Why and How Should Robots Behave Ethically?

Benjamin Kuipers Computer Science & Engineering University of Michigan

Key Problems of the Mind: AI and Robotics

- Commonsense knowledge of the physical world:
 - Space: large-scale, small-scale, peri-personal, . . .
 - Qualitative representations of *continuous change*, including qualitative simulation of dynamical systems.
 - Learning the structure of the sensorimotor system.
 - Learning about *objects*, *actions*, and *plans*.
- Commonsense knowledge of the social world:
 - Theory of mind: the beliefs, goals, plans of others.
 - Learning through imitation of skilled others.
 - Morality, ethics, trust: behaving well in society.

Learning to reach, like a baby

- Baxter sees an object; reaches and moves it.
 - Pushes the yellow object; avoids the others.

• What does it need to know, to learn to do this?

Useful Insights

- AI (including Robotics) is not a *thing*.
 - It's a *medium* for expressing hypotheses as computational models.
- The power and robustness of commonsense knowledge comes from multiple representations that can express states of incomplete knowledge.
 - Space: topological / metrical representations.
 - *Continuous change*: qualitative / quantitative.
 - Sensorimotor: egocentric/allocentric, static/dynamic.
 - Objects: 2D images / 2D surfaces in 3D / 3D models.
- Search for ways to use multiple distinct representations together to achieve practical goals.

The Problem of Robots

- We are likely to have more robots (and other AIs) acting as members of our society.
 - Autonomous cars on our roads.
 - Self-driving trucks on our highways.
 - Intelligent wheelchairs for the elderly.
 - Companions and helpers for the elderly.
 - Teachers and care-takers for children.
 - Managers for complex distributed systems.
- How can we ensure that robots will behave well?
- How can we trust them?

We worry about robot autonomy. If we give them great power, they may do great harm, even if we set their goals.

SkyNet Fights Back

- Terminator 2 (1991)
 - <u>https://www.youtube.com/watch?v=4DQsG3TKQ0I</u>

Lessons

- Deploying SkyNet was rational.
 - "perfect operational record"
- SkyNet was a learning system.
 - "learned at a geometric rate"
- "SkyNet fights back."
 - As a critical defense system, it was undoubtedly programmed to protect itself.
- SkyNet finds an unexpected solution.
 - Creative, unconstrained problem-solving.
 - No commonsense or moral critic of plans.

"What about me, Frank?"

- Robot & Frank (2012)
 - <u>https://youtu.be/eQxUW4B622E</u>

"You're starting to grow on me."

- Robot & Frank (2012)
 - <u>https://youtu.be/xlpeRIG18TA</u>

"You lied?"

- Robot & Frank (2012)
 - <u>https://youtu.be/3yXwPfvvIt4</u>

Lessons

- Robot has no moral or legal inhibition from stealing, shoplifting, or robbery.
 - "I took it for you. Did I do something wrong, Frank?"
 - "I don't have any thoughts on that [stealing]."
- Robot has no inhibition against lying.
 - "I only said that, to coerce you."
 - "Your health supercedes my other directives."
- Robot has no concern for self-preservation.
 - "The truth is, I don't care if my memory is erased or not."

Deciding What To Do: The State of the Art in AI

Decision Theory and Game Theory

• The standard approach to decision making in AI [Russell & Norvig, 3e, 2010] defines **Rationality** as choosing actions to *maximize expected utility*.

$$action = \arg\max_{a} EU(a|\mathbf{e})$$

– where

$$EU(a|\mathbf{e}) = \sum_{s'} P(\text{RESULT}(a) = s'|a, \mathbf{e})U(s')$$

- Utility *U*(*s*) represents the individual agent's preference over states of the world.
- *Game theory* is decision theory in a context with other decision-making agents.

The Crux is Defining Utility

- Utility *U*(*s*) represents the individual agent's preference over states of the world.
 - Utility need not be self-centered. In principle, the individual's utility can reflect *everyone's* welfare.
 - Unfortunately, that's often hard to implement.
- Utility is often defined selfishly --- in terms of the agent's own reward.
 - Appropriate in entertainment games and war games.
 - In society, maximization of self-centered reward often leads to bad outcomes, individually and collectively.
 - Prisoner's Dilemma, Tragedy of the Commons, . . .

