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Building fine-grained visual recognition systems that are capable of recognizing tens of
thousands of categories, has received much attention in recent years. The well known
semantic hierarchical structure of categories and concepts, has been shown to provide
a key prior which allows for optimal predictions. The hierarchical organization of various
domains and concepts has been subject to extensive research, and led to the development
of the WordNet domains hierarchy (Fellbaum, 1998), which was also used to organize
the images in the ImageNet (Deng et al., 2009) dataset, in which the category count
approaches the human capacity. Still, for the human visual system, the form of the
hierarchy must be discovered with minimal use of supervision or innate knowledge. In this
work, we propose a new Bayesian generative model for learning such domain hierarchies,
based on semantic input. Our model is motivated by the super-subordinate organization
of domain labels and concepts that characterizes WordNet, and accounts for several
important challenges: maintaining context information when progressing deeper into the
hierarchy, learning a coherent semantic concept for each node, and modeling uncertainty
in the perception process.
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1. INTRODUCTION
There has been mounting evidence in recent years for the role
that Bayesian probabilistic computations play both in the behav-
ioral and the neural circuit layers of cognition (Chater et al., 2006;
Steyvers et al., 2006; Tenenbaum et al., 2006; Fiser et al., 2010).
In the behavioral layer, the assessments made by humans regard-
ing everyday phenomena have been demonstrated to conform
to those produced by a Bayesian calculation, integrating all the
perception related uncertainty, as well as the prior knowledge,
to produce an optimal prediction (Griffiths and Tenenbaum,
2006). In the neural circuit layer, hierarchical Bayesian gener-
ative models are gaining acceptance as the underlying mecha-
nism for describing the neural computation process (Lee and
Mumford, 2003; George and Hawkins, 2009). The Bayesian per-
spective has also been shown to allow for the learning of the
appropriate structural forms (Kemp and Tenenbaum, 2008) for
different cognitive problems. Structural forms are a prerequisite
for making useful deductions, for example, in order to pre-
dict the number of days left until summer starts again we must
first identify the cyclical pattern of the seasons. Similarly, object
hierarchies provide the necessary structural form for object recog-
nition. Such hierarchies organize different concepts and entities
based on their semantic association and level of abstraction,
and are central for fusing top-down and bottom-up informa-
tion and making judicious deductions (e.g., if an entity is rec-
ognized to be a lion, and the hierarchy categorizes the lion
as being dangerous, we could deduce that we had better take
cover).

When considering visual recognition, the most basic questions
relate to the form of object representation. A widely held belief,
which has also been corroborated by fMRI experiments (Edelman
et al., 1998), is that different objects are represented in a concep-
tual space where the dimensions are the responses of neurons.
Semantically similar objects elicit responses which are geometri-
cally closer in the conceptual space. Another observation of the
geometrical model is that major categories, such as animals, con-
tain smaller clusters such as faces and body parts (Mur et al.,
2013). This is consistent with the hierarchical structural form for
object recognition.

Although computer vision research generally proceeds inde-
pendently from the cognitive sciences, in recent years themes such
as semantic feature spaces and category hierarchies have become
very influential in addressing many computer vision problems.
The semantic concept space, discussed in the previous passage,
has been emulated in the computer vision community through
the use of attributes (Ferrari and Zisserman, 2007; Farhadi et al.,
2009; Lampert et al., 2009; Dhar et al., 2011; Parikh and Grauman,
2011b). Attributes are detectors that are trained to predict the
existence or absence of semantic concepts such as an eye, furry,
or horizontally oriented. By employing several attribute detec-
tors, each object can be represented as a point in the attribute
space. Semantic hierarchies have become important in the field
of fine-grained visual recognition, which aims at building sys-
tems which are capable of recognizing tens of thousands of
categories, approaching the human capacity. The main use for
such hierarchies has been to speed up (Griffin and Perona, 2008;
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Bart et al., 2011; Gao and Koller, 2011), and boost the accu-
racy (Marszałek and Schmid, 2007; Zweig and Weinshall, 2007;
Kim et al., 2011) of object recognition systems. In Deng et al.
(2012), a classifier was allowed to make predictions at various
levels of abstraction. A Cocker Spaniel could be classified as a
dog or an animal, depending on a compromise between speci-
ficity and accuracy. This illustrates the integration of different
sources of uncertainty and prior knowledge, that is underlined
in the Bayesian cognitive approach. A key element is the seman-
tic hierarchy, which summarizes the coarse to fine relationship
between the different categories and concepts at different levels
of semantic granularity. Another use for semantic hierarchies, has
been as a tool that simplifies the search and retrieval of images
from large collections (Li et al., 2010).

