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An Introduction
Benjamin Kuipers

At AAAI-15 (25–29 January 2015) in Austin, Texas, we met to
celebrate the impact of the Shakey project, which took place
from 1966 to 1972 at the Stanford Research Institute (now
SRI International) in Menlo Park. 

We researchers in artificial intelligence during this time in
history have the privilege of working on some of the most
fundamental and exciting scientific and engineering prob-
lems of all time: What is a mind? How can a physical object
have a mind?

Some of the work going on today will appear in future text-
books, even centuries from now. We gain insights into our
own struggles in the field today by learning about the his-
torical struggles of great scientists of the past about whom we
read in today’s textbooks. The textbooks tempt us to think
that they moved surely and confidently from questions to
answers. In reality, they were frequently as confused then as
we are now, by the mysterious phenomena they were trying
to understand. When we read their history, we know the
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Shakey: From 
Conception to History

Benjamin Kuipers, Edward A. Feigenbaum, Peter E. Hart, Nils J. Nilsson

� Shakey the Robot, conceived 50 years
ago, was a seminal contribution to AI.
Shakey perceived its world, planned
how to achieve a goal, and acted to car-
ry out that plan. This was revolution-
ary. At the 29th AAAI Conference on
Artificial Intelligence, attendees gath-
ered to celebrate Shakey and to gain
insights into how the AI revolution
moves ahead. The celebration included
a panel that was chaired by Benjamin
Kuipers and featured AI pioneers Ed
Feigenbaum, Peter Hart, and Nils Nils-
son. This article includes written ver-
sions of the contributions of those pan-
elists. —ed.
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answers they were seeking, and we can learn from the
blind alleys they spent time in, and the insights that
led them to the right paths.

Artificial intelligence marks its birth at the 1956
Dartmouth Conference. There have been many
important milestones along the way. The important
milestone we will celebrate today is the Shakey proj-
ect, which created a physical robot that could per-
ceive its environment and the objects within it.
Shakey could make a plan to achieve a goal state. And
it could carry out that plan with physical actions in
the continuous world. The Shakey project laid a
foundation for decades of subsequent research. We
are here to celebrate and understand that project.

The centerpiece of the Shakey celebration was a
panel presentation at AAAI-15, designed to give the
audience an understanding and appreciation of the
process of the research in the Shakey project, and of
the long-term impact of that work on the larger field
of AI. The goal was to have three speakers address (1)
the state of the art in AI before the Shakey project (Ed
Feigenbaum); (2) the progress of the Shakey project
itself (Peter Hart); and (3) the impact of the Shakey
project on the future of AI (Nils Nilsson).

Celebrating Shakey and Its Builders
Edward A. Feigenbaum

The history of science is a source of knowledge of the
complex search for solutions to difficult problems.
Not only is this history endlessly intriguing and awe-
inspiring; but also it should be of particular interest
to AI scientists because this kind of complex problem
solving and discovery is at the heart of many of our
theories of mental activity.

Life is lived in the moment. Everything else is
memory and stories. The word history itself contains
the word story. This talk is constructed as several sto-
ries of the Shakey project situated in its time, and
among other landmark AI projects.

I have been lucky enough to have lived and
worked through the entire 60 years of AI, from early
1956, months before the famous “founding” Dart-
mouth Conference, to today’s AAAI-2015. My stories
are drawn from those 60 years of memories, helped,
but only a little, by the best memory assistant ever,
the web.

My role today is to set the historical context in
which the Shakey project was born, lived a remark-
able but short life, and was terminated. Shakey
research set the stage for decades of important exper-
imental work in AI and robotics, and in other AI
applications that will be mentioned later by Nils Nils-
son.

I phoned several well-known robotics scientists to
ask about the grandchildren of Shakey. All of them
said the robots they developed were grandchildren of
Shakey.

As shown in an original Shakey video, we remem-

ber Shakey as slowly and laboriously computing
models of its environment; planning; moving and
navigating its way around obstacles toward a goal on
the far side of one large room.

Fast forward to some recent news about grandchil-
dren of Shakey, from Manuela Veloso at Carnege Mel-
lon University (CMU):

I am very pleased to tell you that today, on November
18, 2014, the CoBot robots (3 of them) have jointly
autonomously navigated for 1,000 km in our multi-
floor SCS buildings at Carnegie Mellon University!