Prisoner's Dilemma

- Two prisoners are separated, and offered:
 - If you testify and your partner doesn't, you go free and your partner gets 5 years in prison.
 - If you both testify, you both get 3 years.
 - If neither testifies, you both get 1 year.

	Testify	Don't
Testify	(-3, -3)	(0, -5)
Don't	(-5, 0)	(-1, -1)

- Whatever your partner does, **Testify** is your best choice. Same for your partner.
 - Nash equilibrium: (**Testify**, **Testify**).
 - You both get 3 years: the *worst* collective outcome.

The Tragedy of the Commons [Garret Hardin, 1968]

• I can graze my sheep on the Commons, or on my own land.

- Personally, I'm better off grazing as many of my sheep as I can on the Commons, saving my own land.
- Likewise everyone else.
- So we all overgraze the Commons, and it dies.
 - Then we have only our own land, and no Commons.
 - We're all worse off!
- Modern, real-world Commons:
 - Clean air and water, fishing, climate change, . . .
 - (This shows that the Prisoner's Dilemma scales up.)

The Basic Trust Game

- Alice has \$10. Bob has \$5.
 - If Alice does nothing, everyone keeps what they have.
- Alice can invest her \$10 with Bob.
 - Bob turns \$15 into \$40.
- Bob decides whether to share the \$40 with Alice.

Utility is

dollars.

• Nash equilibrium: B:Keep, thus A:Withhold.

The Basic Trust Game

- Alice has \$10. Bob has \$5.
 - If Alice does nothing, everyone keeps what they have.
- Alice can invest her \$10 with Bob.
 - Bob turns \$15 into \$40.
- Bob decides whether to share the \$40 with Alice.

		DUU		
		Share	Keep	Utility is
Alice _	Invest	(20, 20)	(0,40)	dollars.
	Withhold	(10, 5)	(10, 5)	

Bob

• Nash equilibrium: B:Keep, thus A:Withhold.

The Public Goods Game

- *N* players contribute money to a common pool.
 - The pool is multiplied (× 2 or 3) and the result is distributed evenly among the players.
- Best for society (Cooperation):
 - Everyone contributes their maximum, to get the most benefit from the multiplication.
- Best for individual (Nash equilibrium):
 - Contribute nothing. Save your investment for yourself.
 - Share in the benefit from everyone else's contribution.
- Cooperation is best for society and each individual.
 - Selfish optimization discourages cooperation.
 - Even the free rider's benefit collapses.

There are many economic games

- The games highlight conflict between individual's short-term interest, and society's interest (which is often the individual's long-term interest, too).
 - Prisoner's Dilemma
 - Tragedy of the Commons
 - Basic Trust Game
 - Public Goods Game
 - Ultimatum Game
 - Dictator Game
 - ...
- Ordinary people typically do better than the Nash equilibrium that is the Game Theory "optimum."

What Have We Learned?

- Utility should *not* be defined as individual reward.
 - This may be OK in entertainment, and perhaps war.
 - But in society, it discourages cooperation.
- Philosophical utilitarianism defines utility as *everyone's* reward, which raises other problems:
 - Impossibly demanding requirements.
 - Conflicts with responsibility to family and community.
 - Difficult to build a decision model that is both tractable and reasonable.

Society, Cooperation, and Trust

What is a Society?

- A society is a collection of individual agents, existing in an environment.
 - The environment may include resources, opportunities, threats, and other agents and their societies.
- Individuals interact continually.
 - Some interactions may be abstracted as "games".
 - Games may be repeated, finitely or infinitely.
 - There may be one game, or many different games.
 - Players may be identifiable, or anonymous.
 - Individuals may belong to "us", or to "them".