Most of the methods that have been considered in the com-
puter vision community for learning the semantic feature space
and category hierarchies, rely on human intervention. The most
straightforward approach for discovering semantic attributes is
to query a domain expert. Other options include mining text
and image data sampled from the Internet to automatically dis-
cover semantic concepts(Berg et al., 2010), or using a “human
in the loop” strategy, in which human intervention is used to
identify whether a discriminatively learned mid-level feature is
also semantically meaningful (Kovashka et al., 2011; Parikh and
Grauman, 2011a; Duan et al., 2012; Biswas and Parikh, 2013).
Many computer vision algorithms that require the use of a cat-
egory hierarchy, rely on a human specified taxonomic organiza-
tion, such as the WordNet domains hierarchy (Fellbaum, 1998),
which organizes a set of domain labels into a tree structure.

However, when children learn to identify objects, they con-
struct both the concept space as well as the hierarchical object rep-
resentation with minimal outside intervention. Simply through
observation and interaction with different objects, they can
identify the semantic similarities between many categories, and
organize them in the appropriate hierarchical structure. This
observation raises the question which computational models
can be used to describe the learning processes of the con-
cept space and the semantic hierarchy? When a child plays
with his toys, he discovers basic regularities which are com-
mon to many of the examples that he observes and touches:
flatness, roundness, box shaped, ball shaped, nose, mouth, etc.
Therefore, learning the concept space corresponds to learning
a mapping from the low-level sensory input, to each of these
identified semantic properties. Recently, deep learning methods
have been successful in learning mid-level feature representations
that capture greater semantic content as compared to standard
low-level image features. These approaches typically rely on tech-
niques such as deep Boltzmann machines (Salakhutdinov and
Hinton, 2009a; Salakhutdinov et al., 2011), restricted Boltzmann
machines (RBMs) (Smolensky, 1986), and convolutional neu-
ral networks (LeCun et al., 1989; Krizhevsky et al., 2012). Deep
learning methods learn a set of hidden units that can be used to
describe the concept space, and have been shown to capture rec-
ognizable semantic content as well as the geometrical properties
(Salakhutdinov and Hinton, 2009b) of the semantic feature space.
Convolutional RBMs (Lee et al., 2011) have been successfully used
to discover semantic concepts such as the wheels and windows

of a car without using any form of supervision, purely based on
sensory input of real valued image pixels. Convolutional neural
networks have also been shown to provide a highly semantic mid-
level representation when trained on very large datasets (Girshick
et al., 2014). Using a weak form of supervision, provided by the
category labels, semantic concepts such as “furry” and “snout”
have been discovered using a RBM with a bag-of-visual-words
based representation (Mittelman et al., 2013).

Unsupervised learning of hierarchies has been commonly
addressed in the natural language processing context, where a
large set of documents is used to learn a hierarchical structure
in which semantically similar documents are assigned to nearby
nodes. One example is the nested Chinese restaurant process
(NCRP) (Blei et al., 2003a), which is a non-parametric Bayesian
model that builds on the latent Dirichlet allocation (LDA) (Blei
et al., 2003b; Griffiths and Steyvers, 2004). The LDA represents
each document using a set of mixing proportions over topics.
Each topic is represented by a multinomial distribution over the
vocabulary, that captures the typical words that are associated
with every topic. The NCRP assigns a unique topic to each node
in the tree, such that each document is associated with a differ-
ent path in the tree. The NCRP has also been used for learning
visual hierarchies based on low-level image features and a bag-of-
visual-words representation (Bart et al., 2011). However, since in
contrast to text, low-level image features capture very little seman-
tic content, the learned hierarchies do not display the geometric
property of the concept space in which semantically similar cate-
gories are also assigned to nodes which are closer in the hierarchy
(Li et al., 2010).

