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An intelligent robot must be able to perceive and reason robustly about its world in

terms of objects, among other foundational concepts. The robot can draw on rich data for

object perception from continuous sensory input, in contrast to the usual formulation that

focuses on objects in isolated still images. Additionally, the robot needs multiple object

representations to deal with different tasks and/or different classes of objects. We propose

the Object Semantic Hierarchy (OSH), which consists of multiple representations with dif-

ferent ontologies. The OSH factors the problems of object perception so that intermediate

states of knowledge about an object have natural representations, with relatively easy tran-

sitions from less structured to more structured representations. Each layer in the hierarchy

builds an explanation of the sensory input stream, in terms of a stochastic model consist-
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ing of a deterministic model and an unexplained “noise” term. Each layer is constructed by

identifying new invariants from the previous layer. In the final model, the scene is explained

in terms of constant background and object models, and low-dimensional dynamic poses of

the observer and objects.

The OSH contains two types of layers: the Object Layers and the Model Layers.

The Object Layers describe how the static background and each foreground object are indi-

viduated, and the Model Layers describe how the model for the static background or each

foreground object evolves from less structured to more structured representations. Each ob-

ject or background model contains the following layers: (1) 2D object in 2D space (2D2D):

a set of constant 2D object views, and the time-variant 2D object poses, (2) 2D object in 3D

space (2D3D): a collection of constant 2D components, with their individual time-variant

3D poses, and (3) 3D object in 3D space (3D3D): the same collection of constant 2D com-

ponents but with invariant relations among their 3D poses, and the time-variant 3D pose of

the object as a whole.

In building 2D2D object models, a fundamental problem is to segment out fore-

ground objects in the pixel-level sensory input from the background environment, where

motion information is an important cue to perform the segmentation. Traditional approaches

for moving object segmentation usually appeal to motion analysis on pure image informa-

tion without exploiting the robot’s motor signals. We observe, however, that the background

motion (from the robot’s egocentric view) has stronger correlation to the robot’s motor sig-

nals than the motion of foreground objects. Based on this observation, we propose a novel

approach to segmenting moving objects by learning homography and fundamental matrices

from motor signals.

In building 2D3D and 3D3D object models, estimating camera motion parameters

plays a key role. We propose a novel method for camera motion estimation that takes advan-

tage of both planar features and point features and fuses constraints from both homography

and essential matrices in a single probabilistic framework. Using planar features greatly

viii



improves estimation accuracy over using point features only, and with the help of point

features, the solution ambiguity from a planar feature is resolved. Compared to the two

classic approaches that apply the constraint of either homography or essential matrix, the

proposed method gives more accurate estimation results and avoids the drawbacks of the

two approaches.
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Chapter 1

Introduction

1.1 Motivation

An intelligent agent, embedded in the physical world, will receive a high-dimensional on-

going stream of sensory input. In order to understand and interact with the world, the agent

must be capable of learning high-level concepts. Inspired by human developmental learn-

ing, we believe that foundational concepts such as Space and Object are essential for such

a learning agent to abstract and control the complexity of its world. To bridge the gap

between continuous interaction with the physical environment, and discrete symbolic de-

scriptions that support effective planning, the agent will need multiple representations for

these foundational concepts.

In these foundational concepts, there are often several quite different ways to repre-

sent entities of interest, drawing on different ontologies, that is, classes of logical concepts

and relations. A semantic hierarchy is a collection of these different ontologies, arranged

so that knowledge of the environment can be acquired in relatively small steps. The Spatial

Semantic Hierarchy [Kuipers, 2000; Kuipers et al., 2004] is one such semantic hierarchy,

organized to represent knowledge of large-scale and small-scale space.

In this work, we propose the Object Semantic Hierarchy (OSH) [Xu and Kuipers,
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2010, 2009], which is a collection of representations for objects and their surrounding con-

text, motivated by the work of the Spatial Semantic Hierarchy [Kuipers, 2000; Kuipers et al.,

2004]. We assume that the observer is an agent, embedded in a continuous world, with

high-bandwidth sensory input and the ability to move within its environment.

The OSH is a hierarchical representation of objects and the static background. Each

layer in the hierarchy builds an explanation of the sensory input stream, in terms of a

stochastic model consisting of a deterministic model and an unexplained “noise” term. Each

layer is constructed by identifying new invariants within previous layer’s noise term. In the

final model, the scene is explained in terms of constant background and object models, and

the low-dimensional time-variant pose trajectories of the observer and objects.

The multi-level representations in the OSH give the agent more robustness in cop-

ing with a complex environment, compared with any individual representation. The OSH

enables the agent to choose different levels of models to work with, based on different

goals. For example, while a 2D object model is usually sufficient for locating a box in input

images, it’s very likely that the agent needs a 3D object model in order to grasp the box

properly. The OSH also provides the agent the ability to learn different descriptions of an

object based on different situations. For example, when a car is far from the agent in its

visual field, the agent can build a “blob” model to describe it, and when it comes close, the

agent may be able to build a richer 3D model while still maintaining the blob model. More-

over, the agent’s visual field may include multiple objects that are affected by the agent’s

own actions. Different objects in the scene will receive different amounts of attention, re-

sulting in descriptions at different levels of detail. The multiplicity of representation in the

OSH will help the agent accomplish this task.

2



1.2 Approach Overview

1.2.1 The OSH Framework

The OSH contains two types of layers: the object layers and the model layers. The object

layers describe how the static background and each foreground object are individuated, and

the model layers describe how the model for the static background and for each foreground

object evolves from less structured to more structured representations.

In the object layers, initially everything in the sensory input is treated as noise; then

the agent constructs a constant model of the static background world, where foreground

objects are treated as remaining noise; then the foreground objects are progressively indi-

viduated from the background and their models are constructed while they are tracked over

time.

In the model layers, each of the static background and the foreground objects is

represented as

(a) 2D object in 2D space (2D2D): a set of constant 2D object views, and the time-variant

2D object poses;

(b) 2D object in 3D space (2D3D): a collection of constant 2D components, with their

individual time-variant 3D poses;

(c) 3D object in 3D space (3D3D): the same collection of constant 2D components but

with invariant relations among their 3D poses, and the time-variant 3D pose of the

object as a whole.

The idea of the OSH is that early stages of analysis can robustly derive certain

properties of the visual scene, that are then used as assumptions to make later processing

layers simpler and more robust. When later layers cannot be constructed at a certain time

due to limited resources or complicated situations, the earlier layers still allow objects to

be tracked in the image, until they are more accessible to the more sophisticated kinds of

analysis.

3



The lower layers in the OSH are easier to construct; the higher layers are more

robust to noise, have stronger invariants, and factor the uncertainty in the system more

effectively. In the end, the uncertainty in the sensor stream is factored into a collection

of relatively simple models: the static background, the dynamic observer’s pose, constant

object models, dynamic object poses, and any remaining noise. The “blooming, buzzing

confusion” of the initial pixel-level input is concisely explained in terms of a relatively

small number of object-level concepts and relations.

The OSH approach to object representation exploits both machine vision methods

such as feature extraction and object tracking, and machine learning methods such as clus-

tering, regression, and Bayesian inference, to build its hierarchy of models.

1.2.2 Foreground Object Segmentation

To build the 2D2D model for an object, the robot needs to separate out the object in the

pixel-level sensor stream from the static background environment, where motion informa-

tion is an important cue to perform the separation. Based on the observation that the motion

of the background (from the robot’s egocentric view) has stronger correlation to the robot’s

motor signals than the motion of foreground objects, we propose a method to detect mov-

ing objects by clustering image features according to their motion consistency with motor

signals [Xu et al., 2011].

To exploit motor signals is motivated by the human visual system. The human

visual system does not rely only upon information from the retina to perceive object motion,

because identical retinal stimulations can be evoked by the movement of objects as well as

by self-evoked eye movements [Galletti and Fattori, 2003] or head/body movements. The

signals for eye, head, and/or body movements for humans correspond to motor signals for

a robot. The motor signals allow the robot to predict the motion patterns of background

features. In contrast, the motion patterns of foreground features will be different from the

predictions because they have independent motions from the robot. This difference provides

4



us a way to cluster image features based on their discrepancy with their predictions.

Motor signal change of a robot leads to visual change in its input images. As is

well known, the visual change is constrained by a homography matrix in the case where the

robot’s camera has only rotation but no or small translation (for example, a pan tilt cam-

era), and by a fundamental matrix when the camera has large translation (for example, a

mobile robot) [Hartley and Zisserman, 2003]. In our system, homography and fundamental

matrices are learned off-line as functions of the robot’s motor signal changes. These homog-

raphy and fundamental matrices are then used on-line to predict the feature locations based

on motor signal changes. The errors between the predicted feature locations and their ac-

tual tracked locations are calculated. The features are clustered into background/foreground

using Expectation-Maximization on these errors. Labeled features are then used for pixel-

level image segmentation with Active Contours [Isard and Blake, 1998; Kass et al., 1988]

and Graph-based Transduction techniques [Joachims, 2003; Shi and Malik, 2000].

Unlike pixel-level background subtraction methods, the proposed approach does

not require a large number of frames for background model construction, and does not suf-

fer from accumulated image registration error for dynamic cameras. In contrast to existing

sparse feature based foreground/background separation methods, our approach clusters fea-

tures in only one dimensional space instead of a higher dimensional space, and there is no

need to search for parameters in an affine or homography transformation space or motion

trajectory space.

1.2.3 Recovery of Camera Motion and Object Structure

The recovery of camera motion and object structure is critical for building the 2D3D and

3D3D object models in the OSH. Two classic approaches have been widely used for camera

motion estimation from two views of the same 3D scene: the homography matrix based

approach and the essential matrix based approach.

The homography matrix based approach [Sturm, 2000; Zhang, 2000; Ma, 2004;

5



Hartley and Zisserman, 2003; Cobzas et al., 2009; Molton et al., 2004] works for a planar

environment. Two views of a planar surface are related by a homography matrix. The

camera motion parameters as well as the plane normal can be obtained from decomposing

the homography matrix [Hartley and Zisserman, 2003; Ma, 2004]. This approach may give

two physically possible solutions, and in practice it can be very difficult to select the correct

solution. The essential matrix based approach [Pollefeys et al., 2004; Nistér, 2004; Zhang,

1998; Longuet-Higgins, 1981; Hartley and Zisserman, 2003; Ma, 2004] works for a more

general environment. For two sets of calibrated corresponding points in two images where

not all points lie on the same planar surface, they can be related by an essential matrix

(in the uncalibrated case, it is called the fundamental matrix). By decomposing the essen-

tial matrix, we can get the camera motion parameters [Hartley and Zisserman, 2003; Ma,

2004]. This approach usually needs a large number of point features and RANSAC fitting

to get robust parameter estimation. Based on our observation, both of these approaches are

sensitive to noise, especially when the camera motion is small.

We propose a novel method that takes advantage of both planar features and point

features and fuses constraints from both the homography matrix and the essential matrix in

a single probabilistic framework. A single planar region feature is tracked over time, and

its normal is estimated based on its tracked location and the information of a set of tracked

point features. In the probabilistic normal estimation framework, the constraints from the

homography matrix and the essential matrix are formulated together in the likelihood func-

tion to improve estimation accuracy. Then the camera motion is obtained based on the esti-

mated normal of the planar region feature. Compared to the two classic approaches based

on either the homography matrix or the essential matrix, our method gives more accurate

estimation results and avoids the drawbacks of the HMB and EMB approaches.

Other existing approaches for camera motion estimation and object structure re-

covery include Bundle Adjustment (BA) [Snavely et al., 2008; Klein and Murray, 2007;

Sibley et al., 2009; Triggs et al., 2000; Engels et al., 2006] and Visual SLAM [Davison et al.,
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2007; Newcombe and Davison, 2010; Eade and Drummond, 2006; Nister et al., 2006]. The

dimension of the parameters to be estimated in these approaches is linear in the number of

image features. When the number of image features is large, the size of the search space

for the parameters will be extremely high. In contrast, our method maintains a probability

distribution over only two dimensional normal parameters for a single tracked planar region

feature, and the other motion and structure parameters are calculated based on the two es-

timated normal parameters. Low dimensional parameter estimation allows robust and fast

convergence to the solution.

After the camera pose is estimated, we are able to get the 3D models for a tracked

object. The 3D object structure is recovered from the camera motion as a collection of

triangles in 3D space, where the triangles are obtained from tracked point features. The

normal of each triangle is modeled as a Gaussian distribution, and based on the triangles’

local geometric continuity, the final model is constructed as a compact set of surfaces.

The number of surfaces and their boundaries are automatically identified by maximum a

posteriori estimation

1.3 Scope of this Thesis

The OSH is a very general and large framework for object representation and various ap-

proaches can be used in building its hierarchy. This thesis targets at:

(a) formalizing the framework of the OSH (2D and 3D models for foreground objects and

the static background), and

(b) providing solutions to two key problems: 2D object segmentation and 3D pose estima-

tion, where 2D object segmentation is a fundamental step for separation of a foreground

object and the static background in the image stream, and 3D pose estimation is a basic

step for 3D model construction.
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1.4 Contributions

The primary contributions of the work are:

(i) We propose the Object Semantic Hierarchy (OSH) to represent objects and its sur-

rounding background. The OSH includes both view-based 2D holistic models and

part-based 3D structural models. The models in the OSH evolve from one layer to the

next in a progressive manner, and in the end the input sensor stream is explained in

terms of constant background and object models, and low-dimensional dynamic poses

of the observer and objects.

(ii) We propose and develop a novel 2D object segmentation method (MSMS) to sepa-

rate out moving objects from the static background. As far as we know, this is the

first work to use motor signals for object segmentation, in contrast to traditional ap-

proaches which appeal to information from images/videos only.

(iii) We evaluate the MSMS method for various camera settings: static camera, pan-

tilt camera, and free-moving camera. Robust segmentation results are achieved for

datasets where objects have large translation, rotation, scaling, and illumination changes.

(iv) We propose and develop a novel method (LSMGS) for recovery of camera motion and

object structure which takes advantage of both planar features and point features and

fuses constraints from both homography and essential matrices.

(v) We evaluate the LSMGS method on both planar and non-planar objects/scenes. The

method gives more accurate estimation results, compared to the approaches that use

only one type of feature/constraint, and avoids their major drawbacks.

1.5 Thesis Organization

The remaining chapters are organized as follows.
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Chapter 2 reviews related work, including various object representations such as

2D, 2 1
2
D, 3D, and hierarchical models.

In Chapter 3, we present the framework of the OSH. Details of the Object Layers

and Model Layers in the OSH are discussed.

Feature tracking is an important building block for the OSH. Chapter 4 describes

various tracking methods for point features and planar region features. These tracking

methods are used in the OSH for 2D object segmentation, 3D pose estimation, and 3D

structure recovery.

To build the object models in the OSH, a fundamental step is to separate the ob-

ject of interest from its background. In Chapter 5 we present a novel method for moving

object segmentation based on both image information and motor signals. The method is

evaluated against the pixel-level background subtraction and RANSAC-based homogra-

phy/fundamental matrix fitting approaches which are widely used in existing works.

After an object is separated from the background, we aim at building its 3D model

based on tracked features. Chapter 6 describes a new method for camera pose estimation

by fusing two types of features (points and planar regions) and two types of constraints

(homography and essential matrices). We evaluate the method on various datasets and

compare it against the homography/essential matrix decomposition and Bundle Adjustment

approaches.