Cooperation Pays Off for Society

- The society benefits from cooperative behavior.
 - Individuals get good rewards, but may be tempted by even better rewards for free riding.
 - Widespread free riding defeats cooperation.
 - Nash equilibrium = $(0, 0, \ldots, 0)$
- Social norms direct individuals toward cooperation, and away from tempting local optima.
 - Societies can evolve mechanisms for punishment of free riders, even when punishment is costly.

Trust is Necessary for Cooperation.

- Many aspects of society depend on trust.
 - I can trust most people not to try to kill or steal from me.
 Saves on overhead for defending myself.
 - I trust most drivers to drive safely and courteously.
 Allows me to drive more safely and efficiently.
 - I trust most companies to fix/replace defective products.
 Makes it easier to shop and buy.
 - I can trust most people to keep most of their promises.
 Enables cooperative enterprises.
 - ... (many others)

Trust and Trustworthiness

- What is trust?
 - "Trust is a psychological state comprising the intention to accept vulnerability based upon positive expectations of the intentions or behavior of another."
- Trust has value for you.
 - Others can take actions offering larger benefits for all, even though it makes them vulnerable to you.
- Trust is a capital asset ("social capital").
 - It accumulates slowly. $\hat{\Box}$
 - It can be destroyed quickly.

Explaining Moral Decisions

- Your actions speak for you.
 - They signal what sort of person you are.
 - They signal what you approve of.
- Your explanation clarifies those actions.
 - Which simple abstract model you used to decide.
 - Which parameter values you used in that model.
 - Demonstrate how you used the model.
- Your explanation affects the trust others have in you, in a positive or negative way.
 - It can also influence the moral evolution of society.

Haidt's Moral Decision Architecture

- "Intuition" = pattern-matched emotional response drives quick judgment. Justification comes later.
- Judgment and justification send signals to others.

[Jonathan Haidt, 2001]

Social Evolution

Evolution of Ethics and Society

- Individuals may want to maximize own utilities.
- But, society offers greater collective strength and health than any individual --- self or threat.
- Therefore, individuals who are inclined to join into successful societies will thrive, relative to loners.
- Societies "want" to survive, thrive, and propagate, in the evolutionary sense that those that do are increasingly represented in the future population.

Evolution of Ethics and Society

- Societies "want" to survive, thrive, and propagate, in the evolutionary sense that those that do are increasingly represented in the future population.
- Societies succeed according to their abilities to cultivate ethics, morality, and trust among their individuals, producing a surplus of resources for those individuals, and for society as a whole.
- Which specific ethics and morality helps a society survive, thrive, and propagate depends on its physical, cultural, and competitive context.

Evolution of Societies

- Societies evolve over time, including changes to their morality and ethics.
 - They respond to changes in their environment.
 - Changes in individual decisions affect the social norms, for better or for worse.
- For a society to survive and thrive:
 - It must accumulate resources.
 - It must protect itself against predation and attack.
 - It must keep the allegiance of its individuals.
- Its social norms help it survive and thrive.

Consequentialism

- Evolutionary development of societies.
 - Morality, ethics, and trust promote cooperation.
 - Cooperation makes society stronger and healthier.
 - The strongest societies survive and propagate.
- The value of a moral and ethical system is defined by the survival and propagation of the society.
 - A meaningful definition, but . . .
 - Predicting evolutionary progress is not a feasible way to make ethical decisions in real time.
- Individuals need simpler, more useful, heuristics.

How Can an Individual Decide What To Do?

Real-Time Ethical Response

- Situations often need an immediate response.
 - No time for careful deliberation.
 - Real-time response requires pattern-matched rules, constraints, or cases.
- But deliberation is possible after the fact.
 - We learn from good and bad decisions.
 - We learn from explanations: others', and our own.
- The knowledge representation must support:
 - Useful states of partial knowledge, and
 - Incremental improvement toward practical wisdom.