Since semantic hierarchies have been incorporated into many
computer vision algorithms, in this work we are interested in
developing a computational model that could describe how such
hierarchies are formed. Bayesian models have become an impor-
tant tool for describing cognitive processes, and therefore we
propose a Bayesian generative model that learns a semantic hier-
archy based on observations of objects in a concept space in
which objects are represented as binary attribute vectors. Since the
semantic distance between categories in WordNet has been shown
to be correlated with the recognition difficulty (Deng et al., 2010)
of computer vision algorithms, we would like the learned hier-
archy to imitate several properties which characterize WordNet.
Most importantly, WordNet organizes different objects and con-
cepts into a set of complementary domain labels which follow
a super-subordinate relationship. This allows the human knowl-
edge to be organized in a single taxonomy of domains. Similarly,
our learned hierarchy associates different attribute labels with
each node, which effectively describe appropriate domain labels,
and follows the super-subordinate semantic relationship. In the
following section, we discuss the main properties of WordNet,
as well as the importance of domain information when tackling
visual recognition problems.

2. WORDNET DOMAINS HIERARCHY
The WordNet domains hierarchy organizes a set of 164 domain
labels (Bentivogli et al., 2004) in a tree structure, which follows a
super-subordinate relationship. More general concepts are linked
to increasingly more specific ones, for example, since a car is a
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form of a transportation vehicle, the domain label “transporta-
tion” is the parent of the domain label “car.” Categories and
concepts are grouped into sets of semantically equivalent words,
which are known as “synsets,” and are assigned to the appropri-
ate nodes which describe their semantics most accurately. Since
many words have several meanings, depending on the context
of the sentence in which they are used, different words may
belong to several synsets [e.g., the word “bank” may relate to
the domain “economy,” but it may also refer to other domains
such as geography or architecture (Magnini et al., 2002b)]. The
choice of domain labels, and the form of their organization, was
designed such that each domain label has explicit and exclusive
semantic interpretation, with similar granularity at each level.
Furthermore, the hierarchy provides a complete representation of
all human knowledge.

One of the main motivation factors of the developers of
WordNet was the hypothesis that domain information is neces-
sary in order to achieve semantic coherency in linguistic texts.
Since different words can belong to several synsets, WordNet pro-
vides a powerful tool which can be used to identify the correct
meaning of each word, and has been successfully applied for word
sense disambiguation (Magnini et al., 2002a). A similar argu-
ment may help explain the underlying hierarchical organization
of the concept space in which objects are represented, which also
displays grouping based on a super-subordinate semantic rela-
tionships. As many attributes are shared by different categories,
the context provided by the domain information allows for coher-
ent interpretation of the object. For example, hands, eyes, and
nose, are common to both people and monkeys, and therefore
have to be disambiguated in order to coherently identify an entity
as a person or a monkey. Object recognition experiments using a
very large category count, have reported that the recognition dif-
ficulty is correlated with the semantic distance in the WordNet
hierarchy (Deng et al., 2010). This supports the hypothesis that
domain information is important for the object classification
task.

The ImageNet dataset is a collection of more than 10,000,000
images with more than 10,000 categories, that are arranged
in a hierarchical structure which is based on the WordNet
domains hierarchy. Object recognition experiments performed
using ImageNet have revealed that when considering recogni-
tion with a number of classes that is near the human capacity,
WordNet can be used to classify categories in a varying degree of
specificity. For example, a Golden Retriever can also be classified
as a dog or an animal. All these outcomes are correct (although
not equally favorable), and should entail a smaller penalty as
compared to an outright misclassification, when designing a
classifier.

3. A BAYESIAN GENERATIVE MODEL FOR LEARNING
DOMAIN HIERARCHIES

Since semantic hierarchies have found important use in many
computer vision problems, we are interested in developing a
Bayesian generative model that could describe the means by
which the human visual system learns a similar hierarchy.
Bayesian generative models have been gaining popularity as a
means of describing many cognitive processes, and therefore offer

a suitable building block for this purpose. Our proposed model,
to which we refer as the attribute tree process, learns a domain
hierarchy in an unsupervised fashion, based on a set of training
images. We assume that the semantic concept space is described
using binary feature vectors, where each component describes the
existence or absence of some semantic property, to which we refer
as an attribute. Some of these semantic concepts may be very gen-
eral, such as “living things,” “transportation,” etc., while others
are more specific such as “dog,” “car,” “leg,” etc. The hierarchi-
cal organization of these semantic concepts should capture the
super-subordinate relationship that characterizes WordNet. Our
generative model faces the following challenges: (a) maintain-
ing the context information, (b) maintaining a coherent semantic
interpretation for each node, and (c) modeling the uncertainty
in the attribute observations (e.g., if the attribute “furry” is
not active for an instance of the category “dog,” we would still
like the instance to be assigned to an appropriate node in the
hierarchy).

Learning the domain hierarchy requires us to learn the tree
structure, and to associate a subset of the attribute pool to each
node in the hierarchy. The selected attributes are used to describe
the semantic concept which is associated with each node. The
Bayesian framework allows us to infer both of these based on a
training set, by specifying a probabilistic model which relates the
node assignment of each data instance, to the semantic content
associated with each node. Another critical issue, is to promote
preference for a simple explanation of the data (“occam’s razor”),
which in our case corresponds to tree structures with few nodes.
In order to learn the tree structure and assign each data instance
to the appropriate node, we use a non-parametric Bayesian prior
which is known as the tree-structured stick-breaking process
(TSSBP) (Adams et al., 2010). The TSSBP is an infinite mixture
model, where each mixture element is in one-to-one correspon-
dence with a single node in an infinitely deep and infinitely
branching tree structure. The mixture elements are formed by
interleaving two stick-breaking processes (Ishwaran and James,
2001), which promote the formation of tree structures where only
few nodes are associated with non-negligible mixture weights.
The prior distribution for assigning an instance to a node, fol-
lows a multinomial distribution over the infinitely many nodes,
with the TSSBP’s mixture weights.

Our generative model assumes that given the node assign-
ments of all the data instances, all the data instances are statis-
tically independent. We use the following notation to describe
the joint probability distribution of out model. We denote the
observed binary attribute vectors using xi ∈ R

D, i ∈ {1, . . . , N},
where D denotes the number of attributes, and N is the size of
the training set. The assignment of an instance i to a node is
denoted by zi ∈ T , where T denotes the set of node indicators.
The node parameters associated with node ε ∈ T are denoted by
θε . The joint probability distribution function is obtained using
the Bayes rule:

p({xi}N
i = 1, {zi}N

i = 1, {θε}ε∈T , {πε}ε∈T ) (1)

= p({πε}ε∈T )p({θε}ε∈T )
N∏

i = 1

p(xi|θzi )p(zi|{πε}ε∈T ),
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FIGURE 1 | An illustrative example of representing the (A) domain hierarchy using (B) binary vectors, and (C) using a relaxed probabilistic

interpretation.
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FIGURE 2 | Two fragments of the hierarchy learned using our

generative model, using the annotated attributes available for

the training set of the PASCAL dataset. The left panel

corresponds to the “living things” domain, whereas the right panel
corresponds to the “transportation” domain. The sign (−) denotes
an internal node.

FIGURE 3 | Two fragments of the hierarchy learned using our generative

model, using the attribute scores obtained for the testing set of the

PASCAL dataset, when training the attribute detectors using the

training set. The top panel corresponds to the “living things” domain,
whereas the bottom panel corresponds to the “transportation” domain. The
sign (−) denotes an internal node.

were p({πε}ε∈T ), p({θε}ε∈T ) are the prior probability distri-
butions for the tree structure, and for the node parameters,
respectively. The conditional probability distributions p(xi|θzi ),
p(zi|{πε}ε∈T ), provide the likelihoods of an observation xi given
its assignment to node zi, and the likelihood an instance being
assigned to node zi given the TSSBP parameters.

Learning the domain hierarchy therefore corresponds to infer-
ring the node parameters {θε}ε∈T . By providing a prior distri-
bution for θε for each ε ∈ T , and the form of the conditional
distribution p(xi|θzi ) which describes the likelihood of assigning
training sample xi to node zi, learning the node parameters can
be achieved using Markov chain Monte-Carlo (MCMC) methods.
Each data instance describes a subset of attributes, corresponding
to various levels of semantic granularity. The domain hierarchy
decomposes the binary instance vectors into a set of node parame-
ters which correspond to standard basis elements, such that more
general attributes are associated to nodes that are closer to the
root node, and vice versa. This is demonstrated in Figure 1B for
the domain hierarchy shown in Figure 1A. The data instance for

a vector that is assigned to the node attached to the red dashed
path in Figure 1B, is obtained using a logical or operation over
all the node parameters associated with each of the nodes along
the path. This form could be used to describe the conditional dis-
tribution p(xi|θzi ), however, it implies that all the data instances
assigned to the same node must have the same set of attributes.
In order to provide a probabilistic substitute to this hard associ-
ation rule, we propose to relax this hard decision approach, such
that each node parameter vector θε , ε ∈ T is a real valued vec-
tor of probabilities. The attributes associated with an instance
assigned to each node are now described in a probabilistic frame-
work, which is illustrated in Figure 1C for the node associated
with the path described using the red dashed lines. For each
node along the path, we first draw from a Bernoulli distribu-
tion with the corresponding node parameters, and then aggregate
the binary vectors using a logical or operation. The probabilistic
variation has important consequences when considering the vari-
ability of attributes observed in common images. For example,
we may not observe the legs of a person in a scene as they may
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be occluded by a desk, however, we would still like that image to
be assigned to a node in the hierarchy that is associated with the
“person” category. In order to model additional uncertainty fac-
tors, we also flip the binary vectors that are generated according
to the model that is illustrated in Figure 1C, with some attribute
dependent probability ω(d), d = 1, . . . , D, where d denotes the
number of attributes. This also allows for weighting the differ-
ent semantic concepts based on their reliability and importance.
More important and reliably detected concepts should have a
lower probability of being flipped, and vice versa.

By construction, the attribute tree process which is described
above and is illustrated in Figure 1C, maintains the context infor-
mation. Furthermore, it also accounts for the uncertainty in the
observations since it is described using probabilistic tools. The
remaining challenge is therefore to verify that the semantic con-
cepts that are associated with each of the nodes are coherent.
We argue that a necessary ingredient for this purpose, is to pro-
mote sparsity of the node parameters vector θε for each ε ∈ T .
This ensures that each node is associated with a minimal subset
of attributes which are necessary to describe its content, and
avoid the assignment of unrelated semantic concepts to the same
node. Moreover, since the generative process which is illustrated
in Figure 1C, implies that attributes that are associated with any
node are also going to be associated with all of its descendants, the
sparsity constraint at node ε only needs to be applied to attributes
which have not been associated with any ancestor of node ε.
Such a form of sparsity constraint can be realized by choosing
the prior for the node parameters to follow a finite approxima-
tion to a hierarchical Beta-Bernoulli process (Paisley and Carin,
2009). Specifically, for the node parameters at the root node we
have that

θ
(d)
0 ∼ Beta (a/D, b(D − 1)/D) , d = 1, . . . , D, (2)

and the parameters in the other nodes follow

θ (d)
ε ∼ Beta

(
c(d)θ

(d)
Pa(ε), c(d)

(
1 − θ

(d)
Pa(ε)

))
, d = 1, . . . , D, (3)

where Pa(ε) denotes the parent of node ε, and where a, b, and
c(d), d = 1, . . . , D are positive scalar parameters, and where D
denotes the number of attributes. The form of the prior for the
node parameter vector at the root node that is given in Equation
(2) promotes sparsity, whereas the prior for all the other node
parameters that is given in Equation (3) promotes similarity to the
parameter vector of the parent node. Therefore, this choice pro-
motes sparsity for all the attributes which have not been already
associated with an ancestor node.

In summary, in this section we proposed a Bayesian gener-
ative model that learns a hierarchical organization of semantic
concepts at different levels of abstraction, such that a super-
subordinate relationship is satisfied. To this end, we relaxed the
hard assignments of attributes to nodes in the hierarchy, such
that the assignment assumes a probabilistic form. This allows for
better modeling of the uncertainty of the association between
attributes and categories, and allows for efficient inference and
learning using Markov chain Monte-Carlo methods. In order
to promote coherent semantic interpretation of each node, we

FIGURE 4 | The taxonomy for the 20 categories in the PASCAL dataset.

incorporated a hierarchical sparsity prior which encourages the
selection of a minimal subset of necessary semantic concepts to
be associated with each node. Modeling the a priori preference for
trees with fewer nodes was achieved by incorporating the TSSBP,
which is a non-parametric Bayesian prior for such tree struc-
tures. Additional details regarding the generative model and the
inference scheme are provided in the Supplementary Material.

4. EXPERIMENTS
In this section we verify the effectiveness of the attribute tree
process by applying it to a dataset which includes annotation
for attributes. We consider the PASCAL VOC 2008 dataset,
which includes bounding boxes for 20 categories and annota-
tion for 64 attributes that were collected in Farhadi et al. (2009).
The partitioning into training and testing sets as well as the
attribute annotations and low-level image features are available
online1. Each of the training and testing sets contains over 6000
instances from the 20 object classes: person, bird, cat, cow, dog,
horse, sheep, airplane, bicycle, boat, bus, car, motorcycle, train,
bottle, chair, dining-table, potted-plant, sofa, and tv/monitor.
We defined 24 attributes in addition to those that were used in
Farhadi et al. (2009): “pet,” “vehicle,” “alive,” “animal,” and the
remaining 20 attributes were identical to the object categories.
The annotation for the first four additional attributes was inferred
from the object classes.

In the first experiment, we ran our system to determine a hier-
archy when using the ground truth attribute annotation of the
training set as the observations, and show fragments of the hier-
archy in Figure 2. We use two filters to determine what attributes
are shown for a node in the figure, first only attributes with prob-
ability (see Equation 6 in the Supplementary Material) larger
than 0.7, and second only attributes that have not appeared at
an ancestor. The two fragments can be described as pertaining to
the ‘living things” and “transportation” domains. An important

1http://vision.cs.uiuc.edu/attributes/
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A B

FIGURE 5 | The average edge error (Equation 4) vs. the agglomerative

hierarchical clustering threshold parameter, for the hierarchical

clustering obtained using the (A) training set’s attribute annotations,

and (B) attribute detectors applied to the testing set image instances.

Smaller values indicate better performance. It can be seen that our attribute
tree process (ATP) algorithm outperforms the factored Bernoulli likelihood
model (FBLM), and unlike the agglomerative hierarchical clustering (AHC), it
is not as sensitive to the choice of the hyper-parameters.

observation regarding the organization of the attributes to nodes
is that more abstract semantic concepts are assigned to the top-
most nodes in the hierarchy, whereas the attributes assigned to
the leaf nodes relate to fine-grained semantic concepts rather than
to domains. For example, in the “transportation” fragment the
domain label “vehicle” is assigned to nodes which precede more
category specific attributes, such as “glass” or “window.”

In the second experiment, we used the low-level features and
attribute annotation that are available for the training set, to train
linear SVM classifiers to detect each of the 88 attributes. We then
used these attribute classifiers to compute the attribute scores for
each instance in the testing set. We ran our system to learn the
hierarchy when using these attribute scores as the observations,
and In Figure 3 we show the two fragments that correspond to the
“living things” and “transportation” domains. As can be expected,
due to the noisy nature of the attribute classifiers, the learned
hierarchies are less descriptive as compared to those that were
learned using the attribute annotations. However, they still reveal
the super-subordinate relationship, and maintain a semantically
coherent description for each node.

4.1. EVALUATING THE GENERATIVE MODEL AS A HIERARCHICAL
CLUSTERING ALGORITHM

The attribute tree process model also provides us with a hierar-
chical clustering of the instances in the dataset, since it assigns
each of them to a node in the tree. Therefore, we may consider
comparing it to alternative hierarchical clustering algorithms, in
order to evaluate its performance quantitatively. We consider two
alternative approaches for hierarchical clustering: agglomerative
hierarchical clustering (Jain and Dubes, 1988), and the factored
Bernoulli likelihood model (Adams et al., 2010). Agglomerative
hierarchical clustering uses an iterative bottom up approach to
clustering. In the first iteration, each cluster includes a single data
instance, and at each following iteration, the two clusters which
are closest to each other are joined into a single cluster. This
requires a distance metric, which measures the distance between

Table 1 | Average edge error using the attribute annotation of the

training set, for different hyper-parameters.

a b Average edge error

1 10 1.97

5 5 1.93

10 5 1.76

10 10 1.585

10 20 1.569

clusters, to be defined. The algorithm concludes when the dis-
tance between the two farthest instances in each cluster is larger
than some threshold. The factored Bernoulli likelihood model
is a generative model that, similarly to our model, is based on
the TSSBP. However, it uses a different generative process for
obtaining the binary data instances.

In order to compare the performance of the different
approaches quantitatively, we propose a new metric, which evalu-
ates the degree to which the learned hierarchical clustering of the
dataset accurately captures the ground truth semantic distance
between the different categories. The semantic hierarchy provides
us with a measure of the semantic distance between every two
categories, in the form of the number of edges that separate them
in the hierarchy. Our proposed metric, which we refer to as the
average edge error, takes the form:

2

N(N − 1)

N−1∑
i = 1

N∑
j = i+1

|dH(i, j) − dGT(c(i), c(j))|, (4)

where c(i) denotes the category of instance i, N denotes the num-
ber of image instances, dGT(c1, c2) denotes the number of edges
separating categories c1 and c2 in the ground truth taxonomy
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of the categories, and dH(i, j) denotes the number of edges sep-
arating instances i and j in a hierarchy that is learned using a
hierarchical clustering algorithm.

In order to compute the average edge error for the PASCAL
dataset, we use the taxonomy which is available in Binder et al.
(2012) and is shown in Figure 4. We used the average distance
metric for obtaining the hierarchical clustering using agglom-
erative hierarchical clustering. This algorithm is also known
as the Unweighted Pair Group Method with Arithmetic Mean
(Murtagh, 1984). We used the factored Bernoulli likelihood
model implementation which is available online2. In Figure 5
we compare the average edge error for the attribute tree pro-
cess (ATP), agglomerative hierarchical clustering (AHC), and
factored Bernoulli likelihood model (FBLM), both when using
the attribute annotation that is available for the training set,
and when using the attribute scores obtained for the testing
set, when training the attribute classifiers using the training
set. Our implementation of agglomerative hierarchical clustering
uses a threshold parameter that defines the maximum allowed
Euclidean distance between two instances in each node, which
effectively determines the number of nodes in the hierarchy. It
can be seen that the performance of the agglomerative hierarchi-
cal clustering algorithm depends significantly on this threshold
parameter. Furthermore our model outperforms the factored
Bernoulli likelihood model.

4.1.1. Sensitivity to hyper-parameters
In this work we used a uniform prior for the parameter c(d),
d = 1, . . . , D in Equation (3), such that c(d) ∼ U[l, u] with
� = 20, and u = 100. We also used the hyper-parameter val-
ues a = 10, and b = 5 in Equation (2). In order to evaluate the
sensitivity of the attribute tree process to the choice of the hyper-
parameters a and b, we compare in Table 1 the average edge error
obtained using the annotation of the training set, when using dif-
ferent values for the hyper-parameters a, and b. It can be seen
that when comparing to agglomerative hierarchical clustering in
Figure 5, the attribute tree process is significantly less sensitive
to the choice of hyper-parameters. When comparing to the fac-
tored Bernoulli likelihood model, even for the worst choice of
the hyper-parameters the average edge error is still significantly
better.

5. DISCUSSION
We presented a new Bayesian non-parametric model, which we
refer to as the attribute tree process, for learning domain hier-
archies based on a semantic feature space. Such hierarchies have
been shown to be necessary for tackling fine-grained visual recog-
nition problems, in which the category count approaches the
human capacity. Our model accounts for several important prop-
erties, such as capturing the inherent super-subordinate structure
of the domains and concepts, accounting for uncertainty in
the attribute observations, and maintaining a coherent semantic
interpretation for each node. We also evaluated the attribute tree
process as a hierarchical clustering algorithm, and demonstrated

2http://hips.seas.harvard.edu/content/tree-structured-stick-breaking-hierarc
hical-data

that it better captures the semantic distance between categories, as
compared to alternative approaches, such as agglomerative hier-
archical clustering, and the factored Bernoulli likelihood model.
It is our belief that continued effort to develop computational
models, both for learning the underlying semantic feature space
as well the hierarchical organization of the domains, is necessary
in order to better understand the corresponding mechanisms in
the human visual system, as well as improve the performance of
computerized visual recognition systems.
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