is associated and has zero

derivative there. The second function is zero on the corresponding node and
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has unit derivative there. Additionally, both are zero with first derivatives also

zero on two surrounding nodes. Thus, in all, we have 2(n+ 1) basis functions

(and unknown scalars) each for v and θ. Because of the above-mentioned

properties each basis functions belongs to C1(Ω) ⊂ H2(Ω). Note that the

basis functions on the boundary points are slightly different. They are not

extended outside the interval. Figure 4.2 shows 5 basis functions of each kind

for n = 4. As seen, the boundary basis functions are truncated. It would not

matter anyway what their values outside the interval are since no integration

is performed outside. The other basis functions are translations of each other.

4.1.2 Element Shape Functions

In FEM practice, we define basis functions in terms of “shape func-

tions”. The shape functions are defined only on a single reference element and

multiple shape functions placed on neighboring elements are joined to create a

single basis function. This requires that shape functions have appropriate val-

ues (and derivative) on reference element boundary so that the basis functions

are valid for the problem.

Figure 4.3 shows the four cubic Hermite shape functions on a single
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Figure 4.1: Cubic Hermite basis functions and their first and second deriva-
tives.
Two kinds of basis functions are defined at each node such that each is zero
everywhere except on the two elements sharing the node. The first kind, χk,1
has a value of 1 and a zero derivative at the associated node k. Its value and
derivatives are zero on both adjacent nodes. The second kind, χk,2 has a value
of zero and a unit derivative at the associated node k. Its value and derivatives
are zero on both adjacent nodes. Both χk,1 and χk,2 are square integrable on
u ∈ [0, 1].
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5 Basis1 functions 5 Basis2 functions

u

u

Χ1 Χ2

Figure 4.2: Cubic Hermite basis functions on five consecutive nodes.
The two kinds of basis functions on any node are translations of the respective
basis function of Figure 4.1. The basis functions on a boundary node are
truncated.

reference element [0, 1]. The shape functions are

φ1(x) = (x− 1)2(1 + 2x)

φ2(x) = (x− 1)2x

φ3(x) = (3− 2x)x2

φ4(x) = (x− 1)x2

For maintaining basis function continuity, each φi satisfies φi(0) = φ′i(0) =

φi(1) = φ′i(1) = 0, except φ1(0) = φ′2(0) = φ3(1) = φ′4(1) = 1.

4.1.3 Singular Shape Functions at Boundary

For the case when either one or both the boundary points have zero

speed specified, v(u) is singular at the corresponding boundary with v′(u)

infinite with singularity u−1/3 when acceleration is also zero and u−1/2 if accel-
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Figure 4.3: Cubic Hermite shape functions on a reference element.
Four shape functions are defined on each element. Each is a cubic polynomial
on x = [0, 1] where x is the local coordinate on the element.

eration is non-zero. Thus, v as a function does not belong to H2(Ω). However,

v does belong to H2 in the interior as shown in Section 3.8.2.

After a FEM mesh is decided, we take this into account and do not use

the above-mentioned regular shape functions for v on the element(s) near the

boundary with zero speed. For the interior elements, however, no change is

done and the regular shape functions are used.
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We now derive the new singular shape functions for the left boundary

(u ∈ [0, h]) element and the singular shape functions for the right boundary

element can be derived using symmetry.

We need at least two shape functions so that the two shape functions

coming from the [h, 2h] element can be matched. Denote them by ψL1 and

ψL2 . The function value and the function derivative both must be matched at

h. For a reference element shape function, this means ψL1 (1) = 1, ψL1
′
(1) =

0, ψL2 (1) = 0, ψL2
′
(1) = 1. Both ψL1 and ψL2 must be zero on u = 0 because

the speed is zero there. Thus, the Dirichlet boundary condition is imposed

explicitly. Finally, as x→ 0, one of the functions must behave as xp, for p = 2
3

or p = 1
2
, to match the singularity in Equation (3.31). It can be seen that the

choice

ψL1 (x) = xp + p(1− x)x

ψL2 (x) = (x− 1)x

satisfies all these requirements. Figure 4.4 shows the four shape functions, two

for the left element and two for the right element for the case p = 2
3
. Figure 4.5

shows that ψL1 and ψR1 are singular when approaching the boundary (shown

for p = 2
3

only). The other two functions ψL2 and ψR2 are smooth.
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Figure 4.4: Singular shape functions on boundary elements for zero speed and
zero acceleration boundary conditions.
Two singular shape functions are defined on a boundary element. Consider
zero speed condition on left element. The first shape function ψL1 has a value of
1 and zero derivative on the right to match the shape function φ1 of Figure 4.3
on the next element. The second shape function ψL2 has a value of 0 and a unit
derivative on the right to match the shape function φ2 of Figure 4.3 on the
next element. Both ψL1 and ψL2 have a value of zero on the left because speed
is zero. The singular shape functions for zero speed boundary conditions on
right are similarly defined.
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Figure 4.5: First and second derivatives of singular shape functions for zero
speed and zero acceleration boundary conditions.

ψL1 and ψR1 tend to infinity as x−
2
3 as they approach the boundary. ψL2 and ψR2

are smooth.

4.2 The Finite-dimensional Optimization Problem

With the choice of basis functions described above, we can express vh(u)

and θh(u) as:

vh(u) =
n+1∑
i=1

viχi,1(u) +
n+1∑
i=1

v′iχi,2(u) (4.3)

θh(u) =
n+1∑
i=1

θiχi,1(u) +
n+1∑
i=1

θ′iχi,2(u) (4.4)
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where vi, v
′
i, θi, and θ′i for i = 1, . . . , n are the (unknown) nodal values and

χi,1(u) and χi,2(u) are the two kinds of basis functions described in the previous

section.

For optimization, the values of cost, its gradient and Hessian, the values

of constraints, and the gradient and Hessian of each constraint are required.

For efficiency, it is desirable that cost and constraint Hessians be sparse. We

will see later that for the Hessian of obstacle avoidance constraints to be sparse,

it is useful to introduce 2N additional unknowns in the form of position ri =

{xi, yi}Ni=1 at N points.

Thus, our objective now is to determine the values of these unknowns

and the unknown path length λ that minimize the cost functional and satisfy

the boundary conditions and constraints described in (Section 3.11).

4.2.1 Numerical Integration for Computing the Integrals in the
Cost Functional and Constraints

We use Gauss quadrature formulas to compute the integrals in the cost

functional and constraints. When using m integration points in an interval, the

formulas are accurate for polynomials of degree up to 2m− 1. For the regular

C1 basis functions, which have maximum polynomial degree 3, it is easily seen

that the square tangential jerk is a polynomial of degree 23, and the squared

normal jerk is a polynomial of degree 17. See Equation (3.28). These are

polynomials in u and not t. Hence, 12 Gauss points will give exact integrals

up to floating point accuracy. Of course, the integrands being polynomials, the
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integrals corresponding to JT and JN can be evaluated without using Gauss

points (if one is ready to work with complex algebraic expressions). But the

other integrals, for Jτ and those relating r to θ (Equation (3.17)), must be

evaluated numerically. Hence, we use 12 Gauss points to evaluate all integrals.

4.3 Imposing Constraints

We need to impose multiple equality and inequality constraints while

minimizing the cost functional. Some of the equality constraints affect a single

DOF each and hence they can be used to eliminate the particular unknown.

The others relate multiple DOFs and must be imposed as an equality explicitly.

The equality constraints are described below.

• Fix end-point positions (r0, rτ ) by eliminating the unknowns x and y on

the first and last nodes.

• Fix end-point orientations (θ0, θτ ) by eliminating the unknown θ on the

first and last nodes.

• Relate start and end position rτ−r0 = λ
{∫ 1

0
cos θ du,

∫ 1

0
sin θ du

}
(Equa-

tion (3.30)) by computing the integrals as described in Section 4.3.1,

Equation (4.5).

• Fix end-point speeds (v0 ≥ 0, vτ ≥ 0) by eliminating the unknown v on

the first and last nodes.
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• If speed on an end-point is positive, tangential acceleration aT must be

specified at that end-point. Impose vv′

λ
= aT on that end point. Oth-

erwise, this constraint will be automatically imposed by using singular

shape functions.

• Impose specified end-point curvature κ by imposing θ′ = λκ on each

end-point.