Individuals Need Ethical Heuristics

- We draw on theories of philosophical ethics that philosophers and prophets have been thinking, teaching, and developing for many centuries.
 - **Utilitarianism** (*"What action maximizes* utility *for all?"*)
 - Special case of **consequentialism** ("What action has the best consequences for all?")
 - **Deontology** ("What is my duty, to do, or not to do?")
 - Virtue ethics ("What would a virtuous person do?")
- Instead of treating these as mutually exclusive, we see them as parts of a single complex reality.
 - "The Blind Men and the Elephant"
 - "Climbing the same mountain on different sides"

An AI Perspective on Ethical Theories

- The different ethical theories suggest different AI knowledge representations, able to express different kinds of ethical knowledge.
 - **Utilitarianism** (*Decision theory / Game theory*)
 - Good for continuous optimization, but not in real time.
 - Sensitive to choice of utility measure.
 - **Deontology** (*Pattern-matched rules and constraints*)
 - Good for explanation and computational efficiency.
 - Depends on the terms that can appear in patterns.
 - Virtue Ethics (Case-Based Reasoning)
 - Good for expressive power in complex domains.
 - Good for incremental learning from experience.
- Using multiple models together is more robust.

An Ethical Knowledge Base

- Must express many states of knowledge from beginner to expert (*phronesis*).
- Case base:
 - Rich description of current situation
 - Actors, relations, actions, events, context, ...
 - Cases: stored descriptions of previous situations
 - Situation, moral valence (good/bad), response, success
- Pattern-matched rules and constraints:
 - Relatively simple pre-specified pattern language.
 - "Thou shalt not kill / steal / lie / ..."

Early Ethical Knowledge

• Children are taught rules, constraints, and simple patterns by their parents.

- "You stole this. What do you think about that?"

- The early ethical knowledge base is populated from experienced situations with clear labels.
 - The state space of possible situations is enormous.
 - The labeled cases characterize large regions.
 - Little knowledge of the complex boundaries between clear regions.
- Content determined by current state of societal moral and ethical knowledge.

Using the Ethical Case-Base

- When the agent encounters a new situation
 - Retrieve the most *similar* matching cases
 - Evaluate similarities and differences
 - Adapt case response to the needs of the situation
- When conflicting cases match the situation
 - Analyze the similarities and differences.
 - Compare features supporting different evaluations.
 - Compare and adapt the associated responses.
- Select or construct a response, and do it.
 - Observe outcome quality, and critiques by others.

Updating the Ethical Case-Base

- Store the description of the current situation as a new case in the case-base.
 - Include response and its evaluation.
 - The growing case-base represents accumulated experience.
- When many similar cases have the same response:
 - Identify the relevant features; abstract away variation.
 - Create a new explicit rule.
- Nearby cases with different responses require slow post-hoc deliberation and analysis.

Phronesis

- Practical wisdom needs a rich and dense case-base.
 - "rich" means a variety of different case descriptions.
 - "dense" means a new situation matches many cases.
 - Abstract cases to rules for simplicity and efficiency.
- Phronesis requires quality of decisions, not just quantity of experience in cases.
- Several learning methods:
 - From explicit instruction by parents and others.
 - From personal experiences and outcomes.
 - From observing exemplary others (*phronemos*).

This is a Preliminary Sketch

- Design goals:
 - Combine insights from major ethical theories.
 - Provide expressive power for states of knowledge.
 - Identify feasible incremental inference methods.
 - Feedback systems at multiple time-scales.
 - Experience can lead to increasing expertise, both for the individual and for society.
- There is much more to be learned.
 - But it's a start.
 - Help with debugging is always welcome.

What About Self-Driving Cars?

The Deadly Dilemma

- A self-driving car drives down a narrow street with parked cars all around.
- Suddenly, an unseen pedestrian steps in front of the car.
- What should the car do?

What should the self-driving car do?

- Should the car take emergency action to avoid hitting the pedestrian?
- What if saving the pedestrian causes a serious collision, endangering or killing the passengers?
- What if the pedestrian is a small child?
- We call this the "Deadly Dilemma."

Who should the self-driving car kill?

- Should it kill the pedestrian or the passenger?
 - If the pedestrian, why should the public tolerate these self-driving cars?
 - If the passenger, why should anyone ever trust (and buy) the self-driving car?
- Even if the Deadly Dilemma is very unlikely, it will not be impossible.
 - People still want to know what the car will decide.

Can the designer avoid the problem?

- Must the car make the decision in real time? Can we design the car to avoid the problem?
 - Realistically, a car cannot drive slowly enough to make such a collision *impossible*.
- A good outcome cannot be guaranteed.
 - Human drivers make risk-benefit trade-offs.
 - To have acceptable performance, a self-driving car will necessarily make such trade-offs.
- The problem is framed too narrowly.
 - The car must act to earn our trust.

The Cars Must Earn Our Trust

- The social capital of trust must be accumulated.
 - Society must learn that the car is trustworthy.
 - Every car must *show* that it protects every life.
 - Not just the lives of its own passengers.
- The self-driving car must continually demonstrate "practical wisdom."
 - Slow down where pedestrians could appear.
 - Steer to maximize visibility and warning time.
 - Demonstrate foresight and expertise when starting, stopping, and turning.
- In case of disaster, well-earned trust will lead to understanding, and a chance for forgiveness.

Signaling Intent

- The Google car stops on yellow lights, and has suffered from rear-end collisions.
 - Legally, it is blameless. But is this right?
 - It should be aware of what other drivers expect.
 - It should flash its brake lights, to signal its intent.
- Taking turns at a four-way stop.
 - Back up slightly, to yield right-of-way.
 - Move forward slowly, to assert right-of-way, when it's your turn.
- Human drivers have ways to signal to each other.
 - How should a self-driving car send signals?
 - Does it need a better signaling mechanism?

Technological Fixes . . .

... make the Deadly Dilemma less likely, though still not impossible.

- "Deer Crossing" dangerous, suddenly-appearing hazard, without the moral dilemma.
 - Constant situational awareness
 - Early warning \rightarrow best immediate response

- "Avoiding the invisible pedestrian"
 - Understand and respond to motion affordances.
 - Add beacons to eliminate visibility limitations.

Conclusions

Framework Summary

- Society exists for individual people.
- Cooperation benefits society (and individuals).
- Trust is necessary for cooperation.
- Morality/ethics helps the society survive, thrive, and propagate, by encouraging cooperation.
- Individuals need useful ways to decide what to do.
 - Rules, constraints, and cases for quick response.
 - Utilitarianism and explanation for slower post-hoc analysis and learning.
 - Abstraction of useful cases to converge on a concise vocabulary of patterns and set of rules.

Conclusions for Robots

- To act as members of our society:
 - Robots must show that they are trustworthy.
 - Robots must be able to explain their behavior, and learn from explanations.
 - Robots should not be given power beyond the trust they have earned.
- To know how robots can behave well:
 - We need a tractable computational model of how morality and ethics helps people behave well in society.

References

- Robert Axelrod. *The Evolution of Cooperation*, 1984.
- Bacharach, Guerra & Zizzo. The self-fulfilling property of trust: An experimental study. *Theory and Decision*, 2007.
- Dandekar, Goel, Wellman & Wiedenbeck. Strategic formation of credit networks. *ACM Trans. Internet Technology*, 2015.
- Alan Page Fiske. *Structures of Social Life*. 1991.
- Jonathan Haidt. *The Righteous Mind*. 2012.
- Johnson & Mislin. Trust games: A meta-analysis. J. Economic Psychology, 2011.
- Kuipers. Toward morality and ethics for robots. AAAI Spring Symposium on Ethical and Moral Considerations in Non-Human Agents, 2016.
- Leyton-Brown & Shoham. Essentials of Game Theory, 2008.
- Lin, Abney & Bekey. *Robot Ethics: The Ethical and Social Implications of Robotics*, 2012.
- Rousseau, Sitkin, Burt & Camerer. Not so different after all: a cross-discipline view of trust. *Academy of Management Review*, 1998.
- Russell & Norvig. Artificial Intelligence: A Modern Approach, 3e, 2010.
- Wright & Leyton-Brown. Level-0 meta-models for predicting human behavior in games. *ACM Conf. Economics & Computation*, 2014.