A great-grandchild of Shakey, Stanford’s self-dri-
ving car Stanley, the car that drove itself across the
Mojave Desert, is in the Smithsonian National Air
and Space Museum in Washington, DC. Other cars
like Stanley, built at Google, have driven more than
700,000 miles, navigating the San Francisco Bay Area
and other roads, according to the San Jose Mercury
News of November 12, 2014. (Consider this: Shakey’s
traversal, integrated over the whole life of the exper-
iment, probably never made it to one kilometer).

Shakey’s grandchildren on Mars are still having a
productive long life — 11 years into a planned 90-day
visit, semiautonomously assisting planetary scien-
tists. 

I would now like to tell you personal stories that
together made the importance of Shakey research
vivid to me.

First Story
In 1993, a major Japanese corporation asked me to
do an evaluation of the quality of a robotics project
that its research lab been working on for several
years. After signing a nondisclosure agreement, I was
shown a robot that was “humanoid,” but very big
(scary, actually). Tethered to a power source, its
motion was fluid, a marvel of modern electro-
mechanical engineering. 

Though heavy, it could walk reliably without
falling, and it could even climb a flight of stairs. But
this creature had no Mind. It did no symbolic pro-
cessing, no problem solving. It did not have goal-
directed behavior.

There was more than enough space inside for a PC-
sized computer and there was plenty of power. What
this project lacked were scientists and engineers
trained in AI, or even trained in software systems.
There were no young Nils Nilssons, no young Peter
Harts, no young Bert Raphaels or Richard Fikes —
and of course no visionary like Charles Rosen to inte-
grate AI with electromechanical engineering.

And this was 1993, twenty years after the end of the
Shakey project! It can be perilous to ignore scientific
history. 

Second Story 
The Computer History Museum in Mountain View,
California, is the world’s premier museum for the his-
tory of computers and information technology and is
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recognized for its interpretation of that history. In
January 2011, the museum opened its permanent
exhibition, called Revolution. Here is a quote from
the museum’s press release:

Ten years in the making, Revolution is the product of
the Museum’s professional staff collaborating with
designers, content producers and more than 200
experts, pioneers and historians around the world.

Revolution showcases 20 different areas of comput-
ers, computer science, semiconductors, and commu-
nications, from early history to futuristic visions.
Among those 20 areas is one called AI and Robotics.

For each area, the museum staff has chosen one
historical artifact to be the icon exhibit for the area.
For AI and Robotics, the icon is Shakey the Robot,
beautifully exhibited.

The museum could have chosen any one of a
dozen or more landmark AI artifacts. It could have
chosen AI’s first heuristic problem-solving program
(the Logic Theorist of Newell, Shaw, and Simon); or a
speech-understanding program from Reddy; or one
of the early expert systems from our Stanford group;
or Deep Blue, the AI system that beat the world’s
chess champion. It could have … but in the end the
museum chose Shakey.

So let’s put the first story and the second story
together to make a: 

Third Story
SRI’s Shakey work was a decade or two ahead of its
time in demonstrating the power of integrating AI
with robotics. Remarkably, even today, when robot-
ics is being taught to high school students, and com-
puting and sensors cost almost nothing, most robots
in labs and companies do not have the AI capabilities
that Shakey had in the 1970s.

Historians of the field have given Shakey deserved
recognition, but the field of AI had not. It took a
while for an AAAI national program committee to
recognize this and make room for this celebration. I
want to thank the AAAI-15 program committee, and
hope that this will be a model for bringing forth oth-
er important parts of AI’s history.

Fourth Story
The Shakey Project was done from 1966 to 1972.
What was AI and computer technology like before
and during that period?

There is a generation of younger researchers that
have no idea how few were the powerful ideas of the
first decade of AI (1956 to 1966) to build upon for
new AI systems. Nor can that younger generation
envision the lack of power of the computers that we
had upon which to build these systems.

But there was no lack of enthusiasm, and excite-
ment; no lack of interaction, because almost everyone
in the field knew almost everyone; and we all read
each other’s papers, tech reports, and books. That’s
what it’s like, when a field is small and emerging.

The AI science had a workable set of ideas about
how to use heuristic search to solve problems. But
proving things about heuristic search had to wait
until later (the Shakey group’s A*). Some powerful
successful experiments had been done: the Logic
Theorist; Gelernter’s Geometry Theorem Proving
program; Slagle’s calculus problem solving programs
are examples. These were all on the “cognitive” side
of AI work. On this side, much discussion and ener-
gy was focused on generality in problem solving:
Newell and Simon with means-ends analysis;
McCarthy and other “logicists” with theorem prov-
ing.

On the “perceptual” side of AI work, a similar sto-
ry can be told about research on vision. There were
several basic workable techniques involving line find-
ing, curve finding, and putting elements together
into logical descriptions of objects. Generality of the
techniques was also an issue, as it still is today.

What did we have with which to do this work? Our
programming languages were great! List processing
was invented at CMU and then made more powerful
and beautiful in LISP at the Massachusetts Institute of
Technology (MIT). But there was almost no interac-
tion between people and computers. Time-shared
interaction did not become available to most
researchers in this first decade.

Try to imagine this about computer processing
power and memory: I did my thesis work on an IBM
650 computer in the late 1950s: maximum 2500
operations per second; memory was 20,000 digits
(what we would now call bytes). Not only your pro-
gram, but your language interpreter had to fit into
this memory. There was no virtual memory.

In 1959, the IBM’s large multimillion-dollar tran-
sistorized computer was introduced. It ran at 100K
FLOPS, and had about 150K bytes of main memory.
The largest DEC computer that would have been
available in 1966 for the Shakey group to buy was the
PDP-6, which operated at 250,000 additions per sec-
ond with a memory of about 150K bytes.

Compare these numbers with, say, today’s Apple
MacPro at four gigaops/sec with memory of 16 giga-
bytes; or even today’s smartphones at about 1
gigaop/sec but with memories going up to 128 giga-
bytes.

Fifth Story
All projects end, even the great ones. The DARPA
funding pendulum for support of AI swung away
from robotics and toward both knowledge-based sys-
tems and the national speech understanding project.
As funding shifted, SRI continued to do world-class
work in both of these other themes of the 1970s.

Final Story
The Shakey project, as cutting edge work in comput-
er science, inspired young people to do great things.
In an email to Eric Horvitz, former president of AAAI,



Articles

SPRING 2017   91

Figure 1. Charles A. Rosen and the “Automaton.”

let me quote from one of these people, a junior in
high school at the time. He and a high-school friend
traveled to visit the Shakey project in 1971, unan-
nounced, but were welcomed by the Shakey team.

I was inspired by the Shakey video from SRI. I actual-
ly went down and visited when I was a junior in high
school and they showed me the lab.

Shakey was pretty cool — vision, modeling, planning. It
decided to move things around so it could go up a ramp.

Paul — do you remember how we got this video?

The “Paul” is … Paul Allen; and the author of the
quote is Bill Gates. 

Making Shakey
Peter E. Hart

The proposal that launched the Shakey project was
submitted by the Artificial Intelligence Center of
Stanford Research Institute (now SRI International)
in January, 1965. SRI proposed to develop “intelli-
gence automata” for “reconnaissance applications.”
But the research motivation — and this was the inspi-
ration of Charles A. Rosen, the driving force behind
the proposal — was to develop an experimental test
bed for integrating all the subfields of artificial intel-
ligence as then understood. SRI wanted to integrate
in one system representation and reasoning, plan-
ning, machine learning, computer vision, natural
language understanding, even speech understand-
ing, for the first time. 

Readers interested in technical details of Shakey’s
development will find an excellent summary1 in an
SRI report. A 25-minute video, made by the Shakey
team at the time, is available.2

The design of the “automaton,” as it was initially
called (perhaps out of a justifiable concern that
“robot” sounded like science fiction, which it was
before Shakey), was governed by two ground rules:
First, in order to keep it mechanically as simple as
possible, no arm was installed. And second, to avoid
issues of miniaturization, the design evolved as an
electronics rack on wheels with a sensor assembly
mounted on top.

The project team was well aware of Shakey’s limit-
ed mechanical and sensory capabilities, and designed
a correspondingly simple experimental environment
consisting of half a dozen rooms populated with
large, geometric blocks. The blocks were painted so
that edges were visible to the low-resolution TV cam-
era, while still being sufficiently reflective for our
homemade laser rangefinder to work. We also used
dark baseboards, again for visibility, and exploited
them to update the position error that accumulated
in the dead reckoning process that relied on Shakey’s
stepping motors. 

Our first computer was an SDS 940, an early com-
mercial time-shared mainframe (whose main memo-
ry was smaller than the L2 cache of most laptops). In

1970 we upgraded to a more powerful DEC PDP-10.
Shakey talked to the PDP-10 through a communica-
tions processor, and the system was one of the hand-
ful of nodes that constituted the birth of the
ARPANET. Around this time we embarked on a com-
plete rewrite of much of Shakey’s software, while
making only minor upgrades to the robot hardware.
In the next section we describe this version 2 of
Shakey.
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Figure 2. Shakey with Components Labeled.
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Figure 3. Triple Exposure of Shakey Moving Among Boxes.

Shakey’s Control Software
There were two big ideas behind version 2. The first
idea was to represent Shakey’s world by statements in
the first-order predicate calculus, augmenting a form
of grid model that was a key component of the first
version (figure 4). 

The second idea was to structure Shakey’s control
software as a series of layers, the first time this design
was used to control a robot (figure 5). In the follow-
ing we briefly describe each layer, beginning with the
low-level actions.

Low-Level Actions
Low-level actions like ROLL and PAN talked directly
to Shakey’s hardware (figure 6). Also in this layer are
actions like PANTO, which rotates the “head” to a
specified orientation.

Intermediate-Level Actions: Markov tables
Above this level are intermediate-level actions like
GOTHRUDOOR. These actions are put in their own
layer because all of them are represented as Markov
tables (figure 7).

One interprets a Markov table by scanning down
the left column until the first true condition is
reached, executing the corresponding action, and
then looping back to the top. Accordingly, Markov
tables have an inherent perseverance: they keep try-
ing to do something useful. (This account is slightly
simplified, but the looping behavior is fundamental
and, as we’ll see, an important feature of these
tables.)

If these intermediate-level actions were the end of
the software story, Shakey would be very limited in
what it could achieve. It would only be able to
achieve goals that require just a single prepro-
grammed action. To do more, Shakey has to be able
to compose a sequence of actions into a plan. That’s
the job of STRIPS, the Stanford Research Institute
Problem Solver, which constitutes the next higher
software level.

STRIPS, the Stanford Research 
Institute Problem Solver
STRIPS came about by combining two big ideas of the
day. The first was the planning strategy called means-
ends analysis, as exemplified by the General Problem
Solver program of Newell and Simon.

The second big idea was theorem proving in the
predicate calculus and its application to question
answering systems, as exemplified by the work of
Cordell Green. Richard Fikes and Nils Nilsson com-
bined these ideas to create STRIPS (Fikes and Nilsson
1971), which applied means-ends analysis to predi-
cate calculus representations (figure 8).

PLANEX, the Plan Execution Executive
Shortly after designing STRIPS, the SRI team found a
way to generalize a STRIPS plan by replacing constants
in the plan with variables. They also invented a data
structure called a triangle table that represents the
internal dependencies of a generalized plan. These

constructs formed the basis of PLANEX, the Plan Exe-
cution Executive that is the top layer of Shakey’s con-
trol software (Fikes, Hart, and Nilsson 1972).

Using this software machinery, PLANEX could
monitor the real-world execution of a plan. It could
detect if something had gone wrong, and could
replan from that point, reusing portions of the exist-
ing plan wherever possible. It could even be “oppor-
tunistic”: If by chance Shakey was closer to achieving
its goal than anticipated, it could capitalize on its
good fortune.

This error detection and recovery ability was a
critically important part of Shakey’s control soft-
ware. A chasm separates planning for a physical
robot, that has to execute plans in the real world
where things often go wrong, and an “abstract”
planner that merely needs to print out a symbolic
plan once it is computed. The Plan Execution Exec-
utive, together with those persevering Markov
tables, was the solution to the problem of achieving
robust, real-world plan execution.

Computer Vision
The initial project plan did not call for intensive
research in computer vision. Rather, the plan was to
integrate existing computer vision techniques into
the experimental test bed. But, as it turned out, very
little technology was available, so a focused effort in
computer vision was started.

One important result of this work was the inven-
tion of what could be called the modern form of the
Hough transform for finding lines in images (Duda
and Hart 1972). This result came about by combining
two concepts that on the surface appear unrelated.

The first idea is contained in a patent by Paul
Hough, in which he described a transform from
points in an image plane to straight lines in a trans-
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Figure 4. Predicate Calculus Model Fragment with Plan View of World and Grid Model
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Figure 6. Low-Level Actions.
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Figure 7. Markov Table for GOTHRUDOOR.

infrontof(door) /\eq(s,OPEN)

near(door) /\eq(s,OPEN)

near(door) /\eq(s,UNKNOWN)

eq(s,CLOSED)

T

bumblethru(room1,door,room2)

align(room1,door,room2)

doorpic(door)

return   [fail]

navto(nearpt(room1,door))

ActionCondition

form space. Intersecting lines in the latter correspond
to collinear points in the form. But a problem of infi-
nite slopes arises that makes this transform compu-
tationally unwieldy (figure 9). 

The second idea comes from an obscure branch of
19th century mathematics called integral geometry.
Mathematicians had theoretical reasons for using an
angle-radius parameterization of a line, rather than

the more familiar slope intercept used by Hough.
Peter Hart noticed that by replacing Hough’s linear
transform with a sinusoidal one, not only is the prob-
lem of infinite slopes avoided, but the new transform
is invariant to choice of coordinate accesses. Hart and
Richard Duda also extended this method to detect
analytic curves in images, and this transform has
been used ever since.



Navigation and the A* Algorithm
Shakey had to find its way around, so several short-
est-path algorithms were developed. One, called A*
by its creators, Peter Hart, Nils Nilsson, and Bertram
Raphael, had two very desirable properties. It can be
rigorously proved that (a) it always finds the shortest
path, and (b) that it does so while considering the
smallest possible number of alternatives. In non-
mathematical shorthand, we can say that it always
works and it’s computationally efficient.

One would think that such a strong result would
be eagerly accepted by any reputable publication, but
it’s perhaps a sign of those times that just the oppo-
site was the case. The A* manuscript was rejected by
the most prestigious journals of the day. Looking at
those old reviews, we can speculate that review edi-
tors sent the manuscript to mathematicians, because
of all those intimidating-looking theorems. But
mathematicians were unimpressed because the
proofs were limited to graphs with only a finite num-
ber of nodes. It seemed to the authors at the time that
mathematicians saw no difference between a graph

with ten nodes and one with ten trillion nodes, but
to computer scientists that difference matters.

The paper (Hart, Nilsson, and Raphael 1968) was
finally accepted by the IEEE Transactions on Systems
Science and Cybernetics, where it eventually got
noticed and continues to be referenced more than 45
years after it was published.

The World Back Then
The foregoing gives a glimpse of some (though by no
means all!) of the work done by the Shakey project
team. To place this work in a broader societal con-
text we can take a brief look at the intellectual and
cultural climate of the time.

In 1970, Life,3 a popular magazine of the day, ran
a big story about Shakey (figure 10). The author, jour-
nalist Brad Darrach, seemed to hyperventilate a bit,
with a subtitle, “the fascinating and fearsome reality
of a machine with a mind of its own.” But while
some like Darrach worried that machines might take
over the world, there were deep skeptics. Hubert
Dreyfus was one, who argued on deep philosophical
grounds that AI is in principle impossible. And some-
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Figure 8. STRIPS.

STRIPS: The Stanford Research
Institute Problem Solver

“GPS, A Program That Simulates
Human Thought,” A. Newell and H.
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H. Billing, editor, Muchen: R. 
Oldenbourg, 1961.
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“Theorem-Proving by
Resolution as a Basis for Question-
Answering Systems,” Cordell Green,
in Machine Intelligence 4, Bernard
Meltzer and Donald Michie, editors,
Edinburgh University Press,
Edinburgh, Scotland, 1969.

“STRIPS, A New Approach to the
Application of Theorem Proving to
Problem Solving,” R. E. Fikes and
N. J. Nilsson, in Proceedings of the 
Second International Joint Conference 
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1969

1971



Articles

SPRING 2017   97

Figure 9. The Hough Transform.
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Figure 10. Shakey Story in Life Magazine.
Photo © by Ralph Crane, The LIFE Picture Collection.

where between Brad Darrach and Hubert Dreyfus
were labor union leaders who worried that robots
might some day take manufacturing jobs. 

Charlie Rosen was undaunted by the critics, noting
that there will always be “naysayers,” as he called
them, whenever something new is done. The best
response is to push onward.

Shakey’s Visitors
The Shakey team was generous with its time and wel-
comed virtually any visitor who was interested in the
work. We can get another perspective on the world
back then by viewing it through their eyes. Here are
some examples:

A school group visited, and a teacher asked what our
“real jobs” were. “This robot is your hobby, isn’t it?”

A general visited and asked “Can you mount a 36-inch
blade on that?”

Arthur C. Clark visited just after the movie 2001
appeared, but was more interested in talking about the
New York Times review of the movie than about the
future of robots.

A young high school student drove all the way from
Seattle to Menlo Park, California, to see Shakey.
Decades later Bill Gates recalled being impressed.

A US government auditor visited and asked whether
SRI had indeed taken delivery of billions of “packets of
bits.” This question was followed by others regarding
the state of those packets, including whether there
was any tarnish or corrosion on any of those bits.

The End of the Shakey Project
The Shakey project ended in 1972, not for lack of
exciting ideas to pursue, but because the funding cli-
mate had changed and the research program became
unsupportable. What had been achieved, as viewed
from the perspective of 1972?

While there are likely as many views as there were
project team members, it seems safe to make a few
broad generalizations:

There was an appreciation that many of the individual
results — STRIPS, PLANEX, A*, and the new form of
the Hough transform are good examples — were solid
technical contributions.

Overall, Shakey was a significant achievement, being
both the first mobile, intelligent robot, and also being
the first system that integrated AI software with phys-
ical hardware.

But Shakey’s overall capabilities, both mechanical and
software, didn’t reach the level of the initial aspirations.
This would hardly be surprising, given those lofty early
goals. Indeed, it would take decades before some were
reached, while others remain as research challenges.

Today’s perspective is very different from the view
in 1972. Shakey has had impacts on both current
research and on the everyday lives of all of us that
could not have been recognized or anticipated at the
time. Those impacts are the subject of the remaining
sections of this article.

Shakey’s Legacy
Nils J. Nilsson

“Shakey the Robot” was the first system that inte-
grated artificial intelligence programs (most of which
were newly developed during the project) with phys-
ical hardware. In this part of the panel discussion,



Nils Nilsson used the chart (figure 11) to list some
major achievements of the project. In greatly elabo-
rated and extended form, descendants of some of this
software are still in use today.

Agent Control Architectures
Although hierarchies and layers had previously been
used in software systems, Shakey was the first robot
to be controlled by a layered architecture. As illus-
trated earlier, there were four main layers, namely,
the PLANEX (executive), STRIPS (symbolic planning
system), the intermediate-level actions, and the low-
level actions. Layered control architectures have been
used in several subsequent robot systems, among
them the DS1’s “Remote Agent” (RAX), which con-
trolled a space craft (Bernard et al. 1999), and the
Monterey Bay Research Institute’s (MBARI)
autonomous underwater vehicle (McGann et al.
2008). Of course the control architectures of these
modern systems, although layered as Shakey’s were,
are much more complex.

Robust Action Execution
As described earlier, Shakey used two main tech-
niques to guarantee robust action execution. One
was Markov tables, which scanned a list of conditions
to find the first one that was satisfied by the current
situation and then invoked the corresponding inter-
mediate level action. The second was a structure we

called a “triangle table,” which stored preconditions
and actions assembled by the STRIPS planning sys-
tem. These techniques evoked actions that were both
reactive to the current situation and opportunistic in
unforeseen situations. 

One follow-on to those techniques used by Shakey
is the concept of teleo-reactive (T-R) programs devel-
oped by Nilsson and his students during the 1990s
(Nilsson 1994) (figure 12).

That action associated with the first currently sat-
isfied condition in the list (or tree) is the one that is
executed. But execution continues only so long as
that condition remains the first one currently satis-
fied. As soon as it is no longer satisfied, the list is
scanned again to find the one now first satisfied, and
so on. In the T-R formalism, the actions could them-
selves be T-R programs. Dozens of papers have been
written about T-R programs, one book (Clark and
Robinson 2016) is soon to appear, and many robots
have been controlled by them.4

Another control technique uses structures called
“hierarchical state machines.” Hierarchical state
machines are similar to T-R programs except that
actions are represented by nodes and conditions by
links. Several robots use them, including the PR2
robots developed by Willow Garage and the SaviOne
robot developed by Savioke. There is a Python
library, called SMACH,5 that can be used to build
hierarchical state machines. 
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Figure 11. Shakey’s Achievements.
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Figure 12. Teleo-Reactive Programs.
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Adaptive Cell Decomposition
Shakey used a grid model, such as the one shown in
figure 13,6 to map the obstacles in its environment.
If a cell is not completely empty or completely full, it
is divided into smaller cells and so on until one of
these conditions is met for all cells. We believe
Shakey’s was the first use of an adaptive grid model.
Adaptive cell decomposition is still used in robot
navigation and in computer-aided design and manu-
facturing.

STRIPS Rules
STRIPS was the system Shakey used for generating
plans to accomplish goals. Figure 14 shows a STRIPS
rule for modeling the action of moving a toy block
from C to B. The preconditions must be satisfied before
the action can be applied, and the terms on the delete
list can no longer be guaranteed to be satisfied after
the action is applied, so they are deleted from
Shakey’s post-action model of the world. The terms
on the add list are added to the post-action model.

STRIPS rules (or their derivatives) are used in most
modern planners. (The STRIPS paper gets over 5000
citations on Google Scholar, and “STRIPS-style plan-
ning” gets over 3410 results on Google.) It’s the rules
that are used, not the STRIPS program itself. STRIPS
rules were a practical solution to the “frame prob-
lem” — inherent in the use of the “situation calcu-
lus,” proposed by McCarthy and Hayes (1969) for
generating plans.

Hierarchical task networks (HTNs) are much used
and powerful planning systems that use STRIPS
rules.7 These systems assemble plan steps into net-
works of actions, some of which can be executed in
parallel and others that must be executed serially. We
show an example in figure 15.

SIPE-2,8 O-Plan (Currie and Tate 1991), and
SHOP29 are examples of implemented HTNs. Among
other important applications of HTNs, SIPE-2 has
been used for production planning at an Australian
Brewery.

Some video games make use of STRIPS rules and
HTNs for planning the actions of nonolayer charac-
ters (NPCs).10

Heuristic Search and A*
A* is a heuristic search algorithm developed during
the Shakey project for efficiently searching a graph of
navigation waypoints. It uses an evaluation function
to rank the nodes reached during search and contin-
ues the search below the best-ranked node. The eval-
uation function for a node, n, is the sum of the cost
of the links traversed already on the way to n plus an
estimate of the cost from n to a goal node.

There are lots and lots of descendants and variants
of A*. Here is a list of just some of them: D*, Field D*,
Theta*, Real-Time A*, Iterative Deepening A*, Life-
Long Planning A*, Simplified Memory Bounded A*,
and Generalized Adaptive A*. Richard Korf at UCLA

and researchers at Carnegie-Mellon University have
played major roles in the development of many of
these.

The Mars rover, Curiosity, uses Field D*, a deriva-
tive of A* written by CMU’s Tony Stentz and his stu-
dent, Dave Ferguson (now with Google). It is capable
of planning paths around obstacles in unknown, par-



tially known, and changing environments in an effi-
cient, optimal, and complete manner. 

Most route-finding algorithms in maps use vari-
ants and elaborations of A*. Elaborations include the
use of hierarchies, saved routes (which don’t need to
be recomputed), and much more. 

In other uses of A*, linguists Dan Klein and Chris
Manning write, “The use of A* search can dramati-
cally reduce the time required to find a best parse …”
(Klein and Manning 2003). And Steven Woodcock, a
computer games consultant, wrote that “A* is far and
away the most used … and most useful … algorithm
for [nonplayer-character] path finding in games
today …. developers have noted that they make more
use of A* than any other tool for pathfinding.”11

(Actually, we are gratified that the major applications
of A* are on problems a bit more serious than video
games!)

Computer Vision
As mentioned earlier, we had hoped that we could
use then-existing computer vision routines to
process images from Shakey’s camera. But the state of
computer vision was quite primitive at that time, so
we did have to develop some routines of our own.
One, which influenced subsequent vision systems,
was a system for segmenting images into “like-
appearing regions” (Brice and Fennema 1970). An
example of the regions found for some of the objects
in Shakey’s environment is illustrated in figure 16.
Segmentation is still a major technique used in com-
puter vision today.12

Another result of work on computer vision during
the Shakey project was the development of the
“modern form” of the Hough transform for finding
lines and curves in images. As mentioned earlier,
Richard Duda and Peter Hart modified the original

Articles

100 AI MAGAZINE

Figure 14. Application of a STRIPS Rule.
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version of the Hough transform to include circles and
analytic curves and to use a rho-theta parameteriza-
tion (Duda and Hart 1972). Their paper gets 4500 hits
on Google Scholar.)

The modern form of the Hough transform is used
in automobiles to detect lane markings to warn the
driver about drifting out of his or her lane.13

Conclusions
One reason for the success of the Shakey project and
for its extensive legacy is that we were the first group
to think that developing a robot that could perceive its
environment and make and execute plans was a feasi-
ble idea. At the time, there was little existing software
for us to use, so we had to invent what we needed. It

turned out that the new inventions were ones that had
broad applicability once people heard about them.

Another reason for our success is that we had a
very talented team of AI researchers and software
developers, along with people who could make the
connections between software and hardware (figure
17). Some team members had a reunion at SRI Inter-
national in November 2014.

There are still many problems in AI where talented
researchers could be first. An idea mentioned by Nils-
son during the panel is to develop an “action hierar-
chy” analogous to the deep learning hierarchies that
are being used for vision and speech recognition.14

Some of these are said to be rough models of the per-
ceptual part of the neocortex. But the cortex also coor-
dinates and plans actions, as illustrated in the diagram

Figure 15. A Hierarchical Task Network.
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Figure 16. Region Finding as Used by Shakey’s Vision System.
Reprinted with permission from Claude Brice and Claude Fennema, Scene Analysis Using Regions. Artificial Intelligence 1970 (3-4).
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(figure 18).15 How about developing a
“deep action” system, with cross con-
nections to the perceptual hierarchy
and using (perhaps) hierarchical rein-
forcement learning to learn the
actions?16 One could then try to use
both hierarchies to control a robot.

Notes
1. www.ai.sri.com/pubs/files/629.pdf.

2. ai.stanford.edu/~nilsson/Shakey.mp4.

3. LIFE, November 20, 1970.

4. For more information, see the T-R website
teleoreactiveprograms.net.

5. See wiki.ros.org/smach. 

6. The figure is from Nils J. Nilsson, “A
Mobile Automaton: An Application of Arti-
ficial Intelligence Techniques,” Proceedings
of the International Joint Conference on Arti-
ficial Intelligence, 7–9 May, 1969. Washing-
ton, DC. Los Altos, CA: William Kaufmann
Inc.

7. See en.wikipedia.org/wiki/hierarchical_
task_network for more information.

8. See www.ai.sri.com/~sipe.

9. See www.cs.umd.edu/projects/shop.

10. See aigamedev.com/open/review/plan-
ning-in-games.
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Figure 17. Some of the People Who Worked on Shakey
Front Row, left to right: Richard Fikes, Helen Chan Wolf. Rear row, left to right: Charles A. Rosen, 

Bertram Raphael, Richard O. Duda, Milt Adams, Jerry Gleason, Alfred E. (Ted) Brain, Peter E. Hart, and Jim Baer.

11. Email from Steven Woodcock sent to
Nilsson on 6/14/2003.

12. See, for example, en.wikipedia.org/wiki/
Image_segmentation.

13. For a video of the Hough Transform in
action, see www.youtube.com/watch?v=
DPApsnpPjuU/.

14. See, for example, www.cs.toronto.edu/
~hinton/.

15.  Diagram from willcov.com/bio-con-
sciousness/sidebars/Perception—Action%
20Cycle.htm.

16. The following paper seems relevant to
this problem: Nicholas K. Jong and Peter
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A New Approach to the Application of The-
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Figure 18. Cortex Motor and Perceptual Hierarchies.
Adapted from Joaquín Fuster, The Prefrontal Cortex, 360 (New York: Raven Press.)
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