The inequality constraints that are not related to obstacles avoidance

are as follows. We must maintain

• velocity in [vmin = 0, vmax],

• tangential acceleration in [aT,min, aT,max],

• normal acceleration in [aN,min, aN,max], and

• angular velocity in [ωmin, ωmax].

• curvature in [κmin = 0, κmax],

Note that these must be maintained for each u ∈ [0, 1] in the infi-

nite dimensional optimization problem. For the discretized version, we choose

the Gauss integration points and impose that these quantities remain in the

specified range only on those points. Thus, for a mesh with n elements, each

inequality above results in 12n constraints (assuming 12 points are used as dis-

cussed in Section 4.2.1). The values of these physical quantities on each Gauss
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point is a function of the DOFs on element nodes. Thus, these constraints are

local. They are not affected when DOFs of non-element nodes change.

There are two important reasons to keep the values within range on

Gauss points as opposed to on some other, say, uniform set of points. First,

since we use v at the Gauss point to compute the integrals, it is more im-

portant that v remain non-negative there to avoid problems of large negative

values of J . Second, since v and θ are already computed there it saves extra

computation.

4.3.1 Obstacle Avoidance Constraints

Staying outside obstacles, if present, requires additional inequality con-

straints. For this we pick N uniformly separated points in the interval [0, 1]

and impose the constraint that each of r on the N points remain outside each

of Nobs obstacles. This leads to N ×Nobs constraints. In our implementation

we make N = nM+(n+1), so that if the distribution is uniform, each element

has M such points in the interior and each node is a point too. Two of these

N points are the boundary points which must be outside all obstacles for the

optimization problem to have a feasible solution. If the robot boundary is not

circular and we choose P points on the robot’s boundary, then the number of

constraints is N ×Nobs × P .

We come back to obstacle related constraint relating a single obstacle

and a single point on the trajectory. One could simply relate the position at the

point with θ(u) and λ using Equation (3.17), and use Equation (3.32) to impose
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conditions on θ(u) and λ. However, because of the structure of Equation (3.32)

and because r(u) depends on all θ DOFs of nodes that are before u, the Hessian

of this constraint is not sparse. This would lead to efficiency problems when

doing iterations in the numerical optimization process. Even computing the

dense Hessian would be very costly as Nobs and N increase. We must work

around this elimination approach of imposing the obstacle related constraints.

To avoid the dense Hessian of obstacle constraint, we make two changes

to the simplistic approach. First, we do not use Equation (3.30) for eliminating

r but keep r as an unknown function. Second, we relate adjacent r’s via

Equation (3.17) as follows.

r(uj)− r(uj−1) = λ

{∫ uj

uj−1

cos θ du,

∫ uj

uj−1

sin θ du

}
. (4.5)

Here j goes from 1 to N−1. What this change does is that, as long as adjacent

r(uj) and r(uj−1) belong to a maximum two adjacent elements, the equation

above relates only a small number of local DOFs. Secondly, since each r(uj) is

now a legitimate unknown, it can be used to impose the inequality constraint

Equation (3.32) without θ being involved.

This new approach does have a price, however. We have increased the

number of unknowns and hence increased the size of the gradient vector and

Hessian matrix. But this is a small price to pay considering that the sparsity

is still maintained, the amount of computation does not grow, and equations

are local in nature. We explore the sparsity pattern more in Section 4.4 ahead.

88



4.4 Element and Global Gradient and Hessian

An important choice in the FEM discretization of any variational prob-

lem is the ordering of all the unknowns when forming the global Hessian ma-

trix. A good choice simplifies the assembly process as well as could lead to

useful structural sparsity.

We have four kinds of DOFs. For simplicity, we discuss the regular case

and where boundary conditions are not yet imposed. The singular case differs

in minor details only that does not affect the ordering process. The four kinds

are as follows.

• four unknowns each on n+ 1 node −v, v′, θ, θ′

• N x and N y unknowns

• a scalar unknown λ

The unknowns are ordered in the same sequence shown above starting from

u = 0 and going to u = 1.

The ordering chosen above means that each DOF except λ interacts

with DOFs on two elements. The scaled arc-length parameter, λ, is global by

its nature and interacts with all other DOFs. Hence, the global Hessian matrix

is sparse. Some interactions lead to linear equations, so they do not affect the

Hessian. This is the case for x, y, and λ interactions in Equation (4.5).

We now describe the structure of the finite dimensional optimization

problem using a small mesh with n = 3 elements and N = 10 points for
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obstacle constraints as shown in Figure 4.6(a). In FEM, each element provides

a small Hessian, typically dense, that relates all the DOFs present in that

element. We have eight v and θ DOFs on each element except for the singular

corner elements that have six. Figure 4.6(b), shows the global connectivity

structure of the problem after boundary conditions are imposed on boundary

v, θ, x, and y DOFs. These are marked A in Figure 4.6(a). The three element

matrices are added to their appropriate positions. The DOFs marked B (for

θ′) are constrained via equality constraints. The DOFs marked C (for v′)

are constrained via equality constraints if speed is non-zero. Otherwise, it

is infinite and is taken care using singular elements. The x and y DOFs do

not enter the expression of cost, hence all corresponding rows and columns are

empty (zero). The Hessian of obstacles constraints does contain non-zero 2×2

blocks relating x and y of the same point.
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(a) A finite element mesh with 3 elements along with N = 10
{x, y} pairs for obstacle avoidance.
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Figure 4.6: Global connectivity structure of the finite dimensional optimization
problem.
(a) Some boundary element DOFS and the first and last {x, y} pairs, are
set equal to the appropriate boundary conditions and removed from the list
of unknowns (A). Some boundary element DOFS are related to boundary
conditions by equality constraints (B). Some are either related to boundary
conditions via equality constraints if speed is non-zero, or taken care of by
singular elements(C). (b) All unknowns on a node interact with unknowns on
only two neighboring nodes. Each {x, y} pair interacts only with itself. All
DOFS on a node interact with λ. 91



Chapter 5

Initial Guess for the Optimization Problem

In Chapter 3, we described a nonlinear constrained optimization prob-

lem to find an optimal trajectory that results in a small discomfort. Because

of the nonlinearity and presence of both inequality and inequality constraints,

it is crucial that a suitable initial guess of the trajectory be computed and

provided to an optimization algorithm.

Many packages can generate their own “starting points”, but a good

initial guess that is within the feasible region can easily reduce the computa-

tional effort (measured by number of function and derivative evaluation steps)

many times. Not only that, reliably solving a nonlinear constrained optimiza-

tion problem without a good initial guess can be extremely difficult. Because

of these reasons, we invest considerable mathematical and computational effort

to generate a good initial guess of the trajectory.

5.1 Overview

As described in Chapter 3, a trajectory can be completely described

by its length λ, orientation θ(u), and the speed v(u) for u ∈ [0, 1]. Our opti-

mization problem is to find the scalar λ and the two functions θ and v that
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minimize the discomfort. We compute the initial guess of trajectory by com-

puting λ and θ first and then computing v by solving a separate optimization

problem. We emphasize that the initial guess computation process must deal

with arbitrary inputs and reliably compute the initial guesses.

Before we discuss the initial guess of θ, we must discuss a genuine non-

uniqueness issue. It is obvious that there exist infinitely many paths for a given

pair of initial and final orientations. There exist at least two different kinds

of non-uniqueness. The first kind of non-uniqueness exists because multiple

numerical values of an angle correspond to a single “physical” orientation.

The second kind of non-uniqueness exists because even for the same numerical

values of initial and final angles, one can end up in one of multiple local minima

after optimization. We now discuss these in detail.

5.2 Multiplicity of Paths

Since the trajectory orientation θ is an angle, a single θ value is com-

pletely equivalent in physical space to θ ± 2nπ ∀n ∈ N. However, consider a

trajectory that starts with a given angle θ0, and stops at orientation θτ (where

τ denotes final time). Such a trajectory will be different than a trajectory that

starts off with the same orientation but stops at θτ ± 2nπ. This is because θ

is continuous and cannot jump to a different value in between. Of course, the

boundary condition will still be satisfied. Thus, even though the original tra-

jectory optimization problem is specified using a single stopping orientation,

we must consider multiple stopping orientations, differing by 2π, when com-
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puting the initial guess as well as solving the original discomfort minimization

problem. We have called this a “parity” problem. Note that the same logic of

parity applies to the starting orientation, but what matters is the difference

and we have chosen to vary only the ending orientation by choosing different

values of n.