With estimated camera motion parameters, preliminary results for 3D object/scene

structure recovery is discussed in Chapter 7. The constructed model contains a small set of

surfaces and the boundary of each surface is automatically identified. Chapter 8 summarizes

the contributions of the thesis and discusses future directions.
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Chapter 2

Literature Review

In order for the agent to build object models in the OSH from the high bandwidth sensor

data (or the firehose of experience [Kuipers, 2008]), we need to answer the following ques-

tions: how do we represent objects and its background, how do we separate objects from its

background, how do we track an object, how do we estimate the object pose and the pose

of the observer, and how do we recover the 3D object structure? This chapter gives a brief

introduction to related works in the topics of object representation, feature tracking, object

segmentation, and 3D pose estimation and structure recovery.

2.1 Object Representation

To understand and interact with the external world in terms of objects, the agent must have

an internal representation of the objects. Various models have been developed in the com-

puter vision community, and we review 2D, 2 1
2
D, 3D, and hierarchical object models in this

section.

10



2.1.1 2D Object Models

Individual objects or object categories can be represented by a bag of features which is a

set of visual words without consideration of their spatial arrangements. Viola and Jones

[2001] used rectangular Haar-like features and selected a small set of critical features using

AdaBoost [Freund and Schapire, 1995] for object detection. Grauman and Darrel [2006]

learned feature masks for object categories by embedding sets of unordered image features

into a space where they cluster according to their partial-match correspondences using the

pyramid match kernel [Grauman and Darrell, 2005].

An object category can also be represented by a set of parts and their geometric

relations. Burl and Perona [1996] developed a face model consisting of a set of facial fea-

tures and the spatial arrangement among them. Weber et al. [2000] focused on learning

object models that are represented as flexible constellations of rigid parts, where the vari-

ability within an object category is modeled by a joint probability density function on the

configuration of parts and the output of part detectors. Fergus et al. [2003] extended the

work of Weber et al. [2000] to learn shape, appearance, occlusion and relative scale of parts

using the EM method. Felzenswalb and Huttenlocher [2005] presented a pictorial struc-

ture representation where an object is modeled by a collection of rigid parts arranged in

a deformable configuration. Each part encodes local visual properties of objects, and the

deformable configuration is characterized by spring-like connections between certain pairs

of parts. Fei-Fei et al. [2006] demonstrated that an object category may be learned from

one or just a few training examples by making use of knowledge from previously learned

object categories rather than starting from scratch, based on salient region features and their

locations. Shotton et al. [2005] used contour segments as parts and learned classifiers by

the gentle-boost algorithm [Friedman et al., 2000]. While these methods can handle defor-

mations, a major issue is that an enumeration over possible matchings for object detection

between object models and the observed images limits the number of parts to be small.

For a specific object instance, its representation is usually used for object tracking.
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Various 2D representations for object instances are reviewed in Section 2.2, together with

tracking approaches based on the corresponding representations.

All the above works target at building 2D models rather than 3D models for ob-

jects. Without 3D models, it would be hard to use these representations for some robotic

applications such as object manipulation.

2.1.2 21
2D and 3D Object Models

A 3D object or object category can be represented by multiple 2D views corresponding to

various poses. Pope and Lowe [2000] handled large variations in different views by cluster-

ing training images and small variations by characterizing uncertainty of object presence,

location and appearance. Lowe [2004] used SIFT features from multiple 2D views to rep-

resent specific objects, where object recognition is done using each feature to vote for all

consistent object poses. Schneiderman and Kanade [2000] used multiple detectors to deal

with large pose variations and statistical modeling for the remaining variation for face and

car detection. Torralba et al. [2004] demonstrated good performance of object detection

by using shared features between views. Ferrari et al. [2006] used groups of local affine

invariant features and their relations between multiple model views for object recognition.

Although these methods handle the pose relations between different views, they do not

consider the pose relations between features in the 3D space.

Kushal et al. [2007] used partial surface models and their loose geometric con-

straints to represent object categories, where partial surface models are dense, locally rigid

assembles of texture patches learned by matching repeating patterns of features. Savarese

and Fei-Fei [2007] proposed a model to represent and learn generic 3D object categories by

linking together diagnostic parts of the objects from different viewing points, where parts

are large discriminative regions and connected by their mutual homographic transformation.

The object representations and inference methods in [Kushal et al., 2007; Savarese and Fei-Fei,

2007] are designed for the purpose of object detection and recognition, where the real 3D
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poses of object parts are not explicitly obtained.

The above methods represent a 3D object by 2D features, parts, or views, plus their

relations in the 2D image space, and do not investigate the real 3D pose between features,

parts, or views. Hence they can be called 2 1
2
D models. Similar to the 2D models described

in the previous section, they are not very useful for robotic applications such as object

grasping.

Rothganger et al. [2006] represented a 3D object in terms of local affine-invariant

features and their 3D spatial relations. Each local affine-invariant feature is a planar paral-

lelogram texture patch. This method has high reliance on texture and needs a large number

of patches to accurately model objects.

A lot of work has been done to reconstruct full 3D models represented by voxels,

polygon meshes, or depth maps [Seitz et al., 2006]. While these methods are able to provide

high-quality reconstruction results with great details, they usually require stereo vision and

high-resolution images, hence the computational cost is generally very high. For objects

with simple shapes, the complexity of these models will be very high (for example, these

models will end up getting a far more complex representation than a compact 6-face model

for a cubic box).

2.1.3 Hierarchical Object Models

Marr and Nishihara [1978] proposed a hierarchical representation for 3D object shape mod-

els and an approach to object recognition where the basic shape components are 3D cylin-

ders. Biederman [1987] built a structural object description where basic components are

2D “geons” such as blocks, cylinders, spheres and wedges. In these representations, the

discrimination among objects in the same category is difficult, since objects are modeled as

a small set of components with simple shape descriptors.

Bouchard and Triggs [2005] proposed a hierarchical model of object parts and sub-

parts, with the object at the top level, and local image features at the bottom. While this
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method deals with a large number of local features, the number of parts at each level needs

to be manually tuned and only three layers (object, part and feature) were tested in their

experiments. Epshtein and Ullman [2007] proposed semantic hierarchies which can detect

and represent multiple appearances of the same object at all levels. Sudderth et al. [2005]

presented a hierarchical model for objects, the parts composing them, and the scenes sur-

rounding them. Each object category has its own distribution over a set of parts which de-

scribes the expected appearance and location in the object centered coordinates, and parts

are shared between objects. Parikh and Chen [2007] presented hierarchical semantics of

objects (hSOs) that capture relationships among multiple objects in a scene as observed

by their relative positions in a collection of images. This hierarchy is a decomposition of

the scene in terms of multiple objects. Marszalek and Schmid [2007] proposed a semantic

hierarchy for inter-class object relationships. All these methods build a hierarchical rep-

resentation for objects, but none of them includes 3D object models. In addition, these

methods are intended for object recognition, and are not suitable for reconstruction of the

input sensory stream.

2.2 Feature Tracking

To separate an object from the background and to build models for the object, we need to

track features in the background or on the object. Feature tracking is an important process

in construction of the OSH.

Modayil and Kuipers [2004; 2006; 2008] developed a method whereby a learning

agent can autonomously learn about object models, by detecting, tracking, and characteriz-

ing clusters of foreground “pixels” in the sensory stream. Their agent is a mobile robot that

receives a stream of sensory information from a laser range-finder. It is assumed that the

agent has learned the structure of its sensory array using the methods of Pierce and Kuipers

[1997].

For camera images, various features can be used in object tracking, such as interest
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points/patches [Lowe, 2004; Tran and Davis, 2007; Shi and Tomasi, 1994; Kwon and Lee,

2010; Molton et al., 2004], lines, edges/contours/boundaries [Pressigout and Marchand, 2006;

Isard and Blake, 1998; Kass et al., 1988], blobs/regions [Comaniciu et al., 2003; Gall et al.,

2008b; Matas et al., 2004], and combinations of them.

Background subtraction is a popular technique for object detection and tracking.

Wren et al. [1997] used a single Gaussian to model pixel intensity in the background.

Stauffer and Grimson [1999; 2000] used a mixture of Gaussians to handle multi-modal in-

tensity distributions. Stereo disparity information was used to coarsely segment foreground

objects from the background in Kim et al. [2006].

Comaniciu et al. [2003] proposed a kernel-based tracking algorithm where an ob-

ject is represented by an ellipsoidal region and the mean-shift tracker [Comaniciu and Meer,

2002] maximizes the appearance similarity iteratively by comparing a histogram-based

model of the object and the window around the hypothesized object location. Isard and

Blake [1998] presented a particle filter based tracking algorithm where object shape is rep-

resented by B-splines. Tran and Davis [2007] presented a robust object tracking method

using regional affine invariant features.

In particular, distinctive point features have been widely used in object tracking,

such as by the KLT method [Shi and Tomasi, 1994] or the SIFT matching method [Lowe,

2004]. While point features have many successful applications, maintaining feature tracks

over many frames may be quite difficult [Tran and Davis, 2007; Zinsser et al., 2004], espe-

cially when the input images are noisy. The KLT method is efficient, but it may suffer from

the feature drift problem over a long sequence of images [Zinsser et al., 2004; Bourel et al.,

2000; Gall et al., 2008a].

More robust tracking can be obtained by integrating other features with point fea-

tures. Gall et al. [2008b] exploited region matching to avoid point feature drift. Pressigout

and Marchand [2006] and Vacchetti et al. [2004] incorporated point and edge features for

tracking by minimizing the re-projection errors.
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2.3 2D Object Segmentation

Motion information is an important cue to separate out foreground from the background

[Spelke, 1990]. There have been many approaches developed for foreground object seg-

mentation based on motion information.

Background subtraction has been widely used for moving object segmentation such

as Pfinder [Wren et al., 1997], non-parametric model [Elgammal et al., 2000], Gaussian

Mixture Model [Stauffer and Grimson, 1999, 2000], and their variations [Zhong and Sclaroff,

2003; Mittal and Paragios, 2004; Monnet et al., 2008; Ko et al., 2010; McKenna et al., 2000].

These methods build a pixel-level background model which adapts to the changing envi-

ronment, and identify those pixels that violate the background model as foreground pix-

els. These methods typically assume a stationary camera, which makes them hard to be

used for robotic applications. To further relax this assumption, many ego-motion com-

pensation [Hayman and Eklundh, 2003; Mittal and Huttenlocher, 2000] or image mosaic

[Brown and Lowe, 2003; Szeliski, 2006; Azzari et al., 2005] methods have been presented,

but they may result in blurred edges due to accumulated image registration error.

Another way for moving object segmentation is to build parametric models for dif-

ferent motion layers. Motion analysis is applied to either sparse features, dense optical

flows. In general, a set of affine/homography parameters [Ren and Gu, 2010; Han et al.,

2006; Sivic et al., 2006; Wang and Adelson, 1994] or trajectory parameters [Sheikh et al.,

2009; Brox and Malik, 2010] need to be estimated by iterative linear regression [Han et al.,

2006], RANSAC [Sheikh et al., 2009; Ren and Gu, 2010; Wang and Adelson, 1994], or hi-

erarchical k-means [Brox and Malik, 2010]. These approaches obtain good performance

for moving object segmentation, but they may be computationally expensive due to the

iterative parameter searching process.

Object segmentation can also be conducted based on region tracking [Lee et al.,

2011; Ren and Malik, 2007; Grundmann et al., 2010; Yin and Collins, 2009], where low-

level over-segmented regions are grouped into high-level object-like regions by static and
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dynamic cues such as appearance similarity, spacial coherence, and motion coherence.

These methods do not detect real 3D motion, for example, a static object may be sepa-

rated out if it moves in the 2D image space but remains static in the 3D space with respect

to other objects or background.

All the above methods appeal to using information from images only, and do not

take advantage of robot pose information which is another important source of information

to separate moving objects from the static background in robotic applications.

2.4 3D Pose Estimation and Structure Recovery

Information is accumulated while an object is tracked, and the 3D camera/object pose and

the 3D object structure can then be recovered from this accumulated information. Two

classic approaches for recovery of the 3D camera pose and object structure have been

widely used from two views of the same 3D scene: the homography matrix based approach

[Sturm, 2000; Zhang, 2000; Hartley and Zisserman, 2003; Ma, 2004; Cobzas et al., 2009;

Molton et al., 2004] and the essential matrix based approach [Pollefeys et al., 2004; Nistér,

2004; Zhang, 1998; Longuet-Higgins, 1981; Ma, 2004; Hartley and Zisserman, 2003]. The

homography matrix based approach may give two physically possible solutions [Ma, 2004],

and it can be very difficult to select the correct solution when the camera motion is small or

when the camera moves on a line without any rotation. The essential matrix based approach

requires RANSAC-like fitting and a good number (at least 5 [Nistér, 2004], usually many

more) of point features that do not lie on the same plane.

Other existing approaches for camera motion estimation and object structure recov-

ery include Bundle Adjustment [Sibley et al., 2009; Engels et al., 2006; Hartley and Zisserman,

2003; Triggs et al., 2000] and Visual SLAM [Davison et al., 2007; Newcombe and Davison,

2010; Nister et al., 2006; Eade and Drummond, 2006; Cummins and Newman, 2009]. These

approaches estimate high dimensional parameters simultaneously, and typically need prior

knowledge on the initial camera pose and object structure. When the number of image fea-
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tures is large, the size of the search space for parameter estimation will be extremely high,

which will result in expensive computation.
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Chapter 3

The Object Semantic Hierarchy

An intelligent agent must be able to perceive and reason robustly about its world in terms of

objects, among other foundational concepts. The robot can draw on rich data for object per-

ception from continuous sensory input, in contrast to the usual formulation that focuses on

objects in isolated still images. Additionally, the robot needs multiple object representations

to deal with different tasks and/or different classes of objects [Logothetis and Sheinberg,

1996].

We are developing the Object Semantic Hierarchy (OSH) [Xu and Kuipers, 2010,

2009] to build a collection of object representations at different layers, motivated by the

work of the Spatial Semantic Hierarchy (SSH) which consists of multi-level representations

of large-scale space [Kuipers, 2000; Kuipers et al., 2004; Beeson et al., 2010].

3.1 The OSH Framework

The framework of the OSH is shown in Fig. 3.1. The OSH has two types of layers: the

Object Layers and the Model Layers. The Object Layers describe how the static background

and each foreground object are individuated, and the Model Layers describe how the model

for the static background and for each foreground object evolves from less structured to
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more structured representations.

Figure 3.1: The framework of the OSH (best viewed in color). The agent initially treats ev-

erything in the sensory stream as noise. By repeatedly identifying new invariants to reduce

the noise, the agent progressively builds models for the background world and foreground

objects. For the background world or each foreground object, the model evolves from 2D2D

to 2D3D to 3D3D (see text for details).

In the Object Layers, the agent starts by constructing a constant model of the static

background world, where foreground objects are treated as noise. Then the foreground ob-

jects are progressively individuated from the background and their models are constructed
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while they are tracked over time. Hierarchical models are created by repeatedly constructing

and refining stochastic models of the observation stream generated by the agent’s sensors

in the environment. Such a stochastic model has the form zt = Mt + ε , where Mt is a de-

terministic model explaining the contents of the observation stream zt , and ε = zt −Mt is

the residual between explanation and observation, interpreted as noise. At each layer, new

invariants are identified within the data described by ε , leading to a revised model M′
t and

ideally a reduced level of noise ε ′ = zt −M′
t . In the end, the uncertainty in the sensory

stream is factored into a collection of relatively compact representations: static background

model, pose trajectory of the observer, constant foreground object models, pose trajectories

of the foreground objects, and any remaining noise. The “blooming, buzzing confusion” of

the initial pixel-level input is concisely explained in terms of a relatively small number of

object-level concepts and relations.

In the Model Layers, the static background is treated as just another object. The

construction of the static background model is taken in the same way as of any foreground

object model. The models for each object model contain the following layers:

(a) 2D object in 2D space (2D2D): a set of constant 2D object views, and the time-variant

2D object poses;

(b) 2D object in 3D space (2D3D): a collection of constant 2D components, with their

individual time-variant 3D poses;

(c) 3D object in 3D space (3D3D): the same collection of constant 2D components but

with invariant relations among their 3D poses, and the time-variant 3D pose of the

object as a whole.

Note that in the these layers, it is possible that a part of the object has evolved to a

higher-level model but the remaining part is still represented in lower-level models.

The idea of the Model Layers is that early stages of analysis can robustly derive

certain properties of the visual scene, that are then used as assumptions to make later pro-
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cessing layers simpler and more robust. For example, early separation of the background

provides the agent a set of 2D views of the foreground object, which allows the agent to

focus on only the foreground object without the need to worry about the background. This

facilitates later processing for 3D model construction for the foreground object. When and

if later layers fail, the earlier layers still allow objects to be tracked in the image, until they

are more accessible to the more sophisticated kinds of analysis.

3.2 Object Layers

In the Object Layers, the agent starts by building a constant model of the static background

world, where foreground objects are treated as noise. Once the background model is built

as an explanation of its sensory stream, the agent continues to progressively individuate

foreground objects by identifying new invariants within the discrepancy between the agent’s

explanation and observation.

Layer 0: Noisy world

The agent perceives its environment through a high dimensional pixel-level sensory

stream. In this layer, everything is considered as noise.

zt = ε0 (3.1)

where zt is the sensor input at time t, and ε0 is a random variable that represents the sensor

input but treats it as noise.

Layer 1: Static background

In its learning process, the agent starts by constructing a constant model of the

background world, treating any foreground objects as noise.

zt = G1(Mb,xt)+ ε1 (3.2)
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where Mb is the static background model, xt is the agent’s observing pose, G1 is a function

mapping the background model Mb to a 2D image given the observer’s pose xt , and ε1

represents the discrepancy between the prediction of the model G1(Mb,xt) and what is

actually observed zt .

Layer 2: Foreground object 1

After the static background model is constructed, new invariants are identified within

the data described by ε1. The identified invariants contribute the first foreground object.

zt = G1(Mb,xt)+G2(Mo
1 ,y1t)+ ε2 (3.3)

where Mo
1 is the constant model for the first foreground object, y1t is the object’s pose, G2

is a function mapping the object model Mo
1 to a 2D image given y1t , and ε2 is the remaining

noise. The plus sign is an operator that layers the foreground object image on top of the

background image.

...

Layer n: Foreground object n-1

At Layer n, the agent continues to identify new invariants within the noise term εn−1

in the previous layer, and constructs a model for the n−1th foreground object.

zt = G1(Mb,xt)+G2(Mo
1 ,y1t)+ ...+

Gn(Mo
n−1,y(n−1)t)+ εn (3.4)

where Mo
n−1 is the constant model for the n− 1th foreground object, y(n−1)t is the object’s

pose, Gn is a function mapping the object model Mo
n−1 to a 2D image given y(n−1)t , and εn

is the remaining noise.
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3.3 Model Layers

In the Model Layers, the static background model and each foreground object model have

the following layers: 2D object in 2D space, 2D object in 3D space, and 3D object in 3D

space. Here an ob ject can be either the background world or any foreground object. In

other words, the background world is treated as just another object. The object pose of the

background world in the egocentric frame of reference is an implicit representation for the

agent’s observing pose in the allocentric frame of reference.

While the agent always tries to build all the Model Layers for an object, it can fall

back to the already-constructed layers if at a certain layer the transition to the next is not

feasible. Thus, the agent will still be able to work under lower-level models when higher-

level models are not available.

3.3.1 Layer 2D2D: 2D Object in 2D Space

From the high-dimensional pixel-level object image stream, the agent identifies a sparse

set of 2D object views as the object model v. The multi-view object representation has

been shown very useful for object recognition [Bulthoff and Edelman, 1992; Ullman, 1998;

Lowe, 2001].

The 2D object view model is described by

v = {v1,v2, ...,vnv} (3.5)

where nv is the number of the object views. The object views are connected by shared image

features and/or the agent’s motor signals.

The view model v should satisfy two constraints: (i) v is sparse compared to all

the input object images, and (ii) v is complete such that any observed object image can be

generated from v.

At each time step t, within the object model v, we locate the view that has closest
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Figure 3.2: Examples for the Model Layers. 2D2D layer – a collection of 2D views, 2D3D

layer – a set of 2D planar components, 3D3D layer – full 3D object.
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observing pose with the new input image, by checking the overlapping ratio between each

view and the input image. This located view is called the base view. The homography

transformation between the relevant portion of the input image and the base view, plus the

pointer to the base view, is defined as the 2D object pose yv
t . With this yv

t , any observed

object image can be reconstructed as an image transformed from the base view and the

neighboring views of the base view.

Now we have

zt = Gv(v,yv
t )+ εv (3.6)

where Gv is a function mapping v to an image under yv
t , and εv is the remaining noise.

In Eq. 3.6, the object image stream is decomposed into the constant 2D object view

model v (Fig. 3.2), dynamic 2D object pose yv
t , plus the remaining noise.

3.3.2 Layer 2D3D: 2D Object in 3D Space

Psychological experiments have shown that humans focus their study time on object views

that are close to planar views (such as front, back, and side views) and ignore other views

when actively interacting with objects [James et al., 2002].

Based on the 2D2D layer, we identify new invariants as a collection of constant 2D

components, which are planar or approximately planar surfaces embedded in 3D space and

are denoted by

c = {c1, ...,cnc} (3.7)

where nc is the number of components, and each component in c is represented by its normal

view. A normal view is defined as the component image that is observed when the optical

axis is aligned with the normal of the component surface.
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The object view model v in the previous layer can then be described by

v = Gq(c,q) (3.8)

where q = {q1, ...,qnc} are the 3D poses of the components appearing in the 2D views in v,

and Gq is a function mapping c and q to v.

Let yc
t denote the dynamic 3D component poses. The 2D object pose yv

t in the 2D2D

layer and the component poses q in Eq. 3.8 can both be represented as functions of yc
t . Thus,

by combining Eq. 3.6 and Eq. 3.8, we get

zt = Gv(Gq(c,q),yv
t )+ εv

= Gc(c,yc
t )+ εc (3.9)

where Gc is a function mapping c to an image under yc
t , and εc is the remaining noise. Note

that yc
t contains a history of the 3D poses for each individual component, where the 3D

poses between different components are not related yet.

In Eq. 3.9, the object image stream is decomposed into the constant 2D object com-

ponent model c (Fig. 3.2), dynamic 3D component poses yc
t , plus the remaining noise.

3.3.3 Layer 3D3D: 3D Object in 3D Space

Compared to the multi-view representation in the 2D2D layer, a structured description

(parts with relative 3D pose relations) of objects allows the agent to evaluate components

and their relations independently [Hummel, 2000]. In addition, a structured description

tends to be more concise than the multi-view representation.

We now begin to relate individual components to each other, to create a fixed 3D

structure with a number of different components. The relation between the 3D poses of two
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components is invariant under the assumption of rigid object.

yc
t = Gp(p,yo

t ) (3.10)

where yo
t is the object’s 3D pose at t, p = {p1, ..., pnc} are the 3D poses of the components

with respect to the object pose yo
t , and Gp is a function that maps p to yc

t under yo
t . All the

changing component poses in Eq. 3.9 are explained in terms of the changing pose of the 3D

object as a whole.

We define the 3D object model in 3D space as

o = {c, p} (3.11)

where both c and p are constant.

By combining Eq. 3.9, Eq. 3.10, and Eq. 3.11, we get

zt = Gc(c,Gp(p,yo
t ))+ εc

= Go(o,yo
t )+ εo (3.12)

where Go is a function mapping the 3D object model o to an image under the 3D object

pose yo
t , and εo is the remaining noise. Note that the subscript of εo in the above equation is

“o” instead of “0” (zero) as in Eq. 3.1.

In Eq. 3.12, the object image stream is decomposed into the constant 3D object

model o (Fig. 3.2), dynamic 3D object pose yo
t , plus the remaining noise.

3.4 Re-projection Functions

The re-projection functions Gv, Gc, Go, Gq and Gp are summarized in Table 3.1. Each of

these functions is a well-understood transformation matrix [Hartley and Zisserman, 2003;
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Table 3.1: Summary of transformation functions

Function Description

Gv
Given the constant 2D object view model and the dynamic

2D object pose, predict sensor input.

Gc
Given the constant 2D component models and the dynamic

3D component poses, predict sensor input.

Go
Given the constant 3D object model and the dynamic 3D

object pose, predict sensor input.

Gq
Given the models of a set of 2D components and their

poses, predict 2D views in image space.

Gp
Given 3D object pose, and 3D component poses wrt object

frame, predict 3D component poses in world frame.

Table 3.2: Acquired information in the OSH

Layer Acquired information

2D2D
v - constant 2D object view model

yv
t - dynamic 2D object pose

2D3D
c - constant 2D object component models

yc
t - dynamic 3D component poses

3D3D
o - constant 3D object model

yo
t - dynamic 3D object pose

Ma, 2004]. Table 3.2 is a summary of the information that is acquired at different layers.

3.5 Static Background as a Special Object

In the Model Layers, we have described object poses as yv
t , yc

t and yo
t in the agent’s ego-

centric frame of reference. For the static background as a special object, yv
t , yc

t and yo
t are

implicit representations for the agent’s observing pose in the allocentric frame of reference.

In later discussion, we will use xv
t , xc

t and xo
t to denote the agent’s observing pose in different

Model Layers in the OSH (Fig. 3.3).
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Figure 3.3: Model Layers in the OSH. The background model and foreground object mod-

els {v,c,o} are constant. The observer’s pose {xv
t ,x

c
t ,x

o
t } and the foreground object poses

{yv
t ,y

c
t ,y

o
t } are time-variant. The 2D2D model is guaranteed to be built, and the 2D3D and

3D3D models will be built when the agent has necessary resources available.

3.6 Construction of the OSH

We will briefly describe our approach to building the OSH in this section, where the details

for 2D background/object segmentation and 3D pose estimation will be discussed in Chap-

ter 5 and Chapter 6. In the current implementation of the OSH, we assume the foreground

objects are rigid.

3.6.1 Static Background Model

The static background environment usually has more complex structure than foreground

objects. While our ultimate goal is to build a full 3D3D model for the background envi-

ronment (in Tsai, Xu, Liu, and Kuipers [2011], we have presented a method to construct

3D3D background models in planar environments containing only ground and walls), we

only focus on constructing a 2D2D background model in this thesis.

When the observing pose is fixed, we can use the Gaussian mixture model (GMM)

[Stauffer and Grimson, 1999] to build a pixel-level background image and wash out noises
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Figure 3.4: A robot looking at a checker box. A box is moving around in front of the robot,

which has a webcam mounted on a pan tilt unit.

due to dynamic changes [Xu and Kuipers, 2009]. When the observing pose is dynamic,

the variant GMM method by stitching images in a single view [Brown and Lowe, 2003;

Szeliski, 2006; Torr and Zisserman, 2000; Azzari et al., 2005; Hayman and Eklundh, 2003]

suffers from accumulated image registration error. Instead, we identify a sparse set of

views as the 2D2D background model v, where these views are connected by homography

transformations. The homography transformations are obtained based on the robot’s motor

signals and the shared image features between overlapping views. When a new input image

has small or no overlapping with all views in the 2D2D background model, the image is

added to the model as a new view. If the input image has a large overlapping with a view in

the model, the image is used to update the view.

At each time step, within the 2D2D background view model, we find the base view

that has the largest overlapping ratio with the new input image. Features are detected and

matched between the input image and the base view. A homography matrix is calculated

between these features. This homography matrix, together with the pointer to the base view,

is the agent’s observing pose xt (here xt is actually the observing pose xv
t in the 2D2D layer

in the OSH).

Fig. 3.4 shows a simple robot which has a webcam mounted on a pan tilt unit (PTU).

The robot has access to its motor signals, that is, pan and tilt positions of the camera.

To construct the 2D view model for the static background, the agent needs to be
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Figure 3.5: 2D view examples in the 2D2D background model. The views correspond

to different observing poses, where each observing pose is determined by the pan and tilt

positions (shown below the views) of the PTU. The black holes in the views are due to

permanent occlusion by foreground objects.

able to identify which part in each input image comes from the background (the remaining

part is treated as noise). Motor signals allow the robot to predict the motion patterns of

background features. In contrast, the motion patterns of non-background features will be

different from the predictions because they have independent motions from the robot. This

observation provides us a way to cluster image features based on their discrepancy with

their predictions. Based on this observation, we first detect sparse features and label them

as background features and non-background features. Then we propagate their labels to

all pixels in the input image. This method segments an image into background pixels and

non-background pixels based on only a few neighboring frames. It is robust to illumination

changes, adapts quickly to the environment, and does not suffer from accumulated image

registration error. The details of the method is presented in Chapter 5.
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Fig. 3.5 shows some view examples (and the corresponding motor signals) in a

constructed 2D2D background model.

3.6.2 Foreground Object Model

2D Object Model

Once the background model is constructed, foreground object pixels can be individuated

from the background. For each new input image, we detect sparse features and match them

with the 2D2D background model. Those features that violate the background model are

labeled as foreground features. Then the labels are propagated to all image pixels.

Within the 2D foreground object images where the background pixels have been

filtered out, the 2D2D foreground object model v and the object pose yv
t are obtained in

a similar way as in the 2D2D background model construction. Please see Chapter 5 for

details. Once the foreground object is segmented out from the background, various infor-

mation such as contours can be extracted and used for object recognition [Xu and Kuipers,

2011].

3D Object Model

In the foreground object image sequence, we track a single planar component and esti-

mate its 3D pose. The tracking method includes both sparse point feature tracking and dense

pixel alignment, which provides accurate and robust tracking results for pose estimation.

Pose estimation takes advantage of both planar features and point features, and

fuses constraints from both the homography and essential matrices. Once the 3D pose of

the planar component is estimated, we are able to obtain camera motion parameters and

then recover the 3D object structure. The details are described in Chapter 6 and Chapter 7.
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Chapter 4

Feature Tracking

Feature tracking is an important building block for the OSH. Tracking allows the robot

to make correspondence between images, perform foreground/background separation, and

recover scene/object structure.

Various features can be used in tracking [Yilmaz et al., 2006], such as interest points

or patches [Lowe, 2004; Tran and Davis, 2007; Shi and Tomasi, 1994; Bay et al., 2008;

Molton et al., 2004; Kwon and Lee, 2010], lines, edges/contours [Isard and Blake, 1998;

Kass et al., 1988; Pressigout and Marchand, 2006], blobs/regions [Comaniciu et al., 2003;

Gall et al., 2008b; Matas et al., 2004], and combinations of them. In this chapter, we will

discuss tracking of point/patch features and planar region features which are used in the

current implementation of the OSH.

4.1 Point/Patch Feature Tracking

The most popular point/patch feature tracking methods are KLT tracking [Shi and Tomasi,

1994] and SIFT matching [Lowe, 2004].

The KLT [Shi and Tomasi, 1994] tracker estimates the optical flow between two

frames by minimizing the sum of squared difference within each image patch between one
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frame and the other. First, salient corner features are detected by checking the eigenval-

ues of each local 2× 2 gradient matrix. Then the detected corner features (represented

as windows of small patches) in the first frame are tracked by iteratively searching for

the best matching windows in the following frames. Multi-resolution tracking (coarse-to-

fine estimation) can be used when there are relatively large displacements between images

[Shi and Tomasi, 1994].

Tracking by SIFT matching [Lowe, 2004] first detects point/patch features indepen-

dently between frames, and then find feature correspondence between these frames. SIFT

matching is based on the Best-Bin-First algorithm, which uses a modified search ordering

for the k-d tree algorithm [Friedman et al., 1977] so that bins in feature space are searched

in the order of their closest distance from the query location. This search order requires the

use of a heap-based priority queue for efficient determination of the search order [Lowe,

2004].

In our current OSH implementation, we use the KLT method, due to its efficiency

and effectiveness in videos where only small motion takes place between consecutive frames,

for 2D foreground segmentation, 3D pose estimation, and 3D structure recovery.

4.2 Planar Region Feature Tracking

In building the 2D3D models in the OSH, we develop a 3D pose estimation method that uses

both point features and planar region features, and we demonstrate that using planar region

features greatly improves the results of using only point features. A planar region feature

is a region that lie on a planar surface, where the region is usually larger than small patches

described in the above section (please see Section 6.2 for planar region feature detection).

For tracking a planar region feature, we can detect interest points inside the region,

and track the planar region feature by tracking the detected interest points based on the KLT

method. This generally works well for a small number of consecutive frames. However,

for a long sequence of images, it may suffer from the feature drift problem (the features
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drift slowly away from the correct positions from frame to frame), and will accumulate

errors due to intensity changes, image noise and inaccurate parameter estimation. The drift

between adjacent frames is very small, but the accumulated error across a long sequence of

frames can be very problematic for 3D pose estimation.

Fig. 4.1 shows the feature drift problem in KLT tracking. We investigate two meth-

ods to solve this problem, by line feature integration and by dense pixel alignment.

Figure 4.1: Feature drift problem. Some of the features (shown as red circles) detected in the

left image may gradually drift away from the correct positions, as shown in the right image,

especially for the linked feature pairs. When the number of features is low, even small drifts

can seriously affect the tracking results and the accuracy of later pose estimation results.

4.2.1 Sparse Point Feature Tracking and Line Feature Integration

We consider the case where the to-be-tracked planar region feature has a clear boundary

composed of piecewise line segments. Compared to point features, line features are much

more robust when the lighting condition changes or when significant noise exists, so they

can be integrated to improve tracking accuracy.

We exploit the KLT algorithm to maintain only temporary correspondence between

each two adjacent frames based on point features, while the permanent correspondence

across all the frames is maintained by boundary line features. The temporary correspon-

dence from the KLT algorithm is only used to predict the boundary location from one
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frame to the next. Then, within the local areas of the predicted boundary, a correction step

is taken by selecting the best matched line segment detected using the Hough transform

[Duda and Hart, 1972].

Point Feature Tracking

We track KLT point features only between each two adjacent frames instead of across

multiple frames due to the possible feature drift problem. That is, features are re-detected

at each time step and different sets of features are used between different adjacent frames.

Salient point features are first detected inside the boundary at time t − 1. Then the

features are tracked by the KLT tracker at time t. The RANSAC algorithm [Fischler and Bolles,

1981] is used to remove incorrectly matched features. In our experiments, the KLT tracker

works very robustly since it only has to maintain the feature correspondence between two

consecutive frames. This feature correspondence will be used to predict the boundary lo-

cation at time t, based on the already-known boundary location at time t −1. This tracking

scheme is demonstrated in Fig. 4.2.

Boundary Prediction

The detected features at time t−1 and the tracked features at time t are related by a planar

homography transformation H p
t (the superscript p denotes point). Given at least four pairs

of matched point features, H p
t is calculated through the Direct Linear Transformation (DLT)

method [Hartley and Zisserman, 2003; Ma, 2004; Agarwal et al., 2005].

Let the boundary at time t −1 be sc
t−1, then we have

ŝc
t = H p

t sc
t−1 (4.1)

where ŝc
t is the predicted boundary at time t.

Boundary Correction

In order to avoid accumulated error from point feature tracking, we update the predicted
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Figure 4.2: Planar region feature tracking with line feature integration. The first figure

is based on the image at t − 1, and all the others are based on the image at t. (a) The

red solid contour is the boundary of the planar region in frame t − 1, and point features

are detected inside the boundary shown as red circles. (b) The point features are tracked

in frame t using the KLT tracker. (c) The boundary in frame t is predicted as a dashed

contour from feature correspondence between these two adjacent frames. (d) Local interest

regions (shown as green rectangles) are formed around each line segment. (e) Within each

local interest region, lines are detected using Hough transform and the best matched line is

selected (shown as a red solid line). (f) The final boundary in frame t is computed.

boundary to fit the observed data by matching line segments in their neighborhood areas.

Compared to point features, line features are much more robust to intensity changes and

image noise. Also line features tend to give more accurate position estimation than point

features.

Around each line segment on the predicted boundary ŝc
t , a local interest region is

formed in the image at time t. The interest region is a rectangle with a user-defined height

and width, where the rectangle’s centroid is the line segment’s centroid, and two laterals

of the rectangle are parallel to the line segment. Within this rectangle, candidate line seg-

ments are detected using the Hough transform [Duda and Hart, 1972] after the Canny edge
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detection process [Canny, 1986], and the best matched line segment is used to correct the

predicted line segment.

From at least four pairs of matched line features, another homography matrix Hb
t

(the superscript b denotes boundary) is obtained [Guerrero and Sagues, 2003], and the

boundary at time t is finally updated as

sc
t = Hb

t ŝc
t (4.2)

or

sc
t = Hb

t H p
t sc

t−1 (4.3)

by substituting Eq. 4.1.

Let Ht be the homography transformation between frame 0 and frame t. Then the

tracked boundary at time t −1 is

sc
t−1 = Ht−1sc

0 (4.4)

where sc
0 is the boundary at time 0. Combining Eq. 4.3, we can easily get Ht as

Ht = Hb
t H p

t Ht−1. (4.5)

where Ht will be used later for 3D pose estimation.

Discussions

In this tracking scheme, point features maintain only temporary correspondence be-

tween each two adjacent frames, while line features maintain the permanent correspondence

across all the frames for the tracked planar region. Since line features are more robust to

image noise, this tracking scheme can work well with low quality videos.
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The Hough transform is applied only within the local interest regions of the pre-

dicted boundary. In general the KLT tracking is fairly accurate between adjacent frames,

so the interest regions are typically small such that the computational cost for boundary

correction is low.

4.2.2 Sparse Point Feature Tracking and Dense Pixel Alignment

In a more general case, where the planar region feature does not have a natural linear bound-

ary, a dense pixel alignment step can be applied to avoid the feature drift problem and

improve tracking accuracy.

This planar region feature tracking scheme includes two steps: sparse point feature

tracking and dense pixel alignment. Sparse point feature tracking gives a rough estimate

of the planar region feature location, and dense pixel alignment refines the estimate. Com-

bining sparse feature tracking and dense pixel alignment allows us to track a planar region

feature robustly and accurately. The tracking scheme is shown in Fig. 4.3.

In this section, we also describe a solution to deal with the problem when the num-

ber of detected point features inside the to-be-tracked planar region is very small and the

result of point feature tracking is poor. This solution can be applied as well to the tracking

scheme with line feature integration described in the above section, when we have only a

low number of point features inside the planar region. The idea is to exploit information

from outside the planar region as well as information inside the region.

Traditionally feature tracking [Shi and Tomasi, 1994; Comaniciu et al., 2003] or

matching [Lowe, 2004] uses information only inside the tracked region, while the infor-

mation outside the region is completely or mostly overlooked. When the tracked region is

small or similar to its neighboring areas, it will be hard to robustly locate the region without

using any context information. We take advantage of information both inside and outside

the tracked region to improve tracking stability and accuracy. Our tracking method takes

two steps: sparse feature tracking on the entire image (both inside and outside the tracked
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region) and dense pixel alignment inside the tracked region. The sparse feature tracking

step avoids getting stuck at local minima and improves tracking stability, and the dense

pixel alignment step refines the tracked feature location and improves tracking accuracy.

Figure 4.3: Planar region feature tracking with dense pixel alignment (best viewed in color).

The red contour in the top left image shows the tracked planar region feature at time t −1.

Sparse local point features are detected in frame t − 1 (top right image) both inside and

outside the tracked planar region. These sparse point features are tracked at time t (middle

left image), and the homography transformation between the detected point features and

the corresponding tracked point features are calculated. This homography transformation

is used to predict the rough location of the planar region feature at time t (yellow contour in

the middle right image). The roughly estimated location of the planar region feature is then

refined by dense pixel alignment inside the tracked region (the refined location is shown as

a new red contour in the bottom left image). The bottom right image shows the final tracked

planar region feature at time t. Note that in our work the sparse feature tracking step is taken

only between two adjacent frames, but we have intentionally enlarged the frame interval and

tracking errors in this figure to clearly show the tracking scheme.
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In the image sequence, frame 0 is referred to as the reference frame. Let f0 be a

detected planar region feature in the reference frame I0, which is tracked as ft in frame It .

The corresponding transformation from f0 to ft is denoted by Ht .

Sparse Feature Tracking

At time t − 1, the planar region feature is tracked as ft−1 with a homography trans-

formation Ht−1. We detect salient point features in image It−1 (note that the detection is

on the entire image instead of just inside the planar region feature) and track these fea-

tures in It using the KLT method [Shi and Tomasi, 1994]. The detected point features at

time t − 1 and the corresponding tracked features at time t are related by a homography

transformation Hs
t (the superscript s denotes sparse). Given at least four pairs of matched

point features, Hs
t is calculated through the Direct Linear Transformation (DLT) method

[Hartley and Zisserman, 2003; Ma, 2004]. Thus from the following equation,

Ĥt = Hs
t Ht−1 (4.6)

we get a rough estimate of the homography transformation Ĥt at time t.

Dense Pixel Alignment

We then adopt the Inverse Compositional algorithm [Baker and Matthews, 2004] with

some modification for pixel-based image alignment.

Let W (p;H) denote the parameterized set of warps, where W (p;H) takes a pixel p

in the coordinate frame of I0 as input and maps it to another pixel (or sub-pixel) location in

a new image under transformation H.

Given the roughly estimated matrix Ĥt in the sparse feature tracking step, we can

warp image It back onto the coordinate frame of I0 as It(W (p; Ĥt)). Then we seek an-

other matrix Hd
t which warps image I0 as I0(W (p;Hd

t )) such that the difference between

It(W (p; Ĥt)) and I0(W (p;Hd
t )) is minimized over all pixels inside the planar region feature
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f0 in I0. The difference is defined as

Σp∈ f0
[I0(W (p;Hd

t ))− It(W (p; Ĥt))]
2 (4.7)

where Hd
t (the superscript d denotes dense) is the refinement transformation.

It is easily seen that the final transformation from I0 to It is

Ht = Ĥt(Hd
t )

−1. (4.8)

Combining Eq. 4.6 and 4.8, we have

Ht = Hs
t Ht−1(Hd

t )
−1 (4.9)

which is the final update equation from Ht−1 to Ht .

The Inverse Compositional algorithm described in Baker and Matthews [2004] is

based on only gray images. To better deal with illumination changes, we extend the al-

gorithm to track planar regions based on gradient images as well as gray images, since

gradient images are generally more robust to lighting condition changes.

Discussions

First, in the sparse feature tracking step, besides using information inside the planar

region, we also use information outside that region. When there are no objects moving in the

background environment, all sparse features in the input image have similar motion patterns

to the planar region feature. Thus all these sparse features can be used to assist tracking the

planar region feature, which avoids getting stuck at local minima and improves tracking

stability. When there exist moving objects in the background environment, one can locate

sparse features with similar motion patterns to the planar region feature using Generalized

Hough Transform [Grabner et al., 2010]. Second, sparse features are tracked only between

each two adjacent frames. That is, at each frame, new features are detected and tracked only
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in the next frame using the KLT method. The KLT method works extremely well between

adjacent frames, but may cause the feature drift problem across a long sequence of frames.

Thus, we take advantage of the merit of the KLT method and in the meanwhile we avoid its

drawbacks. Third, dense pixel alignment refines the planar region feature location, avoids

the feature drift problem, and improves tracking accuracy.

4.3 Demos

4.3.1 Sparse Point Feature Tracking and Line Feature Integration

We test the scheme of sparse point feature tracking with line feature integration. All of the

to-be-tracked objects have clear piecewise linear boundaries, where the boundaries can be

either convex or non-convex. Some typical tracked frames from the videos are shown in

Fig. 4.4.

To demonstrate the importance of integration of boundary information, we also test

our tracking algorithm where the boundary correction step is disabled. That is, only point

features are used. This test is done for two cases, (i) the same features are tracked over

time, and (ii) features are detected at each frame and tracked only in the next frame. In case

(i), the current boundary can be mapped from the reference boundary, by a homography

transformation calculated based on the features in the current frame and the reference frame.

In case (ii), the current boundary can be obtained the same way, except that the homography

transformation has to be accumulated by transformations calculated from features between

each pair of adjacent frames.

In either case (i) or (ii), tracking only point features works fine for the checker

board, because it is highly-textured and the corner points are very salient. But for all the

other videos, tracking only point features is obviously not sufficient. Some failed tracking

frames are shown in Fig. 4.5. The primary reason for failures in case (i) is that features drift

slowly away from the correct positions. The failures in case (ii) are caused primarily by
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Figure 4.4: Tracking results with line feature integration. Results are shown for a checker

board, a rectangular letter board, a hexagonal letter board and a concave letter board.

Tracked features are shown with red contours. Tracking is based on both point features

and line features.

accumulated parameter estimation errors. It’s also worth noticing in case (i) some features

may be lost in a long sequence of images.

4.3.2 Sparse Point Feature Tracking and Dense Pixel Alignment

In Fig. 4.6, we show tracking results for a dataset with large translation, rotation, scale,

and illumination changes, based on our tracking method (sparse point feature tracking and

dense pixel alignment).

In our tracking scheme, the sparse feature tracking step plays an important role.
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Figure 4.5: Tracking failures without line feature integration. Some failure examples are

shown when the boundary correction step is disabled. The failures are caused primarily by

either accumulated feature position error or accumulated parameter estimation error.

Figure 4.6: Tracking results for a dataset with large translation, rotation, scale, and illumi-

nation changes.

Compared to the traditional Inverse Compositional approach [Baker and Matthews, 2004],

sparse feature tracking significantly improves the overall tracking robustness. Fig. 4.7

shows some tracking examples with or without the sparse feature tracking step.

Thanks to the sparse feature tracking step providing a transformation matrix Ĥt

which is already very close to the optimal solution Ht , the minimization of Eq. 4.7 usually
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Figure 4.7: Tracking results using dense pixel alignment with or without sparse feature

tracking. The odd-numbered rows show some examples using both sparse feature tracking

and dense pixel alignment. As a comparison, the even-numbered rows show the corre-

sponding results for dense pixel alignment without the sparse feature tracking step, where

the pixel alignment process does not converge to the correct location.

needs only a few (less than 5) iterations to obtain the refinement transformation Hd
t .

The Inverse Compositional algorithm in the dense pixel alignment step requires

that there is a good overlap for the tracked region between the current frame and the next
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frame. If the planar region feature is small, the requirement may not be well satisfied and

the Inverse Compositional algorithm may get stuck at local minima. But the sparse feature

tracking step provides a rough estimate of the location of the planar region feature, and

guarantees a good start point for the Inverse Compositional algorithm to converge to the

correct location.
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Chapter 5

2D Object Segmentation

To construct object models in the OSH, a fundamental problem is to separate out the ob-

ject of interest in the pixel-level sensory input from the background environment. Motion

information is an important cue for an intelligent robot to perform the separation between

moving foreground objects and the static background.

5.1 Introduction

5.1.1 Existing Works

There have been many approaches developed for foreground object segmentation based

on motion information. Among them, background subtraction is a standard mechanism

for a specific environment, typically with stationary cameras. Statistical pixel-level back-

ground models such as Pfinder [Wren et al., 1997], non-parametric model [Elgammal et al.,

2000], Gaussian Mixture Model [Stauffer and Grimson, 1999, 2000], and their variations

[Zhong and Sclaroff, 2003; Mittal and Paragios, 2004; Monnet et al., 2008; Ko et al., 2010;

McKenna et al., 2000] have achieved many successful applications in visual surveillance;

nevertheless the strong assumption on fixed field of view prevents their applications to dy-

namic cameras mounted on robots. Moreover, in the robotic application of object manipu-
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lation, the close-up view on objects may result in a large portion of the field of view taken

up by the foreground. So pixel-level background models can completely fail because the

most frequently observed intensity/color values may come from foreground pixels. To fur-

ther relax this assumption, many ego-motion compensation [Hayman and Eklundh, 2003;

Mittal and Huttenlocher, 2000] or image mosaic [Brown and Lowe, 2003; Szeliski, 2006;

Azzari et al., 2005] methods have been presented for background modeling. Nevertheless,

they may result in blurred edges due to accumulated image registration error, and their

scope is restricted to scenes where the background can be well approximated by a plane.

To handle dynamic cameras, motion analysis is applied to either sparse features

or dense optical flows. Dense optical flows estimated on corners and edges are used to

generate a motion vector at every pixel. Then motion layers are extracted from the flows

[Black and Anandan, 1996; Xiao and Shah, 2005; Ren and Gu, 2010]. Motion segmenta-

tion can also be achieved through tracking image features and clustering them into fore-

ground/background by estimating image transformations or motion trajectories for differ-

ent motion patterns. In general, a set of affine/homography parameters [Ren and Gu, 2010;

Han et al., 2006; Sivic et al., 2006] or trajectory parameters [Sheikh et al., 2009] need to

be estimated by iterative linear regression [Han et al., 2006] or RANSAC [Sheikh et al.,

2009; Ren and Gu, 2010]. These approaches obtain good performance for moving object

segmentation, though they may be computationally expensive.

5.1.2 Our Method

In building the OSH, the first step is to identify invariants for the static background, where

the static background model is coupled with the robot pose. The robot pose is dependent on

motor signals, so we learn the relation between motor signals and visual background motion

as part of the invariants in the static background model. This learned relation separates out

the background and facilitates the construction of the foreground models.

We observe that previous approaches ignore a fundamental cause of the background
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Training Image Sequence
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H/M 

Matrix 

Test Image Sequence

Phase II: Moving Object Segmenta�on

(b) Predicted & Tracked Features(a) Test Inputs

(c) Error Distribu�on (d) Classified Features

(e) Segmented Object

Figure 5.1: Overall framework for motor signal based motion segmentation. There are two

phases: off-line one-time learning and online object segmentation. In phase I, the homog-

raphy (H) and fundamental (F) matrices are learned as functions of motor signal changes,

which is a one-time process. In phase II, given motor signals (a1), the H/F matrix is calcu-

lated based on the learned functions from phase I and is used to predict feature locations (b,

blue circles). Meanwhile, features are tracked (b, cyan squares) across frames (a2). Then

the errors between the predicted and tracked locations are computed. Its distribution (c)

shows two modes that correspond to background and foreground features respectively. The

feature clustering is done by EM (d, background in green and foreground in red). Finally,

the object segmentation is obtained by propagating sparse feature labels to every pixel (e).
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motion when performing motion analysis. No approach has exploited the relationship be-

tween the robot’s motor signals and the background motion. To make up this gap, we

propose an automatic system for moving object segmentation using the robot’s motor sig-

nals, as well as the information from the image stream. This is feasible since the acquisition

of motor signals is very handy for robotic applications like object manipulation.

The idea of employing motor signals for moving object segmentation is motivated

by the human visual system. The human visual system does not rely only upon infor-

mation from the retina to perceive object motion, because identical retinal stimulations

can be evoked by the movement of objects as well as by self-evoked eye movements

[Galletti and Fattori, 2003] or head/body movements. By considering motor signals of a

robot corresponding to the signals for eye, head, and/or body movements of humans, we

can predict the motion patterns of background features using the motor signals. In contrast,

the real motion patterns of foreground features will be different from their predictions using

motor signals as they have independent motions from the robot. This is because the back-

ground motion has stronger correlation to motor signals than the foreground object motion.

This observation provides a way to separate the image features into background and fore-

ground (as illustrated in Fig. 5.1 (c), the two error modes correspond to background and

foreground) based on their discrepancy with the predictions.

As Fig. 5.1 illustrates, the proposed framework starts with learning the relation be-

tween motor signal change and background motion. As we know, motor signal change of

a robot leads to visual change in its input images. The visual change is constrained by a

homography matrix in the case where the robot’s camera has only rotation but no (or small)

translation (e.g., a pan tilt camera), or by a fundamental matrix when the camera has large

translation [Hartley and Zisserman, 2003]. Hence, our task is to learn the relation from

the motor signals to the homography/fundamental matrices. Notice that our learning pro-

cess is fully automatic and one-time. Unlike some previous works [Hayman and Eklundh,

2003; Mittal and Huttenlocher, 2000; Brown and Lowe, 2003; Szeliski, 2006; Azzari et al.,
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2005], we do not assume that the background can be well-approximated by a plane due to

incorporation of the fundamental matrix constraint (as opposed to using only the homogra-

phy matrix constraint). In addition, we do not need to build a pixel-level background model,

so our method does not suffer from the blurry edge problem.

We would like to point out that learning the relation between motor signal changes

and homography/fundamental matrices is different from the traditional camera alignment or

calibration to certain robotic platform (such as [Knight and Reid, 2006]), where the align-

ment/calibration is carried out in 3D space. However, our method for moving object seg-

mentation works completely in the 2D image space, and does not involve any reasoning or

computation in 3D space.

With the learned relation, given any motor signal change, we compute the corre-

sponding homography/fundamental matrices, which are used to predict the new locations

of the features (i.e., sparse corner and sampled edge features). The errors between the

predicted feature locations and their actual tracked locations are clustered to separate fore-

ground features from background features. In the ideal case, the errors for the background

features will be zero, and we can simply group those features with zero error as background

and others as foreground. However, due to noisy feature tracking results, the background

feature errors will typically not be zero and it is difficult to pre-select a constant threshold

to separate the features. Therefore, we automatically determine the threshold on-line by

fitting Gaussian mixture models using the Expectation-Maximization algorithm.

Our approach can be categorized as motion analysis by feature clustering like [Han et al.,

2006; Sivic et al., 2006; Ren and Gu, 2010; Sheikh et al., 2009]. But unlike them, thanks to

the use of motor signals, our feature clustering is conducted in a one-dimensional space.

Moreover, our segmentation can be completed in fewer frames (i.e., 3 to 5 frames as

compared to about 30 frames in [Sheikh et al., 2009]). Our approach is also similar to

[Ren and Gu, 2010] which attempts to segment hand-held objects by training a linear clas-

sifier using groundtruth segmentations. Our method is fully automatic and self-supervised,
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and does not need groundtruth segmentations, when we learn the homography and funda-

mental matrices from motor signals.

After the sparse features are labeled, we further apply the Active Contours [Kass et al.,

1988; Isard and Blake, 1998] and Graph-based Transduction methods to segment the dense

foreground. By treating the labeled sparse features as training samples and the unlabeled

pixels as test data, we solve the foreground segmentation problem by transductive learning

[Joachims, 2003; Dhillon, 2001]. In our work, we use the modified Normalized Graph Cuts

[Shi and Malik, 2000; Joachims, 2003] as the transductive classifier.

To summarize, we present a novel system for moving object segmentation using

motor signals [Xu et al., 2011]. Our major contributions are as follows:

• To the best of our knowledge, we are the first to use motor signals for motion seg-

mentation by clustering feature prediction errors in one dimensional space.

• The threshold for background/foreground separation in the error space is automati-

cally determined using Expectation-Maximization.

• We learn homography and fundamental matrices from motor signals, which allows

us to deal with both the situation where the camera has only rotation and no or small

translation, and the situation where the camera has significant translation.

• Graph-based Transduction techniques are applied to smoothly and robustly separate

out the moving objects.

5.2 Relation Learning from Motor Signal Changes to Visual Changes

We learn two types of relation between motor signals and motion patterns of background

features: homography and fundamental matrices. When the camera translation is very small

or the environment is planar, two images of the same scene can be well related by a homog-

raphy matrix; when the camera translation is large, a fundamental matrix can be used to

model the relation between two images [Hartley and Zisserman, 2003].
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Figure 5.2: Robots used for moving object segmentation. Left image: a webcam on a pan

tilt unit, right image: a webcam on a mobile robot (the webcam is a built-in device at the

center of the top edge of the laptop monitor).

We use the term motor signals to refer to feedback signals that are directly related

to the robot’s actions. Specifically in this work, the robot’s actions we consider are various

motions such as head turning and/or body moving.

Fig. 5.2 shows two typical robot hardware settings, where the first robot looks

around the world with its position fixed, and the second moves around in the world. The

motor signals for the first robot are camera pan and tilt change, u = {φ ,ψ}. For the

second robot, because no odometry signals are available in the current robot setup, we

instead take the robot’s location and orientation change as indirect motor signals. The

location and orientation change, u = {x,y,θ}, are obtained from a laser-based SLAM

method [Beeson et al., 2010].

Although the experimental setups in Fig. 5.2 are specific, the reasoning of this work

is very general and can be easily extended to other setups, for example, with higher dimen-

sional motor signals.

Let H or F be the 3× 3 homography or fundamental matrix between two frames.

Our goal is to learn a mapping function f = f H
u or f = f F

u from motor signal change u to

visual change H or F . The mapping function f may be constructed by hand based on the

physical spatial setup of the camera on the robot body. However, manual construction may

include large systematic errors, for example, if the camera’s principle axis (when the robot
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is at its initial position) is not exactly parallel to the standard horizontal plane. In addition,

manual reconstruction requires acquisition of camera intrinsic parameters through camera

calibration.

To avoid camera calibration, systematic errors, and complexity of manual construc-

tion, we learn the function f automatically in our system. Due to the fact that f is an

invariant and hence independent of the environment, we learn it in an environment which

has good textures in order for different frames of images to be well registered and has

no objects moving in it. The robot collects a set of images plus the corresponding motor

signals, under various motion patterns. The relation between images is obtained as ho-

mography/fundamental matrices through image feature tracking. The robot then takes the

motor signals and corresponding homography/fundamental matrices as input and learns the

relation f without human intervention.

In the learning process, the space of the motor signal change u is sampled such that

the minimum and maximum possible changes (within a predefined time interval) are in-

cluded. Once the relation between the motor signal changes and the homography/fundamental

matrices is learned in one environment, it is repeatable in any other environment, because

the homography/fundamental matrices are determined (up to a global scale factor which is

discussed in Section 5.2.1 and 5.2.2) by the motor signal changes (which lead to rotation

and translation in the physical world) [Ma, 2004], hence are not dependent on the environ-

ment.

The selection of whether the homography or fundamental matrix case applies can be

made online based on the robot/camera translation (regardless of its rotation). Zero or small

translation corresponds to the homography matrix case, and large translation corresponds

to the fundamental matrix case [Ma, 2004].
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5.2.1 Homography Matrix Case

The 3×3 homography matrix between two images can be calculated from the tracked KLT

features [Shi and Tomasi, 1994]. Since H has 8 degrees of freedom, it can only be obtained

up to a scale factor from at least four pairs of corresponding points [Hartley and Zisserman,

2003]. So we need to normalize H in order to learn a continuous function between the

motor signal change, u = {φ ,ψ}, and the visual change, H. When there is no or very

small translation, the homography matrix is equivalent or close to a pure rotation matrix

multiplied by a scale factor. Across a small number of frames, the camera pan and tilt do

not have large changes, and the last element of the rotation matrix will be guaranteed to be

non-zero. Thus we normalize H such that its last element is always 1.

Each mapping relation (which is a non-linear function) from the motor signal change

to an element in the homography matrix is fitted as a polynomial. In our experiments, the

fitting error becomes very small when the degree of the polynomials grows to three. Let V H

denote the stacked 8-dimensional row vector of H. The 10-dimensional motor signal vector

V u is defined as

V u = [φ 3,ψ3,φ 2ψ,φψ2,φ 2,ψ2,φψ ,φ ,ψ,1]. (5.1)

For each two frames that are captured within a certain number of time steps, we

obtain a pair of V u and V H . Suppose we have a number of n pairs of these vectors, denoted

by {V u
k ,V

H
k } (k = 1, ...,n). We stack all V u

k as rows in a n×10 matrix Au, and stack all V H
k

as rows in a n× 8 matrix BH . Then the relation function f H
u between motor signals and

homography matrices is learned as third order bivariate polynomials from the following

equation,

Au f H
u = BH (5.2)

where f H
u is a 10×8 matrix.

57



5.2.2 Fundamental Matrix Case

The fundamental matrix between two images can be calculated from at least 8 pairs of corre-

sponding points by solving a linear equation [Hartley and Zisserman, 2003]. Similar to the

homography matrix case, the fundamental matrix is also obtained up to a scale factor. How-

ever, the fundamental matrix cannot be normalized by dividing the last element any more,

since there is no guarantee that the last element is non-zero. A fundamental matrix F has a

singular value decomposition [Ma, 2004] in form of F = UΣVT, where Σ = diag{σ1,σ2,0}
(σ1,σ2 > 0) is a diagonal matrix, and U and V are rotation matrices. Based on this decom-

position, we normalize a fundamental matrix by dividing it by (σ1 +σ2)/2.

Each element in the fundamental matrix is also fitted as a polynomial of the motor

signal change. In our experiments, polynomials of order three give us small fitting errors.

Let V F denote the stacked 9-dimensional row vector of F . The 20-dimensional motor signal

vector V u is defined as

V u = [x3,y3,θ 3,x2y,x2θ ,xy2,xyθ ,xθ 2,y2θ ,

yθ 2,x2,y2,θ 2,xy,xθ ,yθ ,x,y,θ ,1]. (5.3)

Suppose we have a number of m pairs of these vectors, denoted by {V u
k ,V

F
k } (k =

1, ...,m), from m pairs of frames. We stack all V u
k as rows in a m×20 matrix Au, and stack

all V F
k as rows in a m×9 matrix BF . Then the relation function f F

u between motor signals

and fundamental matrices is learned as third order trivariate polynomials,

Au f F
u = BF (5.4)

where f F
u is a 20×9 matrix.
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5.3 Sparse Feature Classification

For image It at time t, we detect two types of features: corners and edges. The locations of

the corners and sampled edge points form our sparse feature set Pt . These sparse features are

tracked in It’s neighboring frames It+k (k = {−M, ...,−1,1, ...,M}). The tracked features

in frame It+k are denoted as Pt+k.

Given the motor signals at two frames t and t + k, the homography/fundamental

matrix between the two frames is calculated from

V H
k = V u

k f H
u

V F
k = V u

k f F
u (5.5)

where V H
k and V F

k can be unstacked to get the homography matrix Hk and the fundamental

matrix Fk respectively.

From frame It to It+k, the background features should be consistent with the trans-

formation Hk or Fk, while the foreground features will violate this transformation. Thus we

can classify the features based on the errors between the actual tracked feature locations

and their estimated locations predicted from Hk or Fk.

5.3.1 Homography Matrix Case

For each background feature Pi,t+k in It+k tracked from Pi,t in It , they are related by Pi,t+k ∝

HkPi,t . We define the error term as

di,t+k = ‖P̂i,t+k −Pi,t+k‖ (5.6)

where P̂i,t+k ∝ HkPi,t and the last element in P̂i,t+k is normalized to 1 s.t. the error is mea-

sured in the image space.
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5.3.2 Fundamental Matrix Case

In the fundamental matrix case, the background features Pi,t and Pi,t+k are related by PT
i,t+kFkPi,t =

0 [Hartley and Zisserman, 2003]. We define the error term as

di,t+k = |PT
i,t+kFkPi,t |/γ (5.7)

where the error is the distance from the point Pi,t+k to the epipolar line FkPi,t corresponding

to Pi,t . Here γ is a normalization term such that the error is measured in the image space,

and it is the root-sum-square of the first two elements in the 3D vector FkPi,t .

We then cluster the tracked features based on the error set {di,t+k} (i = 1,2, ...,Np).

Note that this clustering process is taken in only one dimensional space. To avoid dis-

tractions from incorrectly tracked features which may produce unexpected large errors,

we assign {di,t+k} a maximum limit (10 pixels in our experiments). Due to inaccurate

parameter estimation in f H
u and f F

u and noisy feature tracking results, it is difficult to

pre-determine a threshold to divide {di,t+k} into two groups. We use the Expectation-

Maximization algorithm to fit a two-component Gaussian mixture model (corresponding

to background/foreground) on {di,t+k}. The model is described by

Gt+k(x) = ∑
j={bg, f g}

w j
t+kg(x; μ j

t+k,σ
j

t+k) (5.8)

where g(.) is the normal distribution, and wbg
t+k +w f g

t+k = 1. Here the superscripts bg and f g

correspond to background and foreground respectively. At each frame t, the two Gaussian

components are initialized with the Gaussians estimated in frame t−1. Those features with

a high average of likelihood from Eq. 5.8 across frames It+k (k = {−M, ...,−1,1, ...,M})
are classified as background features and others as foreground features in frame It . In our

experiments, we set M = 3 for the homography matrix case and M = 5 for the fundamental

matrix case.
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5.4 Dense Foreground Segmentation

After sparse features have been classified, we propagate their labels to all image pixels to

achieve a dense foreground segmentation. Given a set of labeled foreground and back-

ground features P = {(x1, l1), . . . ,(xNp , lNp)} (Np is the number of features in P), where

xi is a pixel feature vector (consisting of HSV color and 2D location) and li ∈ {+1,−1}
is the foreground/background label, our goal is to classify the remaining unlabeled pixels

U = {xNp+1, . . . ,xNp+Nu} into either background or foreground, where Nu is the number

of unlabeled pixels. We apply two approaches to achieve this goal: Active Contours and

Graph-Based Transduction.

5.4.1 Active Contours

Given sparse foreground features P f g ⊂ P, we filter out outliers by agglomerative cluster-

ing, where the largest cluster is preserved as the final foreground features, since we assume

there is one moving object in each dataset. We then find the convex hull for the foreground

features, initialize an active contour model with the convex hull, and fit the active contour

model to image edges. The active contour model uses piecewise splines to represent ob-

jects, and fits the splines to object boundaries by minimizing a sum of two energy terms: the

Internal Energy and External Energy. The Internal Energy accounts for boundary smooth-

ness, and the External Energy evolves the model to fit with observed image edges (see

[Isard and Blake, 1998; Kass et al., 1988] for details). This method is very efficient in com-

putation and works well for many applications. However, since our active contour model

is initialized with a convex hull, it may never converge to perfect object boundaries when

the object shapes are non-convex. In addition, the weights for the energy terms in the ac-

tive contour model are hard to be tuned. As a result, small non-boundary edges around the

object boundaries can cause serious distractions. Hence, we further propose a graph-based

transductive learning approach to classify the pixels in U .
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5.4.2 Graph-based Transduction

We treat labeled pixels P as training data and unlabeled pixels U as test data. Then we for-

mulate the foreground segmentation problem as a binary classification problem via trans-

ductive learning. We aim at finding a transductive classifier f (x) ∈ {+1,−1} over the

feature space to classify the test data. The advantage of transductive learning is that one can

explore both the training and test data structure when training the transductive classifier. In

our work, we choose graph as a tool to solve the problem.

Let us define a graph with P and U as vertices and adjacent weight matrix W . Each

entry w(xi,x j) of W is defined by a Gaussian kernel K (xi,x j) = exp(−‖xi−x j‖2

2σ2 ). We seek a

function f (x) that projects the graph vertices onto {+1,−1} such that we have low training

error on P and precise label assignments (clustering) on P+U . The objective function

[Joachims, 2003; Dhillon, 2001] is formulated as

min
f

fT Lf+λ (f−b)TC(f−b), (5.9)

subject to fT 1 = 0 and fT f = n

where n is the pixel number of an image, b ∈ Rn with each dimension b(i) = 2
√

(n−/n+)

for positive labeled data and b(i) = − 2
√

(n+/n−) for negative data (n+ and n− are the

numbers of positive and negative labeled data), Laplacian matrix L = D−W with Dii =

∑x j w(xi,x j), and C is a diagonal matrix assigning penalty to any misclassification of the

training examples. The first term measures the discontinuity of the graph bi-partition and

the second term computes the training errors on the labeled data. The parameter λ controls

the tradeoff between training error and clustering quality. We adopt the Spectral Graph

Transducer [Joachims, 2003; Shi and Malik, 2000] as our transductive classifier.
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5.5 Experimental Results

In this section, the following abbreviations are used: MSMS (motor signal based motion

segmentation), GMM (Gaussian Mixture Model), HM (homography matrix case), FM (fun-

damental matrix case), AC (Active Contours), and GBT (Graph-based Transduction).

5.5.1 Relation Learning

We first separately learned the homography and fundamental matrices as functions of motor

signal changes, as shown in Fig. 5.1. The detailed process is described in section 5.2.

HM Case

For the PTU robot shown in Fig. 5.2, in the 2D motor signal space {φ ,ψ}, we drew 32

evenly distributed rays shooting out from the point (φ ,ψ) = (0,0). On each ray, we se-

lected 16 evenly spaced points including the point (0,0). Thus we had 32×15+1 different

points, and at each such point we collected an image. The transformations between close

images were obtained by tracked KLT features. Fig. 5.3 shows some typical images for the

environment used for relation learning in the HM case.

Each element in the homography matrix is fitted as a polynomial of the motor vec-

tors. When the order of the polynomial grows to 3, the fitting error becomes very small.

The fitting error is measured as the average difference between each calculated homography

matrix based on tracked features and the corresponding predicted homography matrix based

on motor signals and the learned relation. The error for the HM case in our experiments is

errorH =

⎛
⎜⎜⎜⎝

0.00004592 0.00005175 0.00625605

0.00003530 0.00006063 0.00586136

0.00000034 0.00000045 0

⎞
⎟⎟⎟⎠ . (5.10)
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Figure 5.3: Environment for relation learning in the HM case. The top row shows original

images captured in the environment. The bottom row shows the synthesized image of the

environment from the original images based on known motor signals.

FM Case

In the FM case, for the mobile robot shown in Fig. 5.2, the motor signals u = {x,y,θ}
were obtained from a laser-based SLAM method. We collected images and motor signals

whenever the motor signal was updated while the robot was moving. Compared to the HM

case, the motor signals in the FM case are less accurate due to the complex robot setup

and the estimation errors from laser data. We collected four groups of data in the same

environment, where the robot moves forward on a line, about 1500 images in total were

recorded, and the final f F
u was averaged over the results from all groups. Fig. 5.4 shows

some typical images for the environment used for relation learning in the FM case.

Similar to the HM case, each element in the homography matrix for the FM case is
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also fitted as a polynomial of the motor vectors. When the order of the polynomial grows

to 3, the fitting error becomes very small. Similarly, the fitting error is measured as the

average difference between each calculated fundamental matrix based on tracked features

and the corresponding predicted fundamental matrix based on motor signals and the learned

relation. The error for the FM case in our experiments is

errorF =

⎛
⎜⎜⎜⎝

0.00000013 0.00003398 0.00352693

0.00003402 0.00000026 0.00451349

0.00349927 0.00447559 0.00454410

⎞
⎟⎟⎟⎠ . (5.11)

Figure 5.4: Environment for relation learning in the FM case.

5.5.2 Datasets and Comparison Baselines

The learned relation functions are then used for segmenting moving objects in videos taken

from any environment different to that used in the learning.

Datasets. We collected eight test videos to quantitatively evaluate our system on moving

object segmentation (two for static camera case, three for pan-tilt camera case, and the

remaining three for free-moving camera case).

These videos have a close-up view on various hand-held objects, as well as the

corresponding motor signals. For all videos, the foreground objects in sampled frames are

manually labeled as the ground truth. As far as we know, there is no similar dataset publicly
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available. Though Ren et. al [Ren and Gu, 2010] also attempt to segment hand-held objects,

their datasets do not have motor signals. We also collected two additional far-view videos

on the moving objects to show our system works well for this situation as well.

Comparison Baselines. For the static camera case, we use GMM-based background sub-

traction as the baseline approach. For the pan-tilt and free-moving camera cases, RANSAC-

based homography or fundamental matrix fitting [Ren and Gu, 2010; Uemura et al., 2008;

Deniz et al., 2010; Xiao and Shah, 2005; Goshen and Shimshoni, 2008; Han et al., 2006] is

popularly used for motion segmentation, and is chosen as the comparison baseline in our

experiments to test the performance of our method.

The segmentation accuracy is defined as AI/AU , a common evaluation criterion

[Gulshan et al., 2010; Sivic et al., 2008], where AI (intersection area) is the number of pixels

that are labeled as foreground in both the segmentation result and the ground truth, and AU

(union area) is the number of pixels that are labeled as foreground in either the segmentation

result or the ground truth.

5.5.3 Static Camera Case

First we compare the performance of MSMS (our method) with GMM (baseline) when the

camera is static. We use the GMM implementation [KaewTraKulPong and Bowden, 2001]

in OpenCV. Since the camera is static, there is no motor signal change and the homography

transformation H remains constant as an identity matrix. Thus the step of learning f is

excluded in the system. We apply only the sparse feature classification and dense pixel

segmentation steps, and test the system on a “book” dataset and a “hard-drive box” dataset.

Both datasets have significant illumination changes because the webcam’s light auto-adjust

function is enabled. The light auto-adjust function usually takes effect when the object

moves from very close to the camera to far away, or vice versa. The ground truth is obtained

by manually labeling the foreground boundaries in the images.

Fig. 5.5 illustrates some visual results for qualitative comparison on the “book” and
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Figure 5.5: Detection results for the static camera case (best viewed in pdf). The columns

show the original images, ground truth, detection results by GMM, classified sparse fea-

tures (green and red represent background and foreground respectively) by MSMS, and

segmentation results by MSMS-AC. The GMM method tends to produce black holes on

the foreground objects and spreading misclassified pixels over the whole image when il-

lumination condition changes. In contrast, the MSMS method gives better results in these

situations.

“hard-drive box” datasets, and Fig. 5.6 (a) shows the average foreground detection accuracy.

It clearly shows that MSMS is superior to GMM (with more than 20% improvement). This

is because the GMM method often produces a large number of noisy pixels spreading over

the whole image when the illumination changes due to objects moving close to or far away
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Figure 5.6: Quantitative evaluation results for static camera case.

from the camera and reflections on the objects. Moreover, GMM needs sufficient frames

to learn a stable pixel-level background model. In contrast, the proposed MSMS method is

more robust to illumination changes, and more importantly it only needs a few frames to

detect foreground and background sparse features.

5.5.4 Pan-Tilt Camera Case

We run our system on three hand-held objects: “tea-box”, “football”, and “toy-pig”, taken

from a pan-tilt camera. The camera has significant orientation change in the videos, and
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Figure 5.7: Detection results for the HM case (pan tilt camera). The rows show the orig-

inal images, ground truth, classified sparse features by RANSAC (background in green

and foreground in red), segmentation results by RANSAC-AC, segmentation results by

RANSAC-GBT, classified sparse features by MSMS, segmentation results by MSMS-AC,

and segmentation results by MSMS-GBT, respectively (best viewed in pdf).
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Figure 5.8: Quantitative evaluation results for the HM case. The table shows the detection

accuracy for RANSAC-AC, RANSAC-GBT, MSMS-AC, and MSMS-GBT. The plots show

the detailed comparisons between MSMS-AC and MSMS-GBT (x-axis: frame number, y-

axis: detection accuracy).
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the foreground objects have large translation, rotation, and scale change. The qualitative

results for MSMS-AC and MSMS-GBT are listed in Fig. 5.7. The AC method is simple

and fast, but it may miss boundary details. The AC performance highly relies on the quality

of sparse feature detection. Moreover, AC may extract extra regions from the background

because its initialized shape by a convex hull is significantly different from the real object

boundary. In order to preserve more details on the boundaries, we apply the GBT method

in our system. In general, GBT segments the moving objects with better boundaries, since

it makes use of the distribution of pixel features for segmentation.

Similar to the work by Sheikh et al. [2009], in the baseline experiments we use

RANSAC to fit a homography matrix between two frames, and take the features that are

consistent with the fitted homography matrix as background features and others as fore-

ground features. Then we further use AC and GBT for dense foreground object segmenta-

tion. The results are shown in Fig. 5.7. Comparing the classified sparse features obtained by

RANSAC and MSMS, we can see that RANSAC misclassifies many features that are close

to the moving objects. As a result, background regions may be segmented into foreground .

The table in Fig. 5.8 illustrates the quantitative results for both RANSAC (baseline)

and MSMS (our method). On average, MSMS-GBT improves the performance about 13%

over RANSAC-GBT, and about 10% over MSMS-AC. The detailed comparison between

MSMS-AC and MSMS-GBT is shown in the graphs in Fig. 5.8.

5.5.5 Free-Moving Camera Case

Our approach is qualitatively and quantitatively evaluated on another three hand-held mov-

ing object videos: “football”, “toy-pig”, and “soccer”, taken from a camera mounted on a

moving robot. Beside the change of object position, orientation, and scale, the videos also

have significant robot translation.

Fig. 5.9 shows some typical images for detected “football”, “toy-pig” and “soccer”.

The baseline comparison method fits a fundamental matrix from RANSAC, and labels the
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Figure 5.9: Detection results for the FM case (camera on a mobile robot). The rows show

the original images, ground truth, classified sparse features by RANSAC (background in

green and foreground in red), segmentation results by RANSAC-AC, segmentation results

by RANSAC-GBT, classified sparse features by MSMS, segmentation results by MSMS-

AC, and segmentation results by MSMS-GBT, respectively (best viewed in pdf).
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Figure 5.10: Quantitative evaluation results for the FM case. The table shows the detection

accuracy for RANSAC-AC, RANSAC-GBT, MSMS-AC, and MSMS-GBT. The plots show

the detailed comparisons between MSMS-AC and MSMS-GBT (x-axis: frame number, y-

axis: detection accuracy).
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features that are consistent with the fundamental matrix as background and other features

as foreground. The MSMS method gets better accuracy in overall than RANSAC based

fundamental matrix fitting. And again, GBT segmentation results are much better than

those from AC.

The quantitative results are shown in the table in Fig. 5.10. On average, MSMS-

GBT improves the performance about 9% over RANSAC-GBT, and about 8% over MSMS-

AC. The detailed comparison between MSMS-AC and MSMS-GBT is shown in the graphs

in Fig. 5.10.

Although we aim at segmenting moving objects in close-up view, we also applied

our method on moving objects in far view, and the results are reasonable. Fig. 5.11 (a) shows

some detection results for a non-rigid object, a walking person, taken by a tilt-pan camera.

Our motion segmentation approach performs well in this video, where the foreground object

has large depth and shape change. In addition, Fig. 5.11 (b) shows some detection results on

the “wheelchair” video, taken from a moving robot, using MSMS-GBT. The performance

is reasonable even though the foreground object is far away from the robot as long as there

are still a set of features detected on the objects.
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(a)

(b)

Figure 5.11: (a) Detection results on a walking person video for the HM case, (b) Detection

results on a moving wheelchair for the FM case. The rows show the original images and

MSMS-GBT detection results.
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Chapter 6

3D Pose Estimation

After the 2D2D object model is built, we move forward to build the 2D3D object model

in the OSH, which involves tracking a planar component and estimating its 3D normal.

The estimation of a planar component’s 3D normal is usually coupled with the problem of

camera motion estimation.

6.1 Introduction

6.1.1 Existing Works

Two classic approaches have been widely used for camera motion estimation from two

views of the same 3D scene: the homography matrix based approach and the essential

matrix based approach.

The homography matrix based (HMB) approach [Sturm, 2000; Zhang, 2000; Ma,

2004; Hartley and Zisserman, 2003; Cobzas et al., 2009; Molton et al., 2004] works for a

planar environment. Two views of a planar surface are related by a homography matrix.

The camera motion parameters as well as the plane normal can be obtained from decompos-

ing the homography matrix. The essential matrix based (EMB) approach [Pollefeys et al.,

2004; Nistér, 2004; Zhang, 1998; Longuet-Higgins, 1981; Hartley and Zisserman, 2003;
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Ma, 2004] works for a more general environment. For two sets of calibrated corresponding

points in two images where not all points lie on the same planar surface, they can be related

by an essential matrix (in the uncalibrated case, it is called the fundamental matrix). By

decomposing the essential matrix, we can get the camera motion parameters.

Other existing approaches for recovery of camera motion and scene/object structure

include Bundle Adjustment (BA) [Snavely et al., 2008; Klein and Murray, 2007; Sibley et al.,

2009; Triggs et al., 2000; Engels et al., 2006] and Visual SLAM [Newcombe and Davison,

2010; Davison et al., 2007; Cummins and Newman, 2009; Eade and Drummond, 2006]. The

Bundle Adjustment approach takes multiple views as input and finds a solution for camera

motion and scene structure parameters by minimizing the total re-projection error with re-

spect to all 3D feature points and camera motion parameters. The minimization is taken

iteratively until the solution converges, where a good start point needs to be provided in

order for the approach to converge to global minimum. The dimension of the parameters

to be estimated in this approach is linear in the number of images and features. When the

number of features or images is large, the size of the search space for the parameters will

be extremely high. The Visual SLAM approach estimates the camera pose and 3D feature

points in at least a 6+ 3n dimensional space at each time step, where n is the number of

features, and in general the parameter dimension is much larger due to over-parametrization

[Davison et al., 2007].

The HMB approach takes planar features (a planar region or a set of point features

on a plane) as input. The input to existing EMB, Bundle Adjustment, and Visual SLAM

approaches are usually a set of general point features that do not lie on the same plane.

Point features and planar features each have their own merits. Compared to non-planar

features, a planar feature has larger range of visibility (hence tracking duration), that is, all

pixels in a non-occluded planar region are observable until the region degenerates to a line

in the image. In addition, a planar region feature has a unique normal and hence a simpler

3D geometric representation, and the 2D images of a planar region feature can be well re-
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lated by well-understood homography transformations [Hartley and Zisserman, 2003; Ma,

2004]. More importantly, a single planar region typically contains at least hundreds of pix-

els, which impose strong constraints for acquisition of high-precision pose and structure

information. Compared to planar features, point features are not restricted to planar envi-

ronments. They can be easily detected and a natural image usually contains a large number

of point features.

6.1.2 Our Method

The 2D3D layer in the OSH is represented by a set of 2D planar components with their

individual 3D poses. This representation leads naturally to an emphasis on recovering the

3D pose (mainly the 3D normal) of a planar component. With the recovered component

pose, we will be able to calculate the camera motion and then reconstruct the object/scene

structure. In this chapter and Chapter 7, we will present a 3D model construction method

that starts with estimating the 3D normal of a planar region feature and discuss the method’s

advantages.

Our 3D structure recovery method (LSMGS: from Local Structure to Motion then

to Global Structure) takes advantage of both planar features and point features. Instead of

estimating the high-dimensional global structure parameters directly, a simple local struc-

ture estimation is first carried out. This local structure estimation facilitates later recovery

of camera motion and global scene/object structure. The method includes the following

steps:

• Local Structure: we start by selecting a single planar region feature to track, and esti-

mating its 3D normal; the estimation step exploits information from both the tracked

planar region feature and a set of tracked point features.

• Motion: then camera motion is obtained based on the estimated normal of the planar

region feature.
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• Global Structure: the full 3D scene structure is then recovered from the camera pose

and the tracked point features in the scene.

In this chapter, we will focus on local structure recovery and motion estimation, the

recovery of global structure will be presented in Chapter 7.

The proposed method fuses constraints from both the homography matrix and the

essential matrix in a single probabilistic framework. It does not simply take the average of

the solutions from the two classic HMB [Sturm, 2000; Zhang, 2000; Hartley and Zisserman,

2003; Ma, 2004; Cobzas et al., 2009; Molton et al., 2004] and EMB [Pollefeys et al., 2004;

Nistér, 2004; Zhang, 1998; Longuet-Higgins, 1981; Hartley and Zisserman, 2003; Ma, 2004]

approaches, since both approaches have well known restrictions. The HMB approach may

give two physically possible solutions [Ma, 2004], because in the decomposition of a ho-

mography matrix, the camera translation and plane normal terms are interchangeable (see

Section 6.5.4). It can be very difficult to select the correct solution when the camera motion

is small or when the camera moves on a line without any rotation. Our method provides

a unique solution based on all observations in either multiple views or an image sequence.

The EMB approach requires RANSAC-like fitting and a good number (at least 5 [Nistér,

2004], usually many more) of point features that do not lie on the same plane. In contrast,

no RANSAC-like fitting is needed in our method, and usually a small set of point features

are good enough, thanks to using a planar region feature. While the proposed method avoids

the drawbacks of the HMB and EMB approaches, it also improves the estimation accuracy.

Compared to the Bundle Adjustment and Visual SLAM approaches [Snavely et al.,

2008; Klein and Murray, 2007; Sibley et al., 2009; Triggs et al., 2000; Engels et al., 2006;

Davison et al., 2007; Newcombe and Davison, 2010; Nister et al., 2006; Eade and Drummond,

2006; Cummins and Newman, 2009] that estimate high dimensional parameters simultane-

ously, our method maintains a probability distribution over only two dimensional normal

parameters for a single tracked planar region feature, and the other motion and structure

parameters are calculated based on the two estimated normal parameters. Low dimensional
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parameter estimation allows robust and fast convergence to the solution. We do not need

prior knowledge on the initial camera pose and scene structure, that is, no special care

needs to be taken for parameter initialization. In contrast to Visual SLAM which requires

continuous image input, the proposed method can be applied to both continuous tracked

features in an image sequence and discrete matched features in a set of static images (which

is similar to Bundle Adjustment). Our method dynamically updates the distribution of the

normal of the planar region feature when each new view or frame comes in, and works in an

incremental manner such that the computational cost for each new view or frame remains

constant and does not increase with the growing number of views or frames.

We test our method on videos taken from a hand-held webcam. Each video contains

only about 80 to 200 frames. Our method works well for these noisy short-time videos.

The capability of estimating motion parameters in a short time will allow a robot to quickly

construct a temporary 3D model of the environment before it shifts its attention and changes

its visual field significantly.

In summary, we propose a novel camera motion and scene structure recovery method

based on probabilistic normal estimation of a single tracked planar region feature. The pri-

mary novelties of the method are: (1) To our best knowledge, this is the first work that

fuses the constraints from both the homography matrix and the essential matrix into a sin-

gle framework for camera motion and scene structure recovery. Compared to the classic

homography and essential matrix based approaches, the proposed method gives more accu-

rate estimation results and avoids the drawbacks of the two approaches. (2) The proposed

method takes advantage of both planar features and point features. Using planar features

greatly improves estimation accuracy over using point features only, and with the help of

point features, the solution ambiguity from planar features is resolved. (3) Compared to

traditional Bundle Adjustment and Visual SLAM approaches, the proposed method main-

tains a probability distribution over parameters in two dimensional space instead of a high

dimensional space, which allows robust and fast convergence to the solution.
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6.2 Detection and Tracking of a Planar Region Feature

To detect planar region features, we start by extracting contour fragments from the input

image. Then we examine two types of planar region feature candidates. The first type of

candidates are based on single contour fragments. For each contour fragment, we form a

closed contour by connecting its two ending points. If the area of the region bounded by the

closed contour is above some threshold, we add this region into the candidate feature list.

The second type of candidates are based on contour fragment pairs. For each pair of

neighboring contour fragments (one fragment has an ending point close to an ending point

on the other fragment), we connect the two close ending points and also the remaining two

ending points to form a closed region. If the region has an area larger than the pre-selected

threshold, it is added to the candidate feature list. Since the contour fragments in the two

types of feature candidates usually have similar color or texture around them, they are very

likely to lie on the same planar surface. Those that do not lie on the same planar surface

will have large tracking errors and will be removed during tracking.

Figure 6.1: Planar region feature detection (best viewed in color). Left: input image, mid-

dle: a set of planar region feature candidates in different colors, right: the best planar region

feature (red contour) used for camera pose recovery.

The candidate features are tracked for some time, and the one with the lowest track-

ing error is selected as the planar region feature for further tracking and for camera pose

recovery. Fig. 6.1 shows some candidate features and the best feature used for camera pose

recovery.

Tracking a planar region feature takes two steps: sparse feature tracking and dense
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pixel alignment. Sparse feature tracking gives a rough estimate of the planar region feature

location, and dense pixel alignment refines the estimate. Combining sparse feature tracking

and dense pixel alignment allows us to track a planar region feature robustly and accurately.

The tracking scheme is explained in Fig. 6.2.

Figure 6.2: Planar region feature tracking scheme (best viewed in color). The left image

shows the tracked planar region feature (red contour) and point features in frame t − 1.

The point features are tracked in frame t in the middle image using the KLT method

[Shi and Tomasi, 1994], and the boundary of the planar region feature is predicted in frame

t as the yellow contour using the point feature correspondences between the two frames.

Then the location of the planar region feature is refined in frame t by dense pixel alignment,

shown as a new red contour in the right image. Note that in our work the sparse feature

tracking step is taken only between two adjacent frames, but we have intentionally enlarged

the frame interval and tracking errors in this figure to clearly show the tracking scheme.

In the sparse feature tracking step, besides using information inside the planar re-

gion, we also use information outside that region. When there are no objects moving in the

background environment, all sparse features in the input image have similar motion pat-

terns to the planar region feature and all of them can be used to assist tracking the planar

region feature; otherwise, we can locate sparse features with similar motion patterns to the

planar region feature using Generalized Hough Transform [Grabner et al., 2010]. Tracking

the sparse features helps avoid getting stuck at local minima and improve tracking sta-

bility. In the dense pixel alignment step, we adopt the Inverse Compositional algorithm

[Baker and Matthews, 2004] and refine the location of the planar region feature. This re-

finement provides more accurate input to camera pose estimation.
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6.3 Probabilistic Normal Estimation for a Planar Region Fea-

ture

The coordinates of image points between two poses of a planar region feature are related

by a homography matrix H, and we have

H = R+T NT/d (6.1)

where R and T are the rotation and translation matrices relating the two poses, d and N are

the distance and unit normal of the plane in the reference camera space [Ma, 2004]. From

at least four pairs of matching points, H can be determined up to a scaling factor using

the Direct Linear Transform method. The computed H can then be decomposed to give

two sets of solutions for {N,R,T/d} (Algorithm 5.2, [Ma, 2004]). While this method is

fast, it’s sensitive to noise, especially when the number of input features is small. Also the

selection of the correct solution from the two candidate solutions can be difficult without

prior knowledge. One way to overcome the problem of noise and unstable pose estimates is

to minimize an error measure over several images at the same time. However, this method

is hard to converge with poor initializations and the algorithm sometimes converges to the

wrong minima.

We present a probabilistic method to estimate the planar region feature’s normal in

3D space, given the tracked locations of the planar region feature and a set of tracked point

features on the entire image. This method provides a unique solution for the planar region

feature’s normal based on all observations up to the current frame, and the computational

cost at each time step does not increase with the growing number of frames.

6.3.1 Probabilistic Framework

We refer to a planar region feature as a planar component, and define a component space,

where the x-axis is arbitrarily chosen on the component, the z-axis is along the direction
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of the component normal, and the origin can be any arbitrary point on the component.

Note that every point belonging to the component will have zero value on the z-axis in this

component space. At any time t, the component normal is denoted as Nt in the camera

space (in the direction from the component away from the camera origin), and the distance

between the origin of the camera space and the component plane is denoted as dt . The

camera and component spaces are shown in Fig. 6.3.

Figure 6.3: Camera space and component space. The origin of the camera space is the

camera’s optical center, and the X-axis and Y -axis are parallel to the image plane, pointing

right and down, respectively. For the component space, the x-axis is arbitrarily chosen on

the component, the z-axis is along the direction of the component normal (pointing from

the component away from the camera origin), and the origin can be any arbitrary point on

the component.

In an image sequence, we refer to frame 0 as the reference frame. The 3D compo-

nent in the reference frame can be represented as

N0P = d0 (6.2)

for any 3D point P = (Px,Py,Pz)
T on the component. Here N0 and P are both represented in

the camera space.

The key step for motion and structure recovery in the image sequence is to estimate
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the component’s normal N0 (without loss of generality, d0 can be set to 1). At every time

step, we dynamically update N0 based on the tracked features in frame t. With the estimated

N0, the camera motion can then be easily recovered at that time step.

We represent N0 in a spherical coordinates as

N0 = (sinθ N
0 cosφ N

0 ,sinθ N
0 sinφ N

0 ,cosθ N
0 )T (6.3)

where θ N
0 ∈ [0,π/2] and φ N

0 ∈ [0,2π) are the normal parameters.

Our goal is to estimate the probability density function Pr(θ N
0 ,φ N

0 |z0:t), where z are

the observations, that is, the tracked features.

By applying Bayes’ theorem, we have

Pr(θ N
0 ,φ N

0 |z0:t)

∝ Pr(θ N
0 ,φ N

0 |z0)Pr(z1:t |θ N
0 ,φ N

0 ,z0). (6.4)

Under the independent observation assumption that zt is independent of z1:(t−1), we

rewrite Eq. 6.4 as

Pr(θ N
0 ,φ N

0 |z0:t)

∝ Pr(θ N
0 ,φ N

0 |z0)
t

∏
k=1

Pr(zk|θ N
0 ,φ N

0 ,z0) (6.5)

which enables us to obtain a recursive formulation as

Pr(θ N
0 ,φ N

0 |z0:t)

∝ Pr(zt |θ N
0 ,φ N

0 ,z0)Pr(θ N
0 ,φ N

0 |z0:(t−1)). (6.6)

Based on Eq. 6.6, the problem is then reduced to choosing the likelihood function

Pr(zt |θ N
0 ,φ N

0 ,z0) and the prior function Pr(θ N
0 ,φ N

0 |z0), where the prior function can be

chosen as a uniform distribution if no prior knowledge about the tracked planar region
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feature is available.

Since the formulation in Eq. 6.6 is recursive such that at each time step only the

current observation is used to update the estimation, the computational cost at each time

step stays constant and does not grow with increasing number of frames. From Eq. 6.5

and 6.6, we can see that this method will also apply to a set of static images (as opposed to

videos), as long as feature correspondences can be obtained among the images.

6.3.2 Likelihood Formulation

Let pt =(put , pvt)
T be the calibrated image coordinates at time t corresponding to a 3D point

P on the planar component. Using a perspective camera model, we can calculate P from

Eq. 6.2 given N0, d0 and p0. Thus a component space can be built, and the corresponding

point of P is denoted as

Pc =

⎛
⎜⎜⎜⎝

Pc
x

Pc
y

0

⎞
⎟⎟⎟⎠ (6.7)

in the component space. Note that Pc is time-invariant.

At time t, let the translation and rotation from the component space to the camera

space be Tt and

Rt = (R1t R2t R3t) (6.8)

where Rkt(k = 1,2,3) are the column vectors in Rt . The point Pc on the component and its
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image coordinates pt are related by

λ P

⎛
⎜⎜⎜⎝

put

pvt

1

⎞
⎟⎟⎟⎠ = (R1t R2t R3t Tt)

⎛
⎜⎜⎜⎜⎜⎜⎝

Pc
x

Pc
y

0

1

⎞
⎟⎟⎟⎟⎟⎟⎠

= (R1t R2t Tt)

⎛
⎜⎜⎜⎝

Pc
x

Pc
y

1

⎞
⎟⎟⎟⎠

= Ht

⎛
⎜⎜⎜⎝

Pc
x

Pc
y

1

⎞
⎟⎟⎟⎠ (6.9)

where λ P is the point depth in the camera space, and Ht is a homography matrix that maps

points from the component plane to the image plane. Note that we are using Ht to refer to

the transformation between a 3D plane and its projected 2D image here, which is different

from the Ht in Chapter 4 which refers to a transformation from one 2D image to another 2D

image of the same 3D component.

In our system, the transformation Ht is obtained (up to a scaling factor) from the

tracking step. Since Rt is a rotation matrix, it satisfies

‖R1t‖= ‖R2t‖= 1 (6.10)

and

R1t⊥R2t (6.11)
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Equivalently we have the following constraints,

‖H1t‖−‖H2t‖ = 0 (6.12)

HT
1tH2t = 0 (6.13)

where H1t and H2t are the first two column vectors in Ht .

The likelihood function Pr(zt |θ N
0 ,φ N

0 ,z0) in Eq. 6.6 can directly be designed based

on the two homography constraints in Eq. 6.12 and 6.13 (such as in [Xu et al., 2009]),

but it will be difficult to choose the weights for the two error terms corresponding to the

constraints. We instead formulate these constraints on a new single error term, and this

error term is expressed in the intuitive 2D image space rather than in the parameter space

of the homography matrix. In addition, we take advantage of tracked point features on the

entire image (instead of just on the component) and integrate constraints from the essential

matrix on these features to improve estimation accuracy.

From Ht we get the estimated rotation matrix R̂t as

R̂1t = H1t/β

R̂2t = H2t/β

R̂3t = R̂1t × R̂2t (6.14)

where

β = (‖H1t‖+‖H2t‖)/2 (6.15)

is a normalizing term. Ideally R̂t should be a real rotation matrix, but in general it is not,

due to tracking inaccuracy and/or wrong normal assumptions. Thus, we seek to find a real
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rotation matrix Rt such that

Rt = argmin
R

‖R− R̂t‖ (6.16)

subject to

det(R) = 1

where I is the identity matrix. Let the singular value decomposition of R̂t be USV T , then

the solution to Eq. 6.16 is Rt =UV T [Zhang, 2000]. The translation Tt is estimated as

Tt = H3t/β . (6.17)

It can be easily verified that the relative motion from the reference camera space to

the current camera space is

δRt = RtR−1
0

δTt = Tt −RtR−1
0 T0 (6.18)

where δRt is the relative rotation and δTt is the relative translation.

Given δRt , δTt , and N0, the constraint from the homography matrix can be ex-

pressed [Ma, 2004] as

pt = S
h((δRt +δTtNT

0 /d0)p0) (6.19)

for an arbitrary pair of image points {p0, pt} on the component, where d0 = 1 and S
h(·)

is a scaling function of a three-dimensional vector such that Sh((a,b,c)T ) = (a/c,b/c,1)T

where c �= 0.
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The constraint from the essential matrix [Hartley and Zisserman, 2003] is

pT
t S

e([δTt ]×δRt p0) = 0 (6.20)

for an arbitrary pair of points {p0, pt} on the entire image, where [δTt ]× is the skew-

symmetric matrix for δTt and S
e(·) is a scaling function of a three-dimensional vector such

that Se((a,b,c)T ) = (a,b,c)T/
√

a2 +b2 where a2+b2 > 0. The scaling function S
e(·) guar-

antees that the left hand side of Eq. 6.20 is measured in the image space. The introduction

of S
h(·) and S

e(·) is due to the fact that a homography or essential matrix can only be

determined up to a scale.

Based on Eq. 6.19, we define a likelihood term for the homography constraint as

Lh
t ∝ ∏

{p0,pt}
exp(−‖Sh((δRt +δTtNT

0 /d0)p0)− pt‖2

2(σ h)2
) (6.21)

for a set of tracked point pairs {p0, pt} on the planar component and σh is a constant.

In our experiments, we use the boundary points of the planar component to calculate the

above likelihood. Note that the two homography constraints in Eq. 6.12 and 6.13 in the

homography parameter space have been expressed in a single error term in Eq. 6.21 in

the intuitive image space. Similarly we define a likelihood term for the essential matrix

constraint as

Le
t ∝ ∏

{p0,pt}
exp(−(pT

t S
e([δTt ]×δRt p0))

2

2(σ e)2
) (6.22)

for a set of tracked point pairs {p0, pt} on the entire image and σ e is a constant. In our

experiments, we use all tracked point features in the image to calculate the above likelihood.

We then design the likelihood function in Eq. 6.6 as

Pr(zt |θ N
0 ,φ N

0 ,z0) = γLh
t Le

t (6.23)
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where γ is a constant normalizing term. Intuitively, lower errors lead to higher likelihood.

6.3.3 Optimal Solution

Initially the entire parameter space for {θ N
0 ,φ N

0 } is uniformly sampled, and with time going,

those samples with low posterior probability are removed. The solution for the normal

parameters is obtained as

(θ̂ N
0 , φ̂ N

0 ) = arg max
(θ N

0 ,φ N
0 )

Pr(θ N
0 ,φ N

0 |z0:t) (6.24)

where we choose the sample with the maximum posterior probability as the best estimate

for {θ N
0 ,φ N

0 }.

6.3.4 Discussions

Tracked point features outside the planar region feature help improve estimation accuracy.

In particular, when the camera moves on a line without any rotation, the homography

constraint will lead to a bimodal distribution (see experiments) corresponding to the two

consistent solutions in homography decomposition [Ma, 2004]. With the help of point

features outside the planar region feature, the distribution will adapt to be unimodal. Al-

though tracked point features will help improve the estimation result, the method will still

work without any point feature as long as we can track a single planar region feature. Ac-

cordingly, unlike the classic essential matrix based approach for camera motion estimation

which requires at least a certain number (at least 5 [Nistér, 2004], usually 8 or more) of

point features, we have no minimum limit for point feature number; even if there is only

one point feature, we can still make use of it in Eq. 6.22 and 6.23. Fig. 6.4 shows some

tracked poses of the planar region feature.
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Figure 6.4: Planar region tracking and pose estimation (best viewed in color). The image

sequence is captured from a commonly available webcam. Top row: tracked planar region

feature and point features, bottom row: estimated normals for the planar region feature. The

normals are shown in the component space (see text for details), where x-axis and y-axis (in

light blue color) are on the same plane as the planar region, and z-axis (in dark blue color)

is along the region normal.

6.4 Camera Motion Recovery

We recover the camera pose trajectory with respect to the camera space in the reference

frame. Given the rotation R0 and translation T0 from the component space to the reference

camera space, and Rt and Tt from the component space to the current camera space, we

have

P0 = R0Pc +T0

Pt = RtPc +Tt (6.25)

where Pc is an arbitrary point in the component space, and P0 and Pt are the corresponding

points in the reference and current camera space respectively. Let the relative rotation and

translation from the reference camera space to the current camera space be δRt and δTt ,
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then we have

Pt = δRtP0 +δTt (6.26)

which maps P0 to Pt directly in the two camera spaces. By combining the first equation in

Eq. 6.25, we rewrite Eq. 6.26 as

Pt = δRt(R0Pc +T0)+δTt (6.27)

which holds true for any point Pc.

Combining Eq. 6.27 and the second equation in Eq. 6.25 leads to the solution of the

relative motion as

δRt = RtR−1
0

δTt = Tt −RtR−1
0 T0 (6.28)

from the reference camera space to the current camera space.

Fig. 6.5 shows the camera pose trajectory for the video example used in Section 6.2

and 6.3.

6.5 Experimental Results

6.5.1 Datasets

The image sequences in our experiments are taken from a hand-held webcam with 320×
240 resolution, each containing 150 to 200 frames. The image sequences are noisy because

their resolution is low. We collect seven datasets: two tea boxes (Yorkshire and Twinings),

a cell phone box (Pantech), a toy car (Ambulance), and three complex environments con-

taining non-planar objects (Disk, Poster, Glue) (Fig. 6.6).
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Figure 6.5: Recovered 3D camera pose trajectory (best viewed in pdf). The video is cap-

tured from a hand-held webcam, where the webcam moves roughly on a line while keeping

the object around the image center. Left: position trajectory, right: orientation trajectory.

For each dataset, we manually mark a set of evaluation points across frames. For

the first four datasets, because of their simple geometry, we measure the ground truth 3D

positions for the evaluation points and evaluate the methods based on 3D reconstruction

errors. For the last three datasets, it is difficult to get 3D ground truth data because of their

geometric complexity, so the evaluation is carried out based on 2D re-projection errors.

Note that the reason we choose simple objects for the first four datasets is for easy

acquisition of the 3D ground truth data to carry on evaluation in 3D space. Our method does

not limit its application to simple objects as long as there exists a single detectable planar

region feature (such as the last three datasets, or buildings, offices, walls, ground, and many

other manufactured objects).

6.5.2 Comparison Baselines

To quantitatively evaluate the accuracy of the proposed method (LSMGS), we compare it

against the classic homography matrix based (HMB) approach, the essential matrix based

(EMB) approach, and Bundler [Snavely et al., 2008].
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Figure 6.6: Evaluation datasets for pose estimation. The selected points (blue circles) are

used for evaluation, and the red contours are the planar region features used for pose esti-

mation. The first four datasets have simple geometry, and they are evaluated on 3D recon-

struction errors. The last three contain non-planar objects and are difficult to get 3D ground

truth data, so they are evaluated based on 2D re-projection errors.
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Figure 6.7: Probability distribution of component normal. The probability distribution of

the normal of the component changes over time. It starts from a uniform distribution and

evolves to a Gaussian-like distribution.

Our planar region feature tracking algorithm provides the homography matrices for

each frame with respect to the reference frame. Besides the planar region feature, we also

keep track of a set of point features. The input to HMB is the homography matrices, and

the input to EMB is the tracked point features. Our method takes both the homography

matrices and the point features as input.

The HMB approach decomposes the homography matrices to get the plane nor-

mal and camera motion parameters. It may give two physically possible solutions. In

each frame, we select the solution in which the estimated plane normal has better consis-
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Figure 6.8: Entropy trajectory. The entropy of the distribution of component normal de-

creases over time.

tency with the normals in previous frames [Cobzas et al., 2009]. The EMB approach uses

RANSAC to filter out outliers in the tracked point features, and fits an essential matrix

based on the inliers. Then it decomposes the essential matrix to get the camera motion

parameters. The LSMGS method always provides a unique solution and does not need

any RANSAC-like fitting. Bundler takes the tracked point features as input, and computes

motion and structure parameters by nonlinear optimization.

We conduct the comparison experiments on two groups, one with KLT [Shi and Tomasi,

1994] features and the other with SIFT [Lowe, 2004] features. For KLT features, we use

the KLT detector/tracker implemented in OpenCV. SIFT features are directly imported from

Bundler, where we use the default parameter setting in the software provided online. The

number of SIFT features is from a couple of hundreds to over a thousand, while the number

of tracked KLT features is around 30 to 50.

For all the experiments, we first calculate the motions parameters from the HMB,

EMB, Bundler, and LSