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Summary

Objective: Computational concepts from robotics and computer vision hold great
promise to account for major aspects of the phenomenon of consciousness, including
philosophically problematical aspects such as the vividness of qualia, the first-person
character of conscious experience, and the property of intentionality.
Methods: We present a dynamical systems model describing human or robotic agents
and their interaction with the environment. In order to cope with the enormous
information content of the sensory stream, this model includes trackers for selected
coherent spatio—temporal portions of the sensory input stream, and a self-con-
structed plausible coherent narrative describing the recent history of the agent’s
sensorimotor interaction with the world.
Results: We describe how an agent can autonomously learn its own intentionality by
constructing computational models of hypothetical entities in the external world.
These models explain regularities in the sensorimotor interaction, and serve as
referents for the agent’s symbolic knowledge representation. The high information
content of the sensory stream allows the agent to continually evaluate these
hypothesized models, refuting those that make poor predictions. The high informa-
tion content of the sensory input stream also accounts for the vividness and unique-
ness of subjective experience. We then evaluate our account against 11 features of
consciousness ‘‘that any philosophical—scientific theory should hope to explain’’,
according to the philosopher and prominent AI critic John Searle.
Conclusion: The essential features of consciousness can, in principle, be implemen-
ted on a robot with sufficient computational power and a sufficiently rich sensor-
imotor system, embodied and embedded in its environment.
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1. Introduction

Consciousness is one of the most intriguing and mys-
terious aspects of the phenomenon ofmind. Artificial
Intelligence (AI) is a scientific field built around the
creation of computational models of mind (using not
rved.

mailto:kuipers@cs.utexas.edu
http://dx.doi.org/10.1016/j.artmed.2008.07.010


156 B. Kuipers
only logic-based methods for knowledge representa-
tion and inference, but also such methods as prob-
abilistic inference, dynamical systems, neural
networks, and genetic algorithms). Computational
approaches to understanding the phenomena ofmind
have been controversial, to say the least, but
nowhere more than when applied to the problem
of consciousness.

This paper discusses the problem of consciousness
from the pragmatic perspective of a researcher in AI
and robotics, where the focus is on how an intelligent
agent can cope effectively with the overwhelming
information content of the ‘‘pixel level’’ sensory
input stream. Since humans are agents who cope
successfully with overwhelming sensory information,
we look to evidence from humans for clues about the
more general problem and its possible solutions.
Inspired by properties of human cognition, the paper
proposes a computational model of consciousness
and discusses its implications.

1.1. Recent approaches to consciousness

There have been a number of recent books on the
problem of consciousness, many of them from a neu-
robiologicalperspective.Themoreclinicallyoriented
books [3—5] often appeal to pathological cases,
where consciousness is incomplete or distorted in
various ways, to illuminate the structure of the phe-
nomenon of human consciousness through its natural
breaking points. Another approach, taken by Crick
andKoch [6,7], examines in detail thebrain pathways
that contribute to visual attention and visual cons-
ciousness in humans and inmacaquemonkeys.Minsky
[8], Baars [9], andDennett [10] proposearchitectures
whereby consciousness emerges from the interac-
tions among large numbers of simple modules.

Philosophical writings on consciousness are useful
where they help define and clarify the different
questions to be answered. A particularly important
distinction is between the ‘‘Easy’’ and ‘‘Hard’’ pro-
blems of consciousness [11]. The ‘‘Easy Problem’’ is
relatively congenial to AI/robotics researchers and
sympathizers [8—10], since it asks, What does con-
sciousness do for the agent, and how does it work?
Neuroscientists [6,7,12] ask amore restricted version
of this question, What are the neural correlates of
consciousness? The ‘‘Hard Problem’’ is far less tract-
able than either of these, since it asks, Why does
subjective experience feel like it does? In fact, how
can it feel like anything at all? This is closely tied to
the question of the nature of ‘‘qualia’’ or ‘‘raw feels’’
[10,13]. The core issue behind the famous ‘‘Chinese
Room’’ story [14] is the problem of Intentionality,
which is, How can knowledge in themind of an agent
refer to objects in the external world?
In John Searle’s recent book on the philosophy of
mind [15], he articulates a position he calls biolo-
gical naturalism that describes the mind, and con-
sciousness in particular, as ‘‘entirely caused by
lower level neurobiological processes in the brain.’’
Although Searle rejects the idea that the mind’s
relation to the brain is similar to a program’s rela-
tion to a computer, he explicitly endorses the notion
that the body is a biological machine, and therefore
that machines (at least biological ones) can have
minds, and can even be conscious. In spite of being
nothing beyond physical processes, Searle holds that
consciousness is not reducible to those physical
processes because consciousness ‘‘has a first-person
ontology’’ while the description of physical pro-
cesses occurring in the brain ‘‘has a third-person
ontology.’’ He lays out 11 central features of con-
sciousness ‘‘that any philosophical—scientific theory
should hope to explain.’’

In the following sections, I discuss the Easy Pro-
blem, the Intentionality Problem, and the Hard
Problem of consciousness from perspective of the
information-processing problems the robot must
solve. I conclude after discussing how this approach
responds to Searle’s 11 features of consciousness.

1.2. Overview

The key ideas here are the following:
1. T
he sensory data stream presents information to
the agent at an extremely high rate (gigabits/s).
2. T
his information is managed and compressed by
selecting, tracking, and describing spatio—tem-
poral portions of the sensory input stream.
3. A
 plausible coherent narrative is constructed to
describe the recent history (500 ms or so) of the
agent’s sensorimotor interaction with the world.
4. A
n agent can autonomously learn its own inten-
tionality by constructing computational models
of hypothetical entities in the external world.
These models explain regularities in the sensor-
imotor interaction, and serve as referents for the
agent’s symbolic knowledge representation.
5. T
he high information content of the sensory
stream allows the agent to continually evaluate
these hypothesized models, refuting those that
make poor predictions.
6. T
he high information content of the sensory
input stream accounts for the vividness and
uniqueness of subjective experience.

2. The Easy Problem

The ‘‘Easy Problem’’ is: What does consciousness do
for us, and how does it work? Only a philosopher
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Figure 1 Dynamical model of a cognitive agent. A cog-
nitive agent can be modeled at a high level as a dynamical
system interacting with its environment. For the cognitive
agent, its physical body is part of its environment. At any
time t, the agent receives a sense vector zðtÞ and sends a
motor vector uðtÞ to the world. The robot’s body has state
vector xðtÞwhose derivative is denoted ẋðtÞ, and the state
vector of the rest of the world is described by wðtÞ and
ẇðtÞ. The functions F and G represent the physics of the
world and the sensor model, and neither is known to the
agent. The agent acts by selecting a control law Hi based
on the current sensor input z and the symbolic state m of
its internal computational processes. Given this control
law, Eqs. (1), (2) and (6) define a dynamical system,
describing how the robot-environment system evolves
until a new control law is selected. Meanwhile, trackers
tk (Eq. (3)) contribute dynamic descriptions to the com-
putational state m. The robot’s behavior alternates
between (a) following a trajectory determined by a par-
ticular dynamical system until reaching a termination
condition, and then (b) selecting a new control law H j

that transforms the coupled robot-environment system
into a different dynamical system, with different trajec-
tories to follow [36,1].
could call this problem ‘‘Easy’’, since solving it will
likely require decades at least, and dozens or hun-
dreds of doctoral dissertations. What the name
means is that scientists applying the methods of
various disciplines have been able to formulate
useful technical statements of the problem, and
they have tools that apply to those problem state-
ments. Progress may be difficult, but we know what
it means. (The ‘‘Hard Problem’’ does not enjoy these
benefits.)

2.1. Drinking from the firehose of
experience

To a researcher in AI and robotics, one of the driving
forces behind cognitive architecture is the need to
cope with the enormous volume of sensory data,
arriving on many asynchronous channels. The sensor
stream zðtÞ in Fig. 1 is what I call ‘‘the firehose
of experience’’–—the extremely high bandwidth
stream of sensor data that the agent must cope
with, continually. (A stereo pair of color cameras
alone generates data at over 440 megabits per s.1)
For a biological agent such as a human, the sense
vector z contains millions of components represent-
ing the individual receptors in the two retinas, the
cochleal cells in the two ears, and the many touch
and pain receptors over the entire skin, not to
mention taste, smell, balance, proprioception,
and other senses.2 With such a high data rate, any
processing applied to the entire sensor stream must
be simple, local, and parallel. In the human brain,
arriving sensory information is stored in multiple
short-term memory buffers, remains available for a
short time, and then is replaced by newly arriving
information [7].

In a biological agent, the motor vector u includes
control signals for hundreds or thousands of indivi-
dual muscles. An artificial robot could have dozens
to hundreds of motors (though a simple mobile robot
will have just two).

Following Harnad’s extension [17] to Searle’s
Chinese Room metaphor [14], in addition to com-
paratively infrequent slips of paper providing sym-
bolic input and output, we can visualize the room as
receiving a huge torrent of sensory information that
rushes in through one wall, flows rapidly through the
room, and out the other wall, never to be recov-
ered. Inside the room, John can examine the stream
as it flows past, and can perhaps record fragments of
1 2 cameras� 640� 480 pixels/frame/camera� 24 bits/pixel
�30 frames/s ¼ 442 megabits/s.
2 Because of differences in coding and processing, the compar-

ison between camera and retina is not straight-forward. Koch,
et al [16] estimate that a retina transmits approximately 10
megabits/s to the brain.
the stream ormake new symbolic notations based on
his examination, in accordance with the rules spe-
cified in the room.

2.2. Trackers bridge the gap

The ‘‘firehose of experience’’ provides information
at a rate much greater than the available symbolic
inference and storage mechanisms can handle. The
best we can hope for is to provide pointers into the
ongoing stream, so that relevant portions can be
retrieved when needed.

The primitive elements in this architecture are
called trackers. Each tracker (e.g., tk in Eq. (3) in
Fig. 1) can be thought of as having two ends. One
end consists of a number of pointers into the fire-
hose of experience, designating a spatio—temporal
region in the input stream zðtÞ, tracking that region
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as its natural boundaries evolve in real time. The
other end consists of a dynamic symbolic represen-
tation mkðtÞ of that particular portion of sensory
experience, supporting inference about its static
properties, its current state, and its history. The
symbolic representation is ‘‘dynamic’’ in the sense
that the values of certain attributes are automati-
cally updated in real time by processes operating on
the tracked elements of the sensory stream. For
example, one tracker might describe the changing
location and shape of a pedestrian walking through
the agent’s field of view. Another might dynamically
describe the agent’s pose within the frame of refer-
ence of the enclosing room as the agent moves
through it.

Quine [18] describes human knowledge as a sym-
bolic ‘‘web of belief’’ anchored at the periphery in
sensory experience. Trackers are the anchoring
devices for symbols. We say that a tracker is bound
to a spatio—temporal segment of the sensor stream
when that portion of ongoing experience satisfies
the criteria of the tracker’s defining concept, and
when tracking is successful in real time. The tracker
mediates between signal processing and symbol
manipulation. At the signal processing end, the
tracker implements a dynamical system keeping
its pointers corresponding as closely as possible with
the relevant portion of the sensor stream. At the
symbol manipulation end, the tracker serves as a
logical constant, with time-dependent predicates
(fluents [19]) representing the attributes of the
tracked object.

The location of the tracker within the sensor
stream is regulated and updated by control laws
[20], including dynamic state-estimation methods
such as Kalman filters [21], responding to the image
properties expected for the tracked concept and
their contrast with the background.3 Image proces-
sing strategies such as dynamical ‘‘snakes’’ [23]
represent changing boundaries between figure and
ground. With adequate contrast, the fine temporal
granularity of the sensor stream means that updat-
ing the state of the tracker is not difficult. With
increasing knowledge about the dynamics of the
tracked object and its sensor image, the tracker
can maintain a good expectation about the relevant
portion of the sensor stream even in the presence of
occlusion, poor contrast, and other perceptual pro-
blems.

The idea of trackers is not new. Versions of the
sensorimotor tracker concept include Minsky’s
‘‘vision frames’’ [24], Marr and Nishihara’s ‘‘spatial
models’’ [25], Ullman’s ‘‘visual routines’’ [26], Agre
3 This technology for tracking objects in the sensor stream has
its roots in radar signal interpretation from the 1940s [22,21].
and Chapman’s ‘‘indexical references’’ [27], Pyly-
shyn’s ‘‘FINSTs’’ [28], Kahneman and Triesman’s
‘‘object files’’ [29], Ballard, et al., ‘‘deictic codes’’
[30], and Coradeschi and Saffiotti’s ‘‘perceptual
anchoring’’ [31].

Trackers make it possible to ‘‘use the world as its
own model’’, directing attention to a particular
aspect of the world to answer a query, rather than
attempting to retrieve or infer an answer from
stored knowledge [32,33]. Trackers may have a
hierarchical structure, allowing the sensory image
of a person, for example, to be tracked at varying
levels of detail: entire body; head-torso-arms-legs;
upper-arm-forearm-hand; palm-fingers; etc [25].

2.3. Creating a plausible coherent
narrative

The cognitive architecture must be organized to
make use of the information provided by the track-
ers. There appears to be a growing consensus that
the mind includes a collection of processes that
interact to create a plausible coherent narrative
from its multiple parallel asynchronous sensory
input streams [34,7]. This narrative is the agent’s
explanation to itself of what is going on around it.
Just as an individual tracker provides an index into
the sensory stream corresponding to a symbolic
description, this plausible coherent narrative pro-
vides organizing structure on a temporal window
into the agent’s recent experience.

There is much work to be done to determine the
precise structure of this architecture, but a con-
sensus appears to be emerging on some sort of
shared memory architecture such as Baars’ Global
Workspace Theory [9], drawing on Minsky’s ‘‘Society
of Mind’’ [8], Dennett’s ‘‘multiple drafts’’ [10], and
others. Neuroscientists in search of the ‘‘neural
correlates of consciousness’’ [7,35] are identifying
neural processes in the brain that appear to be
participating in a similar architecture.

Natural selection ensures that, on average, these
processes must do a pretty good job of describing
the relevant objects and events in the external
world. Some of the processes are innate to the
individual, wired into the brain, but were ‘‘learned’’
by the species over evolutionary time. Other pro-
cesses are learned by the individual from its own
experience.

2.4. Defining consciousness

Addressing the Easy Problem, we claim that Fig. 1
provides a high-level description of what conscious-
ness does for the agent and how it works function-
ally. This includes:
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1. A
4

com
high-volume sensor stream zðtÞ and a motor
stream uðtÞ that are coupled, through the
world and the robot’s body, as described by
Eqs. (1) and (2);
2. A
 non-trivial collection of trackers mkðtÞ ¼
tkðzðtÞÞ grounded in the sensor stream (Eq.
(3)) capable of providing dynamically updated
symbolic descriptions for the agent’s knowledge
representation system, with top—down and bot-
tom—up activation methods;
3. A
 non-trivial collection of control laws uðtÞ ¼
HiðzðtÞ;mðtÞÞ (Eqs. (5) and (6)) from which the
agent can select to implement reasonably reli-
able actions in the world;
4. A
 process for creating a plausible coherent nar-
rative (which is part ofmðtÞ, the agent’s internal
model of itself and its environment) to explain
the history of events in the agent’s recent experi-
ence;
5. A
 sufficiently good correspondence between the
actual properties of action and perception in the
physical world (1) and (2), and the agent’s sym-
bolic theory of the world (mðtÞ (Eq. (4)) including
symbols grounded via trackers (3) and actions
implemented by control laws (5) and (6), so that
the agent can interact effectively with its world.
(This correspondence is the subject of the Inten-
tionality Problem.)

The creation of the plausible coherent narrative
is important. The narrative describes the events and
activities that occupy the focus of consciousness.
According to Global Workspace Theory [9], pro-
cesses operating on the plausible coherent narrative
determine which trackers fall within the ‘‘spotlight
of consciousness’’, making them globally visible to
the ‘‘audience’’ of active processes,4 and which may
simply participate in low-level control loops without
conscious experience. Sometimes the shifts in the
focus of consciousness from one thing to another
have explanations in terms of events represented in
the narrative (‘‘Suddenly there was an explosion!’’
or ‘‘She walked into the room.’’), but other times,
the cause of the shift may not be a represented
event, so it appears to ‘‘just happen’’, like flipping
the Necker cube.

Strictly speaking, this management of attention
may not require a subjective, first-person view of
the world (Sections 5.1 and 5.2). However, McDer-
mott [37] and others argue that vivid conscious
experience — the experience of qualia — is a retro-
spective phenomenon, using the plausible coherent
narrative to access portions of the sensory input
This language simply describes access to a shared-memory
munication channel, not a homunculus.
stream from the recent past. ‘‘Recent’’ in this case
means within the last 50—500 ms, so a great deal of
sensory information remains available in short-term
sensory memory.
3. The Intentionality Problem

The ‘‘Intentionality Problem’’ is: How can symbols in
an internal cognitive knowledge representation
refer to objects and events in the external world?
Or equivalently, Where does meaning come from?
The core of Searle’s ‘‘Chinese room’’ argument [14]
is that the mind necessarily has intentionality (the
ability to refer to objects in the world), while
computation (the manipulation of formal symbols
according to syntactic rules) necessarily lacks inten-
tionality. Therefore (claims Searle), the mind must
be more than a computation.

The same problem comes up in a much more
pragmatic form in point 5 of the definition of con-
sciousness presented previously, which specified
that the internal knowledge representation,
grounded by trackers in the sensory input stream,
must correspond sufficiently well with the proper-
ties of the external world for useful predictions and
actions to be possible. Since the agent has no direct
access to the state of the world, and its only indirect
access is through its own sensory andmotor streams,
the problem of establishing and maintaining such a
correspondence is critical.

Note that Searle, and I, and everyone else, are
born locked inside our own skulls, receiving coded
information along nerve fibers, and sending coded
responses along other nerve fibers. We humans face
the same intentionality problem as the Chinese
Room. The source of the meaning by which knowl-
edge representations refer to the external world is
as much a mystery for biological humans as it is for
computational systems.

3.1. Learning from the pixel level

We have taken significant steps toward learning a
hierarchy of models that explain ‘‘pixel level’’ input
in the sensory stream in terms of hypothesized
entities such as places, paths, objects, and so on.
The Spatial Semantic Hierarchy [38,36] maps an
unknown environment by identifying locally distinc-
tive states and linking them into a topological map.
The ability of a symbol to refer to a distinctive state
in the physical environment depends on the beha-
viors of the dynamical systems defined by the con-
trol laws, not on any pre-existing intentionality in
the set of symbols. Pierce and Kuipers [39] showed
that these control laws could be learned from the
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Figure 2 (a) A simulated robot applies the SSH exploration and mapping strategy. (b) A portion of the topological graph
of distinctive places and connecting path segments identified from the behaviors of control laws in the environment.
From Kuipers and Byun [38].
dynamical regularities in the robot’s own experi-
ence with its uninterpreted sensors and effectors,
constrained by their causal connections with the
environment.

In the Spatial Semantic Hierarchy (SSH) [36], a
robot explores and maps an unknown environment
by identifying neighborhoods within which hill-
climbing control laws can bring the robot reliably
to isolated locally distinctive states. A trajectory-
following control law carries the robot reliably
from one distinctive state to the neighborhood
of another, where hill-climbing brings it to the
next distinctive state and prevents the accu-
mulation of position error. The robot can thus
abstract the continuous environment to a discrete
topological map, with symbols representing places
and paths, as well as distinctive states and the
actions linking them. Fig. 2 shows the behavior
trace of a robot exploring a simulated environ-
ment, hill-climbing to distinctive states equidi-
stant from multiple obstacles, and following
trajectories defined by midline- or wall-following
control laws.

For the robot to learn these symbols for itself, it
must learn its own collection of hill-climbing and
trajectory-following control laws, starting with an
uninterpreted set of sensors and effectors. Pierce
and Kuipers [39] accomplished this task for a simu-
lated robot with unknown sensors and effectors,
which required learning the structure of a ring of
sonar-like range sensors and learning an abstract
model of turn and travel motor commands in terms
of the velocities of the right and the left wheels.

Fig. 3 shows a lattice of learning methods that
analyze data from several different experiments,
building a progressively richer description of the
sensory and motor systems, eventually supporting
the creation of hill-climbing and trajectory-follow-
ing control laws. Fig. 4 shows exploration traces
corresponding to three different levels of compe-
tence during learning.

The steps of the learning process are [39,40]:
(1) G
ather observations during random sequences
of actions. First, coarsely cluster the sensors
according to the qualitative properties of a
histogram of values returned by each sensor.
Then, within appropriate clusters, compute
pairwise correlations among sensor values and
interpret them as similarity measures.
(2) A
ssign the sensors in a cluster to positions in a
high-dimensional mathematical space reflecting
their pairwise similarities. Project to a low-
dimensional subspace (2D in our examples) that
best accounts for most of the variance in the
cluster. Once sensor values have a spatial as well
as temporal dependence, we can calculate spa-
tial as well as temporal derivatives, and thus
define motion fields.
(3) T
he motion fields corresponding to different
motor signals are analyzed using principal com-
ponent analysis to determine the most signifi-
cant motion effects and the motor signals that
correspond to them. These signals are used as
the natural primitives for the motor space.
(4) H
igher-level sensory features are proposed,
based on the spatial and temporal attributes
of the field of primitive sensory values. These
include features such as discontinuities, local
minimum and local maximum, with magnitude,
position, and scope. Proposed features are eval-
uated according to stability, predictive power,
and extensibility.
(5) E
vidence is collected of the effects of primitive
motor commands on higher-level features,
searching for motor commands that change
features in predictable ways. ‘‘Local state vari-
ables’’ are defined for particular neighborhoods
in the environment. Trajectory-following and
hill-climbing control laws are defined according
to which local state variables correspond to
features that are both observable and control-
lable.
(6) O
pen-loop control laws are defined by identify-
ing commands that reliably change one feature
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Figure 3 The lattice of learning methods and their results, from Pierce and Kuipers [39].
while keeping another one relatively constant.
An open-loop control law terminates when the
deviation of the ‘‘relatively constant’’ features
passes a threshold. Closed-loop control laws are
defined by searching for and identifying com-
mands that can reduce deviations in the rela-
tively constant feature, actively keeping it close
to a desired setpoint. (Think of moving along a
wall, turning slightly to maintain a desired dis-
tance from it. Compare Fig. 4(b) and (c).)
Higher-level sensory and motor features are
learned without drawing on prior knowledge of
the robot’s environment. They are learned by
identifying statistical and dynamical regularities
in the experiences the robot receives after send-
ing motor commands. In these experiments,
the concepts whose intentionality is learned by
the robot itself are a set of specific distinctive
states (position and orientation), and the places
and paths that make up a topological map of the
environment.

Modayil and Kuipers [41] have developed these
into methods for learning to individuate, track, and
describe coherent objects from the ‘‘blooming,
buzzing confusion’’ of sensory input, and then to
learn meaningful actions to perform on them.

3.2. Learned models must be reliable, or
else!

The learning agent constructs a model of the world.
Each tracker posits the existence of external enti-
ties whose projections onto the sensors account for
its portion of the sensory stream. The properties of
those entities are inferred from, and account for,
the information observed in the sensory stream. This
is a version of Quine’s ‘‘web of belief’’ [18].

The meanings to which the symbols in the agent’s
knowledge representation refer are the entities in
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Figure 4 Exploring a simple world at three levels of competence. (a) The robot wanders randomly while learning a
model of its sensorimotor apparatus. (b) The robot explores by randomly choosing applicable homing and open-loop path-
following behaviors based on the static action model while learning the dynamic action model (see text). (c) The robot
explores by randomly choosing applicable homing and closed-loop path-following behaviors based on the dynamic action
model. From Pierce and Kuipers [39].
that constructed model. Meanings therefore do not
reside in the external world, but in the constructed
model we build of it. If the agent’s constructed
model corresponds sufficiently well with the exter-
nal world, then it can function effectively, and it has
created its own intentionality. When the internal
model and external world diverge, plans and pre-
dictions fail. The sensory system provides relevant
information that may be used to correct the model.
If the divergence is sufficiently serious, the agent
becomes non-viable, so natural selection ensures
the quality of the constructed model.
4. The Hard Problem

We are not zombies (or at least I am not). Why not? It
is undeniable that many experiences ‘‘feel like’’
something. Pain hurts, sugar tastes sweet, the sight
of a loved one raises feelings that are strong and
real, even though they cannot be fully articulated.
In the words of Francisco Varela, ‘‘. . .consciousness
feels so personal, so intimate, so central to who we
are, . . .’’ ([42], p. 226).

The ‘‘Hard Problem’’ of consciousness is: ‘‘Why
does consciousness feel like anything at all?’’ Sup-
pose we accept that the mind is a computation,
running on the physical substrate of the brain. Why
should a computational process — even one that
creates trackers, builds a plausible coherent narra-
tive from its experience, and constructs its own
intentionality — feel like anything at all to the owner
of the brain?

This problem is Hard, even to a philosopher. So far
it has resisted all attempts even to state what it
would mean to provide a solution. It’s not just that
we cannot find a solution. We cannot even figure out
what a solution would look like.

However, perhaps we can sneak up on the Hard
Problem and get a closer peek at what makes it tick.
Rather than directly approach the question of why
anything feels like anything at all, we will ask why
some experiences are more vivid than others. My
claim is that the vividness of subjective experience
— of qualia — is directly related to its information
content.

4.1. Why are some experiences more
vivid than others?

Looking now at the apple sitting in front of me, I
experience a vivid perceptual image. This apple is
very round, and a light greenish-yellow with a few
brownish-red streaks. (Someone else might describe
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5 Furthermore, as Sloman and Chrisley observe [43], even bit-
by-bit identity of stored representations would not imply that the
experiences of two agents were the same, since the interpreta-
tion of those representations depends on the entire computa-
tional context of each agent.
it as yellowish-green or with reddish-brown
streaks.) This is a classic quale, a primary sensory
experience. I claim that it is vivid, in part, because
my internal symbolic concept of this apple is directly
bound to the corresponding region in my sensory
input stream, which provides a huge flow of infor-
mation in real time.

Revising these words now, somemonths later, my
recalled image of that apple is not nearly as vivid as
the experience itself. I can recall fragments of the
sensory experience of perceiving the apple, but
they are clearly incomplete. Evenwith effort, there
are questions about the apple that I cannot answer
now, with the amount of stored information avail-
able to me, that could have been effortlessly
answered during the experience itself, simply by
shifting my focus of attention within the sensor
stream.

Just now, you the reader have read descriptions
of my experience with a particular apple. But it is
not your apple, or your experience, so your concept
of this apple is much less vivid than either direct
experience or personal memory.

These stories illustrate three widely separated
points on a spectrum of the vividness of subjective
experience. In each case, the information content
of a particular experience is determined by the
number of alternatives in the universe of possible
experiences this one was drawn from. Ongoing
visual experience of a particular object has the
information content of the support for the tracker
for that object in the sensory stream. The percep-
tion of an object is much more vivid when the
observer fixates on it, which means that its image
falls on the foveas in the two retinas, so many more
receptive fields contribute information to the
object’s tracker.

The stored memory of a personal experience
must contain far less information than the original
experience, but that amount of information must
still be very large, since it can apparently contain
some sort of sensory snapshots as well as symbolic
descriptions. A written word such as ‘‘apple’’ is
encoded in a few dozen bits. Thus, differences in
vividness appear to correspond well with differ-
ences in information content.

4.2. Why is subjective experience so
personal?

Like the proverbial snowflakes, no two separately-
created multi-mega-pixel digital camera images are
ever identical, simply because of the huge number
of bits they encode, and the number of unpredict-
able physical processes that determine those bits.
Likewise with sensory experiences.
Each fragment of the sensory stream during
direct experience, and even each sensory snapshot
stored in long-term memory, has huge information
content. The large number of bits in a particular
sensory experience makes it astronomically unlikely
that any other individual could have precisely the
same experience.5

The long-term episodic memory of an adult con-
tains an enormous number of representations of
particular sensory experiences. If the stored repre-
sentation of one experience is astronomically unli-
kely to be duplicated, the entire collection is far
more likely to be unique and personal to the indi-
vidual agent.

This combinatorial argument is strengthened
further by the observation that long-term memory
includes not only snapshots of experience, but
also an intricate web of associative links among
concepts. Many of these links correspond to famil-
iar semantic relationships (e.g., generalization,
specialization, part-of, plus concept-specific
relations). These are important, but they reflect
structures in the external world that might be
learned in similar form by different agents. How-
ever, there are also associations from vivid sensory
images (for example, a characteristic smell) to
episodes buried deep within long-term memory.
Not only does the configuration of such links
further increase the information content of long-
term memory, but the unpredictability and
distinctiveness of that collection of links would
be evident to the individual agent from its own
experience.

Note that this argument depends on the number
and unpredictability of the low-level processes that
create sensory experiences (and to a lesser extent,
on the richness of the environment). If the memory
of an artificial agent is created purely through
symbolic input, or if bulk memory can be backed
up and restored as with a disk drive, then it may
become possible to create complex individuals that
have identical memory states, at least momentarily.

4.3. Why does subjective experience feel
like anything at all?

In sneaking up on the Hard Problem, we have
focused on why different experiences feel different.
We have not solved the Hard Problem of why sub-
jective experience feels like anything at all.
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When a question is this difficult, perhaps it is a
non-question. As molecular biologists continue to
tease out the mysteries of the genetic code, mole-
cular self-replication, and the functioning of the
complex machinery by which the genes influence
the cells, they have not identified a specific answer
to the question, What is life? There is no magical
elixir that distinguishes non-living from living mat-
ter. Rather, when examined closely, there is a vast
spectrum of complexity of molecular behavior.

Perhaps the same is true of subjective experience.
Thermostats and autofocus cameras interact with
their environments in response to their perceptions,
but their versions of Fig. 1 are too simple to have
recognizable subjective experience. We humans are
vastly more complex in terms of the numbers and
variety of processes taking place. Perhaps subjective
experience just is the operation of a highly complex
information-processing mechanism with very high
information content as well as input and output.

Subjective experience feels like it does because,
in the first instance, our bodies are designed to
process certain information in certain ways. Pain
is insistent and intrusive because its biological pur-
pose is to attract our attention to a threat. We learn
to experience higher-level sensations through their
associations with everything else in our cognitive
states.

By this argument, just as biologists seldom ask
themselves, ‘‘What is life?’’, cognitive scientists
(including roboticists) need not dwell on the Hard
Problem. The Easy Problem and the problem of
Intentionality both have functional import, and
are likely to provide plenty for us to do.
5. Evaluating a theory of
consciousness

It is not yet possible to build a robot with sufficiently
rich sensorimotor interaction with the physical
environment, and a sufficiently rich capability for
tracking and reasoning about its sensor and motor
streams, to be comparable with human conscious-
ness. The remaining barriers, however, appear to be
technical rather than philosophical.

We begin evaluating this theory of consciousness
by discussing how well such a computational model
might account for 11 central features of conscious-
ness ‘‘that any philosophical—scientific theory
should hope to explain’’ ([15], pp. 134—145). Each
of the following subsections is titled with Searle’s
name for a feature, followed by a quote from his
description of it.

For some of these features — Qualitativeness,
Subjectivity, Intentionality, Distinction between
Center and Periphery, and Active and Passive —
the dynamical tracker model of consciousness pro-
vides a specific explanation. For other features —
Sense of Self, Unity, Situatedness, Gestalt Struc-
ture, Mood, and Pleasure/Unpleasure — there may
be several possible explanations, all of which are
expressible within the dynamical tracker model.
5.1. Qualitativeness

Every conscious state has a qualitative feel to it.
. . .[This includes] conscious states such as feeling a
pain or tasting ice cream . . .[and also] thinking two
plus two equals four ([15], p. 134).

The vividness, intensity, and immediacy of sub-
jective experience are due to the enormous infor-
mation content of the sensor stream zðtÞ. There’s a
difference between thinking about the color red
with my eyes closed in a dark room, and the immedi-
ate experiences (qualia) of seeing a red rose or
apple or sunset. The intensity of subjective experi-
ence increases with the information content of the
input: from text or verbal descriptions, to viewing a
color photograph, to memories or dreams of experi-
ences, to live multisensory experience.

Trackers do not capture the experience itself, but
they provide structure to William James’ ‘‘one great
blooming, buzzing confusion’’. By providing rapid
access to specified parts of the sensory stream,
trackers (in vision at least) maintain the illusion
that the entire visual field is perceived with the
same high fidelity as the point of foveal attention
[30,33].

If an attribute value such as the color red is stored
as a symbol ‘‘red’’ in memory, its information con-
tent is determined by the number of other possible
color symbols that could have been stored as a value
of that attribute: at most a dozen bits or so. On the
other hand, if a tracker is bound to a region in the
sensor stream, the number of bits of color informa-
tion streaming past, even in a small region, is orders
of magnitude larger.

The higher information content of the sensor
stream means that attribute values drawn from
sensory experience necessarily include more dis-
tinctions than are available in, for example, com-
mon vocabulary. The reds of roses, apples, and
sunsets are different, though their distributions
may overlap. The agent who has experienced these
qualia possesses more distinctions than one who has
not, and can recognize the rarity of a sunset-colored
rose.

Although it is implausible for the entire sensory
stream to be stored in long-term memory, at least
some qualia (e.g., the pain of a kidney stone or the
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smell of a freshly-baked madeleine) can be stored in
memory and can serve as associative links to mem-
ories of previous experiences. The high information
content of a quale makes it possible to select out a
single distinctive association from the huge contents
of long-term memory.

There is a compelling argument that perception
requires abduction [44]. There must be a process
that proposes hypotheses to account for ongoing
sensor data. If this process were purely bottom—
up (i.e., driven by the sensor data), then in the
absence of the sensor stream, no hypotheses would
be generated and no perception would take place.
However, experience suggests that there are signif-
icant top—down and perhaps random processes for
generating hypotheses. Under conditions of sensory
deprivation, people tend to hallucinate, that is, to
generate perceptual hypotheses poorly grounded in
sensor input [45].

The practical value of qualia is that they help
keep the hallucinations down. Symbolic (logical)
theories are subject to multiple interpretations.
Larger theories have fewer interpretations. Sensory
grounding through trackers provides a huge number
of additional axioms to such a theory, and thereby
constrains its possible interpretations. Active track-
ers provide strong evidence, solidly grounded in the
sensor stream, to eliminate incorrect perceptual
hypotheses. Thus, the qualitativeness of experience
corresponds to the high information content of the
sensor stream, which is pragmatically important to
the cognitive agent because it helps to keep the
generation and refutation of perceptual hypotheses
in balance.

5.2. Subjectivity

Because of the qualitative character of conscious-
ness, conscious states exist only when they are
experienced by a human or animal subject. . . .
Another way to make this same point is to say that
consciousness has a first-person ontology ([15], p.
135).

Consciousness is experienced exclusively from a
first-person point of view. (I reject Searle’s explicit
restriction of conscious experience to ‘‘a human or
animal subject’’.)

What it means for an agent to have a first-person
point of view is for it to have access to the sensor and
motor streams from its own body. That is, its body is
physically embedded in the world, and Eqs. (1) and
(2) describe the causal path from its actions u to its
perceptions z. By selecting a control law Hi, the
agent creates a causal path from its sensory input z
to its motor output u, closing the loop and giving it
some degree of control over its body. Only the agent
itself has access to the sensor stream zðtÞ from its
own body, or to the motor output stream uðtÞ, and
only the agent is in a position to select and impose a
control law Hi relating them. (This individuation
reflects biology. Robots may not have the same
constraints. Also see the 1999 movie, Being John
Malkovich.)

The agent can learn from experience which
aspects of its perceptions are under its direct con-
trol, and which are not, therefore learning to sepa-
rate its concept of itself (x) from its concept of its
environment (w) [46,47]. This distinction comes not
from anatomy, but from the existence of tight con-
trol loops. Virtual reality and telepresence are sub-
jectively compelling exactly because humans are
quickly able to learn novel models of senses,
actions, body, and world from interactive experi-
ence.

Exceptions to the agent’s privileged access to its
own sensorimotor system confirm this description of
the first-person point of view. Searle ([15], p.142)
cites an experiment by the neurosurgeon Wilder
Penfield, who was able to stimulate a patient’s
motor neurons directly, to raise the patient’s arm,
prompting the patient to say, ‘‘I didn’t do that, you
did.’’ This corresponds to the surgeon being able to
set uðtÞ directly, without the patient selecting a
control law.

5.3. Unity

At present, I do not just experience the feelings in
my fingertips, the pressure of the shirt against my
neck, and the sight of the falling autumn leaves
outside, but I experience all of these as part of a
single, unified, conscious field ([15], p. 136).

We experience the audio—visual surround as a
single unified field, continuous in space and time, in
spite of a variety of contradictory findings about our
actual sensory input [7]. For example, the fovea has
vastly higher resolution than the periphery of the
retina, and the blind spot has no resolution at all.
The density of color-receptive cones is even more
strongly biased toward the foveal area and away
from the periphery. Auditory and visual evidence
from the same event reaches the brain at different
times.

The apparent unity of perception is a plausible
coherent narrative, constructed 50-500 ms after the
fact from evidence from parallel and irregular
sources [30,33]. Several mechanisms and cognitive
architectures have been proposed to explain how
this narrative is constructed. For example, Minsky’s
‘‘Society of Mind’’ [8], Baars’ ‘‘Global Workspace
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Theory’’ [9], Dennett’s ‘‘Multiple Drafts Model’’
[10], and others, propose that consciousness arises
from the interaction of many simple cognitive mod-
ules that observe and control each other. The gen-
erally-linear stream of conscious thought is
constructed, typically in fragments, by these mod-
ules from each others’ outputs. Within this kind of
architecture, trackers are the modules that inter-
face between the sensor stream and the symbolic
cognitive modules.

A number of technical and scientific questions
remain to be answered about how the coherent
conscious narrative is actually constructed from
parallel and irregular sources of input. Global Work-
space Theory [9,34] appears to be the current best
detailed computational model of this process.

In robotics, the Kalman Filter [21] is often used to
predict the most likely trajectory of a continuous
dynamical system (along with its uncertainty), given
a model and an irregular collection of sensor obser-
vations (along with their uncertainties). The tech-
nical methods are different, but philosophically, the
slightly retrospective construction of a plausible
coherent narrative from irregular observations is
no more problematical than a Kalman Filter.

5.4. Intentionality

My present visual perception, for example, could
not be the visual experience it is if it did not seem to
me that I was seeing chairs and tables in my immedi-
ate vicinity. This feature, whereby many of my
experiences seem to refer to things beyond them-
selves, is the feature that philosophers have come
to label ‘‘intentionality’’ ([15], p. 138).

The core of Searle’s ‘‘Chinese room’’ argument
[14] is that strong AI commits a category error with
regard to intentionality. The mind necessarily has
intentionality (the ability to refer to objects in the
world), while computation (the manipulation of
formal symbols according to syntactic rules) neces-
sarily lacks intentionality. Therefore, the mind can-
not be a computation.

However, intentionality is exactly what the
tracker for a high-level concept delivers: it binds
a portion of the current sensor stream to the sym-
bolic description of an object (believed to be) in the
external world. The relationship of intentionality
follows from the causal connection from the exter-
nal, physical world to the contents of the sensor
stream, and thence to the internal symbols created
by the trackers.

Searle’s response to the ‘‘Robot Reply’’ [14]
acknowledges the importance of the causal connec-
tion between a robot’s sensorimotor system and the
world, but he claims that uninterpreted sensor and
motor signals are just as free of intentionality as any
formal symbols.

Presumably, Searlewouldarguethat the intention-
ality provided by a tracker is merely ‘‘derived inten-
tionality,’’ coming from the mind of the human who
programmed the algorithms and control laws that
make the tracker work. This argument is vulnerable
to a demonstration that effective trackers can be
learned automatically from experience with uninter-
preted sensors and effectors. As discussed in Section
3.1, Pierce and Kuipers [39] have made a preliminary
demonstration of just this. Other highly relevant
work on the same problem includes [33,46,48,49].

We have taken significant steps toward learning
intentionality. The Spatial Semantic Hierarchy [36]
maps an unknown environment by identifying locally
distinctive states and linking them into a topological
map. The ability of a symbol to refer to a distinctive
state in the physical environment depends on the
behaviors of the dynamical systems defined by the
control laws, not on intentionality in the pre-exist-
ing set of symbols. Pierce and Kuipers [39] showed
that these control laws could be learned from the
dynamical regularities in the robot’s own experi-
ence with its uninterpreted sensors and effectors,
constrained by their causal connections with the
environment. Modayil and Kuipers [50,41] have used
related methods to learn to individuate and
describe coherent objects from the ‘‘blooming,
buzzing confusion’’ of sensory input.

We believe that learning methods like these can
be extended to learn trackers for many kinds of
distinctive configurations in the sensory stream.
New symbols are defined, and their properties are
learned, to refer to the objects of the trackers in the
external world. The agent thus acquires intention-
ality of its own.

5.5. The Distinction between the Center
and the Periphery

Some things are at the center of my conscious field,
others are at the periphery. A good mark of this is
that one can shift one’s attention at will. I can focus
my attention on the glass of water in front of me, or
on the trees outside the window, without even
altering my position, and indeed without even mov-
ing my eyes. In some sense, the conscious field
remains the same, but I focus on different features
of it ([15], p. 140).

This is quite a good description of the ‘‘spotlight
of attention’’ from Baars’ Global Workspace Theory
[9]. There are many computational processes at
work in the mind, some of them trackers grounded
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in the sensor stream, others using the output of
trackers, directly or indirectly. The ‘‘spotlight of
attention’’ amounts to sending the output of certain
processors to a globally accessible workspace (the
‘‘blackboard’’ metaphor is sometimes used), avail-
able to every process in the system.

An individual tracker maintains a set of pointers
into the sensor input stream that defines the fea-
tures it attends to. The rest of the sensor stream is
examined only enough to continue to track success-
fully, and to allow ‘‘pop-out’’ detection. When cer-
tain trackers are within the agent’s focus of
attention, they constitute the ‘‘figure’’ part of
the ‘‘figure-ground’’ distinction in the visual field.
Other trackers outside the current focus of atten-
tion may track ‘‘ground’’ objects that could be
attended to later, or they may contribute to main-
taining Situatedness (next section).

Thermostats and robot vacuum cleaners are
coupled with the world to form simple dynamical
systems. However, they fail to be conscious because
they have a single fixed ‘‘figure’’, no ‘‘ground’’ at
all, no plausible coherent narrative, no ability to
store qualia or use them for retrieval, and no ability
to shift focus of attention.

5.6. Situatedness

All of our conscious experiences come to us with a
sense of what one might call the background situa-
tion in which one experiences the conscious field.
The sense of one’s situation need not be, and gen-
erally is not, a part of the conscious field. But,
normally I am in some sense cognizant of where I am
on the surface of the earth, what time of day it is,
what time of year it is, whether or not I have had
lunch, what country I am a citizen of, and so on with
a range of features that I take for granted as the
situation in which my conscious field finds itself
([15], p. 141).

While the concept of the tracker is particularly
clear when applied to images of objects that move
within the visual field, it applies equally well to
tracking the location of the robot within a given
frame of reference, for example, localization within
the current enclosing room. This concept of tracker
can, in turn, be generalized to track motion through
an abstract space such as time or a goal hierarchy.
Such background situation trackers could poten-
tially continue tracking with little or no attention.

5.7. Active and Passive Consciousness

The basic distinction is this: in the case of percep-
tion (seeing the glass in front of me, feeling the
shirt against my neck) one has the feeling, I am
perceiving this, and in that sense, this is happening
to me. In the case of action (raising my arm, walking
across the room) one has the feeling, I am doing
this, and in that sense, I am making this happen
([15], p. 142).

The agent’s sensorimotor interface (Eqs. (2) and
(6)) clearly divides into the sensor stream zðtÞ,
which is happening to the agent, and the motor
stream uðtÞ, by which the agent makes things hap-
pen.

Active control of perception by moving the eyes
to bring a target into the fovea is accomodated by
the current model, since the state of the eyes would
be part of the robot’s state vector xðtÞ, and would be
controlled by the motor vector uðtÞ. Attentional
processes such as giving a particular tracker more
resources and allowing it to fill out its hierarchical
structure more fully, could also be modeled as con-
trol laws whose effect is on the internal statemðtÞ of
the agent.
5.8. The Gestalt structure

We do not, for example, in normal vision see undif-
ferentiated blurs and fragments; rather, we see
tables, chairs, people, cars, etc., even though only
fragments of those objects are reflecting photons at
the retina, and the retinal image is in various ways
distorted. The Gestalt psychologists investigated
these structures and found certain interesting
facts. One is, the brain has a capacity to take
degenerate stimuli and organize them into coher-
ent wholes. Furthermore, it is able to take a con-
stant stimulus and treat it now as one perception,
now as another ([15], p. 143).

Each tracker looks for a certain structure in the
sensor stream. When it finds it, that structure is
foreground for that tracker, and the rest of the
sensor stream is background. The findings of the
Gestalt psychologists provide clues about the
properties of individual trackers, of the process
by which potential trackers are instantiated and
become active, of the ensemble of active track-
ers, and perhaps even of the learning process by
which trackers for new types of objects are
learned.

For example, interpretation-flipping figures such
as the Necker cube or the duck/rabbit figure suggest
properties of the ensemble of active trackers, such
as mutual exclusion and continued competition
among the higher level of hierarchical trackers,
while lower levels preserve their bindings and can
be used by either competing interpretation.



168 B. Kuipers

6 ‘‘What do you see when you turn out the light? I can’t tell you,
but I know it’s mine.’’— John Lennon.
5.9. Mood

All of my conscious states come to me in some sort
of mood or other. . . . there is what one might call a
certain flavor to consciousness, a certain tone to
one’s conscious experiences ([15], p. 139).

The relation between a human agent’s psycho-
chemical state (a component of xðtÞ), mood (a
component of zðtÞ), and the rest of the agent’s
perception, is presumably embedded in the complex
and unknown functions F and G. How mood affects
behavior is embedded (in part) in the mechanism for
selecting the next control law Hi.

5.10. Pleasure/Unpleasure

Related to, but not identical with, mood is the
phenomenon that for any conscious state there is
some degree of pleasure or unpleasure. Or rather,
one might say, there is some position on a scale that
includes the ordinary notions of pleasure and
unpleasure ([15], p. 141).

The pleasure/unpleasure scale has a natural role
as a reward signal during reinforcement learning.
The links between particular qualia and their posi-
tions on the pleasure/unpleasure scale are very
likely determined by evolutionary learning [10].
For example, pain is unpleasant and sex is pleasant,
surely because of their functional roles in the survi-
val of the individual and the species.

5.11. The Sense of Self

It is typical of normal conscious experiences that I
have a certain sense of who I am, a sense of myself
as a self ([15], p. 144).

In many ways, the most pragmatically useful
aspect of consciousness is the ability to observe,
describe, store, recall, reflect on, and in some ways
control one’s own thoughts, experiences, goals,
plans, and beliefs.

As we have seen, the apparently sequential and
continuous nature of conscious experience is the
post-hoc construction of a plausible coherent nar-
rative to explain a somewhat irregular collection of
sensory inputs.

Once such a narrative exists, it can be stored in
long-term memory, recalled, and reasoned about
like any other piece of symbolic knowledge. The
construction, storage, recall, and manipulation of
this kind of knowledge poses no fundamental diffi-
culties for computational modeling [51,43].

It is important to acknowledge that memory can
store more than abstracted symbolic descriptions of
experience. Memory can include qualia such as
snapshots or fragments of the sensory stream with
high information content. The content of the con-
scious narrative, as well as the content of these
qualia, and the associations they provide into the
agent’s long-term memory, are highly specific to the
agent whose experience they reflect, so they con-
tribute to a unique ‘‘sense of self.’’6
6. Conclusions

We approach the problem of consciousness from the
pragmatic design perspective of AI and robotics.
One of the major requirements on an embodied
agent is the ability to cope with the overwhelming
information content of its own sensory input (the
‘‘firehose of experience’’). One cognitive architec-
ture that meets this requirement includes trackers
that ground dynamic symbolic descriptions in spa-
tio—temporal regions of the sensory stream, and a
plausible coherent narrative that explains the
objects and events from the external world that
are observed in a temporal window on the sensory
stream. Researchers from a variety of perspectives
appear to be converging on such an architecture,
which would be a solution to the Easy Problem of
consciousness.

The claim presented here (a ‘‘strong AI’’ claim) is
that the conditions for consciousness are expressible
as a computational model, including dynamical
trackers maintaining symbolic references to percep-
tual images in the sensor stream. The phenomenal
character of consciousness (‘‘what it is like’’) comes
from the enormous flow of information in the sen-
sory stream, and from the turbulent ‘‘churn’’ of
process activation, on the way to being serialized
as conscious thought [9].

Qualia reflect the information density of the
sensor stream. Trackers ground a symbolic knowl-
edge representation in the ‘‘firehose of experience’’
and constrain its interpretations. Intentionality is
intrinsic if useful trackers can be learned by boot-
strapping up from uninterpreted experience. And
the sequential stream of subjective consciousness is
a plausible coherent narrative, constructed retro-
spectively (by 500 ms or so).

The Intentionality Problem applies to any
embodied agent, human or robot, that interacts
with the world only through coded sensor and
motor signals. We argue that there is no magic,
for humans or robots, whereby symbols inside the
mind can refer, directly and correctly, to corre-
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sponding objects in the outside world. On the
other hand, we can exhibit early versions of learn-
ing algorithms that can construct explanations for
the regularities of pixel-level sensorimotor inter-
action in terms of higher-level entities such as
places, paths, objects and actions. The ‘‘mean-
ing’’ of a symbol in the internal knowledge repre-
sentation is an entity hypothesized by such a
learning algorithm, that is, another internal con-
struct. If these internal entities correspond
usefully with the external world, the agent will
be able to plan and act effectively. If not, it is
unlikely to survive.

We have attempted to ‘‘sneak up’’ on the Hard
Problem by offering relative information content
as an explanation for why different experiences
have different levels of vividness. This leaves
open the Hard Problem itself: Why should any
amount of information transfer feel like anything
at all? However, we do know that information
transfer in an embodied agent necessarily corre-
sponds to some sort of physical state-changes,
which must have physical correlates that can be
sensed. Drawing on an analogy with classic models
of emotion, we may speculate that it is the phy-
sical correlates of raw information transfer that
‘‘feels like anything at all’’, and that ‘‘what it
feels like’’ depends on the content of the infor-
mation and the cognitive and behavioral context
of the agent.

The empirical and philosophical study of con-
sciousness in humans helps clarify the nature of the
phenomenon. The study of the brain helps us
understand the one implementation of a conscious
system in whose existence we have confidence.
But according to our claim, consciousness is not
restricted to biological implementation. The
essential features of consciousness can, in princi-
ple, be implemented on a robot with sufficient
computational power and a sufficiently rich sen-
sorimotor system, embodied and embedded in its
environment.
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