Figure 5.1 shows a few examples of this parity. It shows four paths

corresponding to different n each sharing a common starting angle, but reach

the destination at {−3π,−π, π, 3π}. Of course, we could create more paths by

increasing the 2π difference but doing so makes the paths more convoluted and

self-intersecting in general. This is because when n is too large in magnitude,

θ(u) has to vary rapidly at least around some u values in [0, 1] to satisfy

the larger difference in boundary conditions. For optimization purposes, we

assume that the starting and ending orientations are given between [0, 2π)

and we choose just three end-point orientations that give the least difference

|θτ − θ0|.

Apart from the multiplicity of θ curves due to parity, the optimization

problem discussed Section 5.3 to compute θ as well as the full discomfort mini-

mization problem can lead to multiple solutions even when parity remains un-

changed. This occurs due to the nonlinearity of constraints in Equation (3.30).

Figure 5.2(a) and (b) shows two such paths A and B that start and end at

the same numerical orientation but are qualitatively different. We do observe

such multiple minima in practice. If we observe B more carefully, it is seen

that it can be continuously deformed into B∗ shown in Figure 5.2(c) and (d).
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This figure clearly shows that the reason B is qualitatively different from A is

because of two self-intersections − first in anti-clockwise direction and second

in clockwise direction. Both “loops” cancel each others’ changes in orienta-

tion. We suspect that this topological difference is the cause of multiple local

minima.

Of course, this argument can be carried further and one can introduce

an equal number of clockwise and anti-clockwise loops in arbitrary order and

the final orientation will remain unchanged. Thus, we believe that there can

be infinitely many local minima. Obviously, doing so would increase the dis-

comfort in general and such a path will not be desirable. We try to avoid this

problem by setting bounds on maximum and minimum θ when we compute

the initial guess of θ. However, it is important to not ignore multiple minima

A

B

C

D

O

P

(a) Four paths

A

B

C

D

2π

3π

π

−3π

−2π

−π

0θ0 = 0

(b) Four θ curves

Figure 5.1: Four paths with different parity
The paths A,B,C, and D start from O and reach P at identical physical angles
but, looked as θ curves, their ending angles differ by integer multiples of 2π.
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(d) Deformed θ curve

Figure 5.2: (Two local minima for same boundary conditions
(a)(b) The pathsA andB are different but both minimize discomfort compared
to neighboring paths. (c)(d) B∗ is obtained by a continuous deformation of B.
The θ curves of B and B∗ are similar. The corresponding paths show that B∗
contains two self intersections and is topologically different from A that does
not contain self intersections.

if they are found within these bounds. If obstacles are present so that A is

infeasible, B might be chosen even though it is longer and has more turns.

Thus, because of these two kinds of multiplicities, we use more than

one initial guess when minimizing the discomfort and choose the one that has

the minimum discomfort and satisfies the constraints. We discuss the details
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in the following section.

5.3 Initial Guess of Path

We compute initial guesses for λ and θ(u) using two different methods.

The first method computes a θ(u) such that the trajectory has a piecewise

constant curvature. This is a computationally inexpensive method and does

not satisfy many of the constraints exactly. The output of this method can be

used to solve the full discomfort minimization problem.

The second method computes a θ(u) and λ by solving an auxiliary (but

simpler) nonlinear constrained optimization problem. Of course, now we need

an initial guess for this new optimization problem! The output of the “constant

curvature” method mentioned above is used as the initial guess. Unlike the

first method, the output of this second method leads to trajectories that have

continuous and differentiable curvature and also satisfy boundary conditions

and maximum curvature constraint exactly.

5.3.1 Piecewise Constant Curvature Path

In the full discomfort minimization problem, the orientation θ(u) has

to satisfy the boundary conditions and Equation (3.30). In total, there are

four constraints − two linear (those due to boundary conditions) and two

non-linear (those of Equation (3.30)).

For computing initial guess of θ, we modify the inputs of the full op-

timization problem using a rotation such that initial and final position have
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the same y coordinate value. The initial and final orientations are also mod-

ified appropriately. Once we find an initial guess for the transformed input,

it can be easily transformed back to the original configuration by the inverse

rotation. This is done to allow efficient storage of precomputed θ guesses for

various end-point conditions.

Thus, the inputs to the initial guess generation problem are the initial

and final positions, x0 and xτ , and orientations, θ0 and θτ , in the rotated

frame. The output will be a path length λ and a function θ(u).

We begin by choosing the value of path length λ as max(R, 2 ∗ ∆L),

where R is the minimum turning radius of the robot and ∆L = ||rτ − r0||.

Using this maximum takes care of the case when initial and final positions are

very close to each other. In such a case, the path length is decided by the

minimum turning radius constraint.

Ideally, an initial guess of θ(u) should obey the following constraints so

that the constraints of the full optimization problem are satisfied:

θ(0) = θ0,

θ(1) = θτ ,
(5.1)

and transformed Equation (3.30)

λ

∫ 1

0

cos θ du = xτ − x0,

λ

∫ 1

0

sin θ du = 0,

(5.2)

Consider a piecewise linear function that looks like the solid curves in Fig-

ure 5.3(b).
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Figure 5.3: Piecewise constant curvature initial guesses
(a) Multiple local minima in graph of Jcc of Equation (5.4). Two minima clos-
est to the maxima are highlighted. (b) Piecewise constant curvature paths (not
dashed) corresponding to highlighted minima in (a). (c) Paths corresponding
to the θ curves in (b). Both start at π

2
and end at π

3
. (d) Lighter shade repre-

sents minima and darker shade represents maxima. The two optimizing paths
of (b) are shown.
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Essentially, each such curve is defined on [0, 1], is continuous, and is

made of three line segments in [0, 1
3
], [1

3
, 2

3
], and [2

3
, 1]. The middle line segment

has zero derivative. The values at 0 and 1 are known and the only variable is

the function value on the middle segment. Equivalently, one can use the slope

of first line segment as the variable. Let this slope be denoted by θ′1. Then,

we define θ(u) as

θ(u) =


θ0 + θ′1u if 0 ≤ u < 1

3
;

θ0 + 1
3
θ′1 if 1

3
≤ u < 2

3
;

θ0 + 1
3
θ′1 − 3(θ0 − θ1 + 1

3
θ′1)(u− 2

3
) if 2

3
≤ u ≤ 1.

(5.3)

If we use such a curve for θ(u), it will result in a circular arc, a tangent line

segment, and another circular arc tangential to the middle segment, in that

order. This, in turn, implies that the resulting path will have a piecewise

constant curvature.

To determine θ(u), we need to to determine the value of the unknown

slope θ′1. Since only one value cannot satisfy two constraints of Equation (5.2),

we minimize

Jcc(θ
′
1) =

(∫ 1

0

cos θ du− 1

)2

+

(∫ 1

0

sin θ du

)2

(5.4)

to find θ′1. Figure 5.3(a) shows the plot of Jcc as a function of θ′1. Depending

on the boundary conditions, the shape of Jcc changes but qualitatively it has

the behavior as shown − oscillatory with a maximum not too far from zero.

We find this maximum using a table lookup and the neighboring two minima

to compute the initial guess. Figure 5.3(c) shows two paths using this method

where θ0 = π
2

and θτ = π
3
. The path length is 1. As seen, the curve end-point
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is not too far from x−axis, and the curve satisfies the boundary condition on

θ. Figure 5.3(d) shows the cost Jcc for various constant curvature paths. The

lighter shade corresponds to the minima.

5.3.2 Optimization Approach for Initial Guess of Path

In this second method to compute the initial guess of the path, we

minimize

J(θ, λ) = λ+ w

∫ 1

0

θ′′2du (5.5)

where w := max(∆L,R), and θ must satisfy the boundary conditions, the two

equality constraints of Equation (3.30), and the curvature constraint

|θ′(u)| ≤ λκmax ∀u ∈ [0, 1].

We do not impose the obstacle related constraints in this problem. This prob-

lem is related to the concept of “Minimum Variation Curves” [66] which have

been proposed for curve shape design. We add the curve length λ so that in

the presence of multiplicities, discussed in Section 5.2 earlier, the curves with

smaller lengths are preferred. This optimization problem is discretized using

C1 finite elements as described in Chapter 4, and the initial guess is the piece-

wise constant curvature function from Section 5.3.1. Paths computed using

this approach are shown in the next chapter in Section 6.2.
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5.4 Initial Guess of Speed

Computing the initial guess of v is relatively simpler. We solve a convex

quadratic optimization problem with linear inequality box constraints to com-

pute the initial guess. Because of convexity of the functional and the convex

shape of the feasible region, this problem has a unique solution and an initial

guess is not necessary to solve it. Any good quality optimization package can

find the solution without an initial guess. Of course, because of the simplic-

ity of box constraints, we can and do provide a feasible initial guess for this

auxiliary problem.

First consider the case when both end-points have non-zero speed. We

minimize

J(v) =

∫ 1

0

v′′2du (5.6)

subject to boundary constraints v(0) = v0 > 0, v(1) = v1 > 0, v′(0) = a0λ
v0

,

v′(1) = a1λ
v1

and inequality constraints vmin(u) ≤ v(u) ≤ vmax(u) and Amin(u) ≤

v′(u) ≤ Amax(u). The expressions for v′(0) and v′(1) come from the relation

in Equation (3.21). The length λ is computed when the initial guess for θ is

computed. Here we choose vmin(u) = min(v0, v1)/2 and vmax(u) is a constant

that comes from the hardware limits. The function Amin(u) is chosen to be

the constant 10aminλ/min(v0, v1) where amin is the minimum allowed physical

acceleration. Amax(u) is chosen similarly using amax.

This optimization problem is discretized using C1 finite elements as

described in Chapter 4 and leads to a convex programming problem that is
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easily solved. Of course, this method does not take care of cases in which one

or both points have zero speed boundary conditions.

If both end-points have zero speeds, the function

v(u) = vmax (4u(1− u))2/3 (5.7)

satisfies the boundary conditions and singularities and has a maximum value

of vmax. This case doesn not require any optimization.

If only one of the end-points has a zero speed boundary condition, we

split the initial guess for v into a sum of two functions. The first one takes care

of the singularity and the second takes care of the non-zero speed boundary

condition on the other end-point. We now maintain only the vmax constraint

because v′(u) is unbounded and vmin = 0 naturally. If the right end-point has

zero speed, we choose

v(u) = vsingular(u) + vnon-singular(u)

where

vsingular(u) =
16

9
21/3vmaxu

2(1− u)2/3.

This function has the correct singularity behavior and its maximum value is

vmax/2. The non-singular part is computed via optimization so that the sum is

always less than vmax. For the other case, when left end-point has zero speed,

the singular part (using symmetry) is

16

9
21/3vmax(1− u)2u2/3.
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Figure 5.4 shows these different cases. All the imposed bounds are

maintained and the initial guesses of v are smooth curves for all kinds of

boundary conditions. For non-zero boundary speed, the values are 1 on the

starting point and 2 on the ending point. Maximum speed is 3. Where im-

posed, Amin = −50 and Amax = 50.
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Figure 5.4: Initial guesses for speed
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Chapter 6

Evaluation and Results

The motion planning framework described in earlier chapters is ex-

pected to reliably plan trajectories for different types of boundary conditions.

These trajectories should satisfy dynamic constraints and the geometric paths

should not intersect obstacles. Further, it should be possible to reliably com-

pute trajectories between a given pair of boundary conditions for a range of

weights, wT and wN , so that users can customize the motion by changing these

weights.

The trajectories are computed by solving a constrained optimization

problem that minimizes the cost functional

J = τ + fT ŵT

∫ τ

0

(
...
r ·T)2 dt + fNŵN

∫ τ

0

(
...
r ·N)2 dt (6.1)

subject to dynamic and obstacle-avoidance constraints. Here ŵT and ŵN are

the dimensional weights that are automatically computed from the length and

velocity scales of the task as described in Section 3.5. The positive dimension-

less factors fT and fN can be varied by a user for balancing jerk discomfort

and travel time.

This problem is discretized into a finite dimensional problem using the

Finite Element Method (FEM) and an optimization package (Ipopt) is used to
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solve it numerically. In the following discussion, we refer to this optimization

problem as the “discomfort minimization problem”.

We begin by describing the input to the discomfort minimization prob-

lem and how it is determined. Some quantities in the input such as dynamic

bounds are fixed, while others such as boundary conditions and obstacle loca-

tions and shapes are problem dependent. We describe how parameters such

as the number of elements in the finite element discretization are determined.

We also provide some implementation details.

Next, we present illustrative examples showing the various steps of the

solution method, and demonstrate some of the strengths of our method such

as the ability to plan trajectories for a wide variety of boundary conditions

and obstacle shapes.

We then analyze how varying the weight factors fT and fN affect the

solution trajectory. Our objective is to find qualitative relationships between

these weight factors and each of the terms in the discomfort measure (total

travel time, integral of squared tangential jerk, and integral of squared normal

jerk). These relationships should provide guidelines for user customization.

Next, to evaluate the reliability of our method, we construct a large

data set of problems with different geometry and boundary conditions and find

the success rate. We also analyze the run-time and number of iterations to

compute the initial guess as well as the solution to the discomfort minimization

problem.
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6.1 Experimental setting

The input to the discomfort minimization problem described in Sec-

tion 3.11 consists of:

1. Number of elements, n, for finite element discretization. We choose

n = 32 based on a numerical experiment based on convergence to the

“exact” solution of the infinite dimensional optimization problem as the

maximum finite element size is reduced (see below, Section 6.3).

2. Number of intervals per element M , to compute the {x, y} pairs for

imposing obstacle constraints (see Section 4.3.1). We choose M = 20

when obstacles are present, otherwise the choice is irrelevant.

3. Values of bounds on curvature, speed, angular speed, tangential accel-

eration, and normal acceleration (See Section 3.11). Curvature bounds

should be determined from the robot’s geometry. While we assume a

point robot and do not consider robot shape for obstacle-avoidance, we

do include curvature constraints based on the dimensions of a typical

wheelchair. All other bounds should be chosen for comfort. In the ab-

sence of relevant comfort studies for assistive robots, we choose linear

and angular speed based on our expectation of typical values of these

quantities for an assistive robot. We choose values of acceleration bounds

based on studies of comfort in ground vehicles (see Section 3.3). All these

values are shown in Table 6.1.
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Quantity Lower Bound Upper Bound
Curvature (1/m) −1.8 1.8
Speed (m/s) 0.0 3.0
Angular speed (rad/s) -1.57 1.57
Tangential acceleration (m/s2) -1.0 1.0
Normal acceleration (m/s2) -1.0 1.0

Table 6.1: Lower and upper bounds on curvature, speeds, and accelerations
used in experiments.
Curvature bounds are based on a minimum turning radius of 0.55 m.

4. Non-dimensional multiplying factors for weights, fT > 0 and fN > 0.

Both these values are set to 1 unless mentioned otherwise.

5. Representation of obstacles as star-shaped domains with piecewise C2

boundary (see Section 3.10.3). In our experiments, we use circular, el-

liptical, and star-shaped polygonal obstacles. See Figures 6.6 and 6.7.

6. Boundary conditions on position, orientation, curvature, speed and tan-

gential acceleration (see Section 3.9). These are problem specific and we

describe these for each of the experiments.

We have implemented our code in C++. We use Ipopt, a robust large-

scale nonlinear constrained optimization library [98] written in C++ to solve

the optimization problem. We explicitly compute gradient and Hessian for the

optimization problem in our code instead of letting Ipopt compute these using

finite-differences. This leads to greater robustness and faster convergence. We

set the Ipopt parameter for relative tolerance as 10−8 and set the maximum

number of iterations to 500.
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After optimization, the outputs are the nodal values of v, v′, θ, and

θ′, and the curve length λ (see Section 4.2). The functions v(u) and θ(u),

u ∈ [0, 1] are known using Equation 4.3. We use Equation 3.13 to construct

a table of u values for u ∈ [0, 1] and the corresponding t values for t ∈ [0, τ ].

The value of any of the quantities of interest (orientation, speed, etc.) at any

time t ∈ [0, τ ] is computed using this table by linear interpolation.

6.2 Illustrative examples

We begin by presenting an example that illustrates the optimization

process. In Figure 6.1, the initial position is {0, 0} and final position is

{−1,−4}. The initial and final orientations are both zero. The speed and

tangential acceleration at both ends are also zero.

First, an initial guess of path (θ(u), u ∈ [0, 1] and λ) is computed. Using

this value of λ, and initial guess of speed (v(u), u ∈ [0, 1]) is computed. To com-

pute initial guess of path, we choose three {θ0, θτ} pairs: {0, 0}, {0, 2π}, and

{0,−2π}. For the {0, 0} pair, we compute two piecewise constant curvature

paths (Section 5.3.1) by choosing two minima of Jcc (Equation 5.4) as shown

in Figure 5.3. For the {0,−2π} and {0, 2π} pairs, we compute one piecewise

constant curvature path each. This results in four piecewise constant curva-

ture paths. These paths serve as initial guesses for the optimization problem

of Section 5.3.2 which computes four initial guesses of path.

The four paths computed above serve as initial guesses for the discom-

fort minimization problem. Figure 6.1 shows four initial guesses of path. The
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Figure 6.1: Four initial guess of path.
Problem input is as follows: initial position = {0, 0}, orientation = 0, speed
= 0, tangential acceleration = 0; final position = {−1,−4}, orientation = 0,
speed = 0, tangential acceleration = 0. The four initial guesses of path are
computed using the method described in Sec 5.3.2 so that final orientation in
(a),(b),(c) and (d) is 0, 0, −2π and 2π respectively. Initial position is shown by
a green marker and initial orientation is indicated by the direction of the green
arrow. Final position and orientation are similarly indicated in red. While the
path is parameterized by u, for ease of visualization, we show markers at equal
intervals of time. Thus distance between markers is inversely proportional to
speed.
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Figure 6.2: Initial guess of speed for problem of Figure 6.1.
In this case, because of zero speed boundary condition on both ends, the same
initial guess of speed is produced for each path guess. When speed is non-zero
on one or both ends, four distinct guesses of speed may be produced.

first two solutions have θτ = 0, the third solution has θτ = −2π, and the fourth

solution has θτ = 2π.

An initial guess of speed, v(u), is computed as described in Section 5.4.

In this example (Figure 5.4, speed at both ends is zero and hence v(u) is com-

puted using Equation 5.7. Thus we get the same function v(u) for all guesses

of path. If speed is non-zero at either end, then we solve an optimization prob-

lem to compute v(u). In this case, the curve length λ, from each of the four

path guesses is input to the optimization problem, and we may get different

guesses of speed corresponding to each path guess.

The discomfort minimization problem is solved for each of these four

initial guesses. The four solution paths that minimize discomfort are shown

in Figure 6.3.The travel time and costs for the four solution paths are shown
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Solution Number Travel time (s) Total cost (s)
1 6.3 6.5
2 10.0 11.0
3 7.9 8.0
4 7.9 8.0

Table 6.2: Travel time and total cost for problem of Figure 6.1.

in Table 6.2. The path corresponding to Solution 1 has the minimum cost,

and is thus in agreement with our intuitive notion of the best path amongst

these four. Notice the circular arcs at the start and end of the path of Solution

2. These arcs have a constant radius equal to the minimum turning radius of

the robot because of curvature constraints. If curvature constraints are not

imposed, these arcs have a smaller radius and the path has a smaller length.

Note that it is not always true that all four solutions are distinct since two

or more problems starting from different initial guesses may converge to the

same solution.

The solution speeds are shown in Figure 6.4. The final speeds in So-

lution 1 and Solution 2 are symmetric about t = τ
2

because of the inherent

“symmetry” due to zero orientation, speed, and acceleration at both ends. The

final speeds in Solution 3 and Solution 4 are mirror images of each other about

t = τ
2

because the final orientations in these two are −2π and 2π respectively.

The figures also show that the initial guesses of the paths and speeds are quite

good, which is important for nonlinear optimization.

In Figure 6.5, we introduce five elliptical obstacles for the same bound-
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Figure 6.3: Solution paths of the problem of Figure 6.1.
Final (optimal) path for each solution is shown as solid blue curve. Initial
guess is shown as dashed red curve. The number of DOFS for the discomfort
minimization problem were 1403 and number of constraints were 3232. The
total cost and travel time for the four solutions are shown in Table 6.2.
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Figure 6.4: Solution speeds of the problem of Figure 6.1.
Final (optimal) speed for each solution is shown as solid blue curve. Initial
guess is shown as dashed red curve.
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Figure 6.5: Solution paths to a problem with five elliptical obstacles.
The boundary conditions of this problem are identical to the problem of Fig-
ure 6.1. Four distinct solution paths in the neighborhood of the four initial
guesses are found. This problem had 3195 constraints for obstacle-avoidance
in addition to the constraints in Figure 6.1. The total cost and travel time for
the four solutions are shown in Table 6.3.
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Solution Number Travel time (s) Total cost (s)
1 7.0 7.1
2 11.7 11.9
3 9.1 9.4
4 10.3 10.4

Table 6.3: Travel time and total cost for problem of Figure 6.5.

ary conditions. All four initial guesses of path and solution paths are shown.

The initial guesses of path and speed do not consider obstacles and hence are

identical to those in Figures 6.3 and 6.4 respectively. Four distinct solution

paths are found. The travel time and total cost for all four solutions is shown

in Table 6.3, and is greater than for the problem of Figure 6.3 (see Table 6.2).

The minimum cost path is that of Solution 1 which again agrees with our intu-

ition. Notice how the path of Solution 3 passes above the lowermost elliptical

obstacle, while the path of Solution 4 passes below the uppermost elliptical

obstacle. Our experience with this and other examples shows that that once

the optimization algorithm takes a step that brings an iterate to one side of

the obstacle, further iterations keep it on the same side. We believe that this

is because paths passing an obstacle on different “sides” belong to disjoint

feasible regions. Since two such paths cannot be transformed to each other

via a continuous deformation of the path, the two paths are in disjoint feasible

regions. The iterates in the optimization process also cannot jump from one

feasible region to a different feasible region in general.

Figure 6.6 show an example where the initial and final speeds are both
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non-zero. This scenario exemplifies one of the common navigation tasks for

an assistive robot – that of navigating in a corridor or sidewalk. We show

only one solution out of four in this case. Figure 6.6(a) has two rectangular

obstacles, signifying a wall. In the sequence Figure 6.6(b)–(f), one obstacle is

added at a time, and each time a path is found that avoids all the obstacles.

Figure 6.7 shows an example when the initial speed is non-zero and

the initial acceleration is positive. There are four rectangular and two star-

shaped obstacles. This is a particularly difficult case because it involves a

non-zero speed and high acceleration(0.5 m/s2, half the maximum allowable

acceleration) at the beginning and a narrow passage between obstacles. In this

case, only one of the four initial guesses resulted in a solution. Notice the loop

in the path near the start. This is because the initial speed and acceleration

are non-zero, and hence a sharp 90 degree left turn is not possible without

violating dynamic bounds. If dynamic bounds are removed, another path,

without a loop, starting from another initial guess is also found as a solution.

This path does not have a loop. Also notice how the path just touches the

vertices of obstacles so that its length is as small as is consistent with comfort.
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Figure 6.6: Obstacle avoidance in a corridor-like setting with non-zero speed
at both ends.
Problem input is as follows: initial position = {0, 0}, orientation = 0, speed =
1, tangential acceleration = 0; final position = {20, 0}, orientation = 0, speed
= 1, tangential acceleration = 0. One of the four solution paths is shown.
Initial guess is shown as dashed red curve while solution is shown as solid blue
curve. (a) Only two rectangular obstacles, comprising the corridor walls are
present. The solution path is a straight line. (b) Addition of a circular obstacle
results in a path that passes below the obstacle. Another solution path that
passes above the obstacle and is symmetric to this path about the centerline
would also be a solution with same cost. (c),(d),(e),(f) One more obstacle is
added and the same problem is solved starting from the same initial guess as
in (a). All quantities have appropriate units in terms of meters and seconds.
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Figure 6.7: Illustrative example showing passage through narrow space be-
tween star-shaped obstacles with non-zero speed at both ends and high positive
acceleration at start.
Problem input is as follows: initial position = {−5,−5}, orientation = 0, speed
= 1, tangential acceleration = 0.5; final position = {2.5, 45}, orientation = π/2,
speed = 1, tangential acceleration = 0. Four rectangular and two star-shaped
obstacles are present. The loop at the beginning of the path is because the
initial acceleration is high and hence it is not possible to make a sharp turn
without violating dynamic constraints. All quantities have appropriate units
in terms of meters and seconds.
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6.3 Convergence on Decreasing Mesh Size

To analyze the effect of mesh size on convergence, we construct two

examples of straight line motion, each with start and end positions as {0, 0}

and {10, 0}, and start and end orientations as 0. In the first example, speed at

both ends is 0. In the second, speed at both ends is 1. Tangential acceleration

at both ends is 0. We vary the number of elements from 2 to 128 in multiples

of 2 and each time solve the discomfort minimization problem for one initial

guess. As the number of elements increases, the optimum cost found by the op-

timization process decreases. This is natural because increasing the mesh size

means we’re minimizing a function in a superset of degrees of freedom. As the

number of elements increases, the relative change in minimum cost decreases.

We compare all costs with the cost corresponding to 128 elements. We see that

the 32 elements give a cost that within 0.01% of cost for 128 elements (when

v > 0 on end-points). The curve for v = 0 shows a lower convergence rate

and we believe that the reason behind this is using standard Gauss-Legendre

quadrature for the singular elements. A more precise procedure would use

specially designed quadrature scheme keeping in mind the form of singularity

at end-points. We have kept this as part of future work.

6.4 Effect of Weights on Discomfort

In this section we analyze how the two dimensionless factors fT and fN

affect the individual terms comprising the cost functional (travel time, integral

of squared tangential jerk, and integral of squared normal jerk) as shown in
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Equation (6.1). This analysis provides us with guidelines for choosing the val-

ues of weights for customization by human users. Henceforth, for conciseness,

we will refer to the three terms – travel time, integral of squared tangential

jerk, and integral of squared normal jerk as τ , JT and JN respectively. Thus,

the cost functional of Equation (6.1) is

J = Jτ + fTJT + fNJN

For this experiment, we construct a problem with identical boundary

conditions as that of the example in Figure 6.1. In order to delineate the effect
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of weights, we remove all constraints and solve the unconstrained problem for

a range of factors fT and fN for each of the four initial guesses. fT is varied

from 2−13 to 213 in a geometric sequence, each subsequent value being obtained

by multiplying the current value by 10. For each value of fT , fN is varied from

2−13 to 213 in a similar manner. Thus each weight roughly ranges between

0.0001 and 10000. This results in 4 × 27 × 27 = 2916 problems out of which

97% were successfully solved. We show plots corresponding to only one of

these four solutions. Plots for the remaining solutions are similar, although

the number of problems that converge is different for each initial guess.

Figures 6.9, 6.10, and 6.11 show τ , JT and JN respectively. In each

figure, part (a) shows log of the respective quantity as a function of fT and fN

on a log-log-log scale. Part (b) is a top view of the surface plot above. Part

(c) shows slices of this surface plot at fN = 1 and fT = 1 respectively.

The “holes” in the surface plots correspond to the problems that did

not converge to a solution. In general, the surfaces are rougher and there are

more failures when fN is much larger than fT . This indicates that the problem

becomes less “stable” as the weight factors are too imbalanced. (In reality

there are more holes in the surfaces than there are non-convergent problems.

This is an unfortunate artifact of the plotting software that we use. In the

surface plot, a vertex corresponds to a problem rather than a cell. Thus,

one non-convergent problem causes all the cells that share that vertex to be

removed. The actual non-convergent problems correspond to the empty cells

of Figure 6.12).
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In this experiment, the ratio of tangential jerk weight to normal jerk

weight has been varied by nearly 8 orders of magnitude and we get solutions

in almost all cases.

From Figure 6.9, we see that the travel time increases with increase in

weights. This is expected since large weights mean that the contribution of

travel time to total discomfort is relatively low compared to the contribution

of the terms due to jerk. We also see that τ monotonically increases with fT .

For low values of fN , τ does not change appreciably with fN . As the value of

fN increases beyond a threshold, τ monotonically increases with fN . The rate

of increase of τ with respect to fT is higher than it is with respect to fN .

From Figure 6.10, we observe that log JT decreases linearly with log fT

while it is almost constant with respect to log fN . Thus, the integral of squared

tangential jerk, JT , is related to fT by a power law.

From Figure 6.11 we see that for low values of fT , JN does not change

appreciably with fT . As the value of fT increases beyond a threshold, JN

monotonically decreases with fT . A similar behavior is observed with respect

to fN although the threshold value appears lower than that for fT . Once the

values exceed the threshold, the rate of change of JN with respect to both fN

and fT is almost the same.

Thus, we see that the integral of squared tangential jerk, JT is a function

of fT alone, and travel time changes more rapidly by changing fT compared

to fN . Integral of squared normal jerk, JN is a function of both fT and fN .
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Figure 6.9: Effect of weights on travel time.
(a) Surface plot of log τ as a function of fT and fN on a log-log scale. (b) Top
view of the surface plot. (c) Slice of the surface plot at fN = 1. (d) Slice of
the surface plot at fT = 1.
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Figure 6.10: Effect of weights on integral of squared tangential jerk.
(a) Surface plot of log(integral of squared tangential jerk) as a function of fT

and fN on a log-log scale. (b) Top view of the surface plot. (c) Slice of the
surface plot at fN = 1. (d) Slice of the surface plot at fT = 1.
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Figure 6.11: Effect of weights on integral of squared normal jerk.
(a) Surface plot of log(integral of squared tangential jerk) as a function of fT

and fN on a log-log scale. (b) Top view of the surface plot. (c) Slice of the
surface plot at fN = 1. (d) Slice of the surface plot at fT = 1.

127



Whenever a relationship exist between fT or fN and any of the quantities travel

time, integral of squared tangential jerk, and integral of squared normal jerk,

it is of the form of a power law.

From this analysis, we can draw some useful guidelines for customizing

weights for comfort even though the effect of weight on discomfort is nonlinear.

Since JT is a function of fT alone, we can devise experiments that allow a user

to choose fT that keeps tangential jerk to an acceptable level. For example, we

can devise experiments that consist primarily of straight line motion, and has

zero speeds on both ends. In such a motion, normal component of jerk will

make none or minimal contribution to discomfort. Hence, it would be easy to

set fT . Next, we can devise experiments that consist of at least some curved

segments. The user can choose fN to keep normal jerk during this curved

motion to an acceptable level. Because of power law relationships, the weights

should be varied in a geometric manner rather than a linear manner for faster

customization.

Figure 6.12 shows the number of iterations taken by Ipopt to find a

solution. Apart from a few isolated outliers that require large number of

iterations, it is clear that the number of iterations is small in the region where

fT is not too small compared to fN and both factors are not too small either. If

fN is much larger than fT , the problems still converge in most cases but require

many iterations. Most of the failures are when fN is too large compared to

unity. Hence, we recommend that for customization fN should not be too large

compared to fT and both should be not too small compared to unity.
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Figure 6.12: Number of iterations for the range of weight factors.
The green cells indicate smaller number of iterations compared to red cells. It
is clear that the least number of iterations are taken in the region where both
factors are greater than 1/32 and one factor is roughly within 1/16 to 16 times
the other. The empty cells correspond to problems that failed to converge.
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6.5 Reliability

To evaluate the reliability of our method, we construct a set of 7500

problems with different boundary conditions and solve the full constrained

optimization problem corresponding to each of the 4 initial guesses for each

problem. We do not include obstacles in this test.

We generate the problem set as follows. Fix the initial position as {0, 0}

and orientation as 0. Choose final position at different distances along radial

lines from the origin. Choose 10 radial lines that start from 0 degrees and go

up to 180 degrees in equal increments. The distance on the radial line is chosen

from the set {1, 2, 4, 8, 16}. The angle of the radial line and the distance on

the line determines the final position. Choose 30 final orientations starting

from 0 up to 360 degrees (360 degrees not included) in equal increments. The

speed, v, and tangential acceleration, aT , at both ends are varied by choosing

{v, aT} pairs from the set {{0, 0} , {1,−0.1} , {1, 0} , {1, 0.1} , {3, 0}}. Thus we

have 10 radial lines, 5 distances on each radial line, 30 orientations, 5 {v, aT}

pairs, resulting in 10× 5× 30× 5 = 7500 cases.

Each problem has 189 degrees of freedom, 2018 constraints, out of

which 66 are equality constraints and 1952 are inequality constraints. For

computation of initial guess of path, we set the maximum number of iterations

to 100. For discomfort minimization problem we set the maximum number

of iterations to 200. An average of 3.6 solution paths were found for each

problem. This average would be higher if we set the maximum number of

iterations even higher. However, since we wanted to evaluate how reliably our
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method performed in a reasonable amount of computation time, we kept the

maximum number of iteration as 200.

All the problems were solved on a laptop with Intel Core i7 CPU run-

ning at 2.67 GHz, 4 GB RAM, and 4 MB cache size. Histograms of run-time

for computing initial guess of speed, initial guess of path, and solution to the

discomfort minimization problem are shown in Figures 6.14, 6.13, and 6.15

respectively. Histograms for all four initial guesses and all four discomfort

minimization problems are shown. In all these histograms, we have removed

1% or less of cases that lie outside the range of the axis shown for better

visualization. All histograms show both successful and unsuccessful cases.

From Figure 6.13 we see that than 99% or more of initial guesses of path

are computed in less than 0.2 s. From Figure 6.14 we see that 99% or more

of initial guesses of speed are computed in less than 0.12 s. From Figure 6.15

we see that 99% or more of the solutions of the full problem are computed in

less than 4 s. This is further visualized in Figure 6.16 that shows a normalized

cumulative histogram.

Histograms of number of iterations for computing final solution are

shown in Figure 6.17. On average, 90% all four solutions were computed in

100 iterations or less.
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(b) 99% solved within 0.2 s.
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(c) 100% solved within 0.2 s.
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(d) 100% solved within 0.2 s.

Figure 6.13: Histogram of time taken to compute initial guess of path.
This includes both successful and unsuccessful cases. Total 7500 cases.
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(a) 99% solved within 0.12 s.
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(b) 99% solved within 0.12 s.
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(c) 99% solved within 0.12 s.
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(d) 99% solved within 0.12 s.

Figure 6.14: Histogram of time taken to compute initial guess of speed.
This includes both successful and unsuccessful cases. Total 7500 cases.
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(c) 99% solved within 4 s.
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(d) 100% solved within 4 s.

Figure 6.15: Histogram of time taken to compute solution of discomfort min-
imization problem.
This includes both successful and unsuccessful cases. Total 7500 cases.
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(c) 99% solved within 4 s.
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(d) 100% solved within 4 s.

Figure 6.16: Normalized cumulative histogram of time taken to compute so-
lution of discomfort minimization problem.
This includes both successful and unsuccessful cases. Total 7500 cases.
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(a) 89% solved in 100 iterations or less
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(b) 88% solved in 100 iterations or less
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(c) 93% solved in 100 iterations or less
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(d) 94% solved in 100 iterations or less

Figure 6.17: Histogram of number of iterations to compute solution of discom-
fort minimization problem.
Total number of problems is 7500. The peak at 200 iterations is due to failed
cases since maximum number of iterations was set to 200.
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6.6 Discussion of Results and Limitations

Results show that our framework is capable of reliably planning tra-

jectories between a large variety of boundary conditions and for a range of

weights. 97% of 2916 unconstrained problems for a fixed boundary condition

but varying weights were solved successfully when weights were varied by 8

orders of magnitude. Out of a set of 7500 examples with varying boundary

conditions, and all dynamic constraints imposed, 3.6 solution paths, on aver-

age, were found per example. The time taken to compute the solution to the

discomfort minimization problem was less than 10 seconds for all the cases,

99% of all problems were solved in less than 4 seconds, and roughly 90% were

solved in less than 100 iterations.

We also saw that our framework can plan trajectories with a variety

of boundary conditions that avoid obstacles. We presented concrete examples

for circular, elliptical, and star-shaped obstacles.

Thus our framework, with some more speedups in run-time, can be im-

plemented for efficient and robust motion-planning of assistive mobile robots.

We will discuss possible way of achieving speedups in computational time in

Section 7.1. One of the limitations of our framework, in its current implemen-

tation, is that if the initial guess of path passes through obstacles, it may take

a large number of iterations for the optimization algorithm to converge to a

solution, and sometimes a solution may not be found. We have observed this

on some example cases and this will need a more careful analysis in the future.

One way to deal with this issue is to generate initial guesses of path that are
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obstacle free, and is part of future work.

There are many tasks in which an assistive robot must back up and

then move towards the goal. For example, if a robot is positioned at a user’s

desk, it cannot move forward. To go anywhere it must back up first. Such

tasks can be handled with the help of a high-level planner that breaks this

sequence into two and provides a set of two boundary conditions in sequence

to our framework – one for backing up and one for the goal. The intermediate

waypoint can also be chosen by an optimization process.

In our method, we impose obstacle avoidance constraints on a discrete

set of points on the path. Thus, we cannot guarantee that segments of the

path between these points will not intersect obstacles. In practice, if the

points are chosen to be close enough, so that distance between these points is

smaller than most obstacles, the path would be collision-free. Even so, sharp

pointed corners of obstacles can intersect the path. This can be resolved in

three ways. First, when we incorporate robot’s body for obstacle-avoidance an

extra margin of safety can be added. Second, we can implement an efficient

collision checker that checks the final optimal path for collisions with obstacles

by dividing it into small segments. A robot should execute this trajectory only

if the collision checker finds no collisions. Third, obstacles can be represented

with a piecewise smooth boundary curve that enloses the obstacle shape such

that sharp corners are smoothed out.
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Chapter 7

Concluding Remarks and Directions for

Future Research

We make two main contributions in this work. First, we recognize that

for an autonomous assistive robot to be acceptable to a human user, its motion

should not only be safe, it should be also be comfortable. We formalize the

notion of motion comfort in a way that can be used to compute trajectories for

an autonomous wheeled mobile robot in an optimization framework. Among

the various contributing factors to comfort, we focus on dynamic factors. For

comfortable motion, a trajectory should have the following properties – it

should boundary conditions on speed and tangential acceleration at the start

and end points, have smooth and bounded accelerations, the geometric path

should avoid obstacles, have curvature continuity, and should satisfy boundary

conditions on curvature. In the absence of relevant comfort studies for assistive

robots, we developed a characterization of discomfort based on comfort studies

for ground vehicles and studies of human arm motion. While human user

studies are required to validate this measure of discomfort, we believe that we

have taken an important first step in formalizing the notion of motion comfort

for assistive robots.
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Second, we develop a novel motion planning framework to plan tra-

jectories in small-scale space such that the trajectories minimize discomfort

and have all the properties described above. Our framework removes the

limitations of existing motion planning methods, none of which can plan tra-

jectories that have all the properties necessary for comfort. To the best of our

knowledge, this is the first comprehensive formulation of kinodynamic motion

planning for wheeled mobile robots that includes all of the following – a care-

ful analysis of boundary conditions and continuity requirements on trajectory,

dynamic constraints, obstacle avoidance constraints, and a robust numerical

method that computes solution trajectories in a few seconds.

One of the strengths of our framework is that it is easy to incorporate

additional kinematic and dynamic constraints, and additional terms can also

be incorporated in the discomfort functional. Of course, care has to be taken

to keep the problem mathematically meaningful. While this motion planning

framework was developed for assistive mobile robots, it can be applied to

motion planning of other classes of wheeled mobile robots, including robotic

cars.

Results show that our framework is capable of reliably planning tra-

jectories for a large variety of boundary conditions. For application to real-

world robotic systems, some important extensions to our framework will be

required. First, our current implementation achieves obstacle avoidance for a

point robot. We have described a method for incorporating robot shape, and

this will have to be implemented. Second, our results show that time taken
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to find a solution is of the order of seconds. This will have to be reduced a

hundred-fold to make this framework feasible to be implemented for real-time

planning. We discuss these, and several other extensions, below.

7.1 Directions for Future Research

Incorporating robot shape for obstacle avoidance. We described

a general method to incorporate arbitrary shaped robot body in Section 3.10.4.

This method consists of modeling the robot as a closed curve that encloses the

projection of its boundary in the plane of motion, choosing a set of points on

this curve, and imposing the constraints that all these points be outside all

obstacles. If m points are chosen on the boundary and there are n obstacles,

this method will result in m×n constraints. A more efficient approach may be

possible when the robot can be modeled by a simple shape such as a circle or

a convex polygon. Since most mobile robots, in practice, have simple shapes,

it is worthwhile to explore these shapes as special cases for obstacle avoidance.

Incorporating moving obstacles. One way to incorporate moving obstacles

is to frequently update a map of the world and use this updated map to

re-plan a new trajectory starting from the current state. Since our method

plans trajectories in small-scale space, and there exist efficient methods for

computing and updating a local map, moving obstacles can be avoided if the

trajectories can be planned fast enough. We used such an approach in our
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previous work [68].

For comfort of a human user, it might be useful to develop models

that estimate a moving obstacle’s trajectory, and use this trajectory during

planning. This could result in paths that have fewer changes in direction

(compared to those found by fast-re planning) and are perceived to be more

comfortable. Such obstacle models have been previously employed for motion

planning [22].

Culling obstacles intelligently. In our method, we choose a set of points on

the path, and impose the constraint that all obstacles be outside all points on

the path. In our earlier approaches, we have experimented with culling these

obstacles intelligently so that the number of obstacle constraints is reduced.

If the trajectory is well-behaved, that is, if the geometric path does not have

too many self intersections, and if one iterate does not vary too wildly from

the previous, then we may be able to achieve a reduction in the number of

constraints.

First, we can remove, in advance, all obstacles that are too far from the

initial guess of path. Second, for every point, we impose the constraint that it

be outside obstacles within its “neighborhood” rather than being outside all

obstacles. Under the above described conditions, if a point is outside obstacles

in its neighborhood, it can be expected to be outside all other obstacles that are

far from it. In our experiments with our current approach, we have observed

that the above conditions hold if the initial guess of path is outside obstacles.
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Reducing computational time. For real-time implementation, it would be

necessary to achieve at least a 10–fold or preferably a 100–fold reduction in

the computational time so that the problem is solved in one hundredth of a

second. Many steps can be taken to achieve this.

First, we have observed that when an initial guess of path is inside

an obstacle, it takes longer for the optimization algorithm to converge to a

solution. Therefore, it would be worthwhile to invest some effort in generating

an initial guess of path that is outside obstacles. This would reduce the number

of iterations required to find a solution.

Second, intelligently culling obstacles and efficiently implementing ob-

stacle avoidance constraints for special robot shapes, as discussed earlier, could

result in significant reduction in the number of constraints and faster compu-

tations in every iteration.

Third, a multi-step optimization procedure can be tried. A coarser

finite element mesh with fewer elements can be used to find a solution which

would serve as an initial guess for a problem with a finer mesh.

Finally, parallelism inherent in the problem can be exploited and parts

of the program can be executed on a GPU. For example, computation of

constraint values, gradients and Hessians can be parallelized. Other such par-

allelisms should also be exploited. In addition, many other code optimizations

can also be implemented.
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Evaluating the “goodness” of discomfort measure. We have formulated

a measure of discomfort based on comfort studies in ground vehicles such as

automobiles and trains. To the best of our knowledge, no such studies have

been conducted for assistive robots. Since discomfort is subjective, the best

way to assess comfort is to ask a user. Hence, to validate this discomfort

measure, human user studies should be conducted with enough users to yield

statistically significant data. We provide some guidelines on how such a study

may be conducted in Section 7.2 below.

Motion planning for ramps and non-planar surfaces. The motion plan-

ning framework presented in this work was developed for planning trajectories

for a wheeled mobile robot moving on a plane. This assumption holds, for

the most part, in indoor environments. For navigating in an urban outdoor

environment, an assistive robot is often required to move up and down ramps.

Since a ramp is a planar surface, a relatively simple extension of our framework

may enable motion planning for moving up and down on ramps. Navigating

sideways on ramps, and on other undulating surfaces, such as parks, would

likely require a more significant extension.

7.2 Implementation of the Motion Planning Framework
for Human Users

Once robot shape has been incorporated for obstacle avoidance and a

reasonable reduction in computational time has been achieved, this framework
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can be implemented on an assistive robot and a study with human users can

be performed. The purpose of such a study would be to either confirm that

the measure of discomfort is good by showing that multiple human users can

achieve comfort after choosing the weights, or failing that, to provide addi-

tional insight into what might be missing. Below are some guidelines on how

to implement the framework on an assistive robot and how to conduct such a

study.

• Our motion planning framework requires a representation of small-scale

space to plan trajectories. An occupancy-grid based representation of

small-scale space can be used. In such a representation, obstacles are

represented as occupied cells in the grid. See [93] for a detailed discussion

of such a representation. For efficient motion planning, these cells should

be grouped together, where possible, into a single polygonal obstacle.

When such a grouping yields an obstacle that is not star-shaped, it

should be decomposed into a union of star-shaped polygons. An efficient

algorithm for doing so can be found in [3].

• A goal state consisting of position, orientation, curvature, speed, and

magnitude of tangential acceleration, is required as input to the motion

planning framework. Position and orientation may be provided by a

human user through some input device (e.g by clicking on a map as

in [68]). Curvature should be set to zero. Speed may be specified as

zero if it is desired to stop at the final position, otherwise is should
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be a speed that is typically found comfortable by the user. Tangential

acceleration should be set to zero. For navigating in large-scale space, a

high-level planner such as that used in [68] could be used for generating

intermediate way points. Such a planner usually provides only position

and orientation. The rest of the quantities can be provided according to

the guidelines above.

• All necessary bounds should also be provided as input. The bounds in

Table 6.1 may be used as a start.

• A controller that can track the planned trajectory should be imple-

mented. We have achieved good tracking accuracy, in our previous

work [68], with a feedback-linearization based controller described in [64].

The trajectory tracking accuracy of this controller should be carefully

evaluated.

• Before performing human user experiments, the framework should be

comprehensively tested in the environment in which the users will eval-

uate it. If the environment is likely to have moving obstacles, fast re-

planning should be implemented. This requires trajectories to be com-

puted in at most a tenth of second. A relatively safe indoor environment

with no drop-offs and other hazards should be chosen and common fail-

ure cases should be identified via experimentation.

• In the first step of the study, a user should be asked to manually operate

the assistive robot on a variety of tasks. A speed that the user typically
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operates at should be determined from these tasks.

• Although a more detailed study than that described in Section 6.4 could

yield an empirical relationship between weights and the individual terms

in our discomfort measure, such a study is not an absolute prerequi-

site to performing human user studies. The two dimensionless factors

corresponding to the weights for integral of squared tangential jerk and

squared normal jerk are the parameters that should be varied in the

experiments.

• First, the weight factor for tangential jerk should be determined. To

do this, the following experiment can be conducted. Set start and end

boundary conditions such that motion is along a straight line. Set ini-

tial and final speed and acceleration to zero. Use the motion planning

framework to plan trajectories for this task for a range of weight factors

for tangential jerk. Ask the user to compare discomfort for every pair of

weights. This comparison should include subjective questions on overall

comfort as well as questions comparing the level of tangential jerk, and

asking whether the time of travel was satisfactory. Vary the total length

of the path and repeat the experiment for multiple lengths. Based on

these experiments, fix a value of this weight factor.

• Next, the weight factor for normal jerk should be determined. To do this,

the following experiment can be conducted. Set start at end boundary

conditions such that most of the motion is along a curved path. One way
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to achieve this is by choosing final position very close to the start position

such that the robot has to travel along a curve to reach the goal. Follow

a procedure similar to the one described above (for tangential jerk) to

determine the weight factor for normal jerk.

• Once the weight factors are determined, a set of motion tasks with a

variety of boundary conditions should be performed and user should be

asked to rate comfort.

• If the motion for the above tasks is found to be comfortable, then it

can be concluded that the measure of discomfort, in fact, captures user

discomfort. If not, a set of questions designed to learn what might be

missing should be asked.

• In all cases, all quantitative information such as speed, acceleration, jerk,

travel time, length of path etc., should be collected.

7.3 Summary

In this work, we formalized the notion of motion comfort for assistive

mobile robots. We developed a motion planning framework for kinodynamic

motion panning for a wheeled mobile robots moving on a plane that minimizes

user discomfort and plans safe, comfortable, and customizable trajectories. We

have outlined a method by which a user may customize the motion and pre-

sented some guidelines for conducting human user studies to validate and/or

refine the measure of discomfort presented in this work. We believe that our
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work is an important step in developing autonomous assistive robots that are

acceptable to human users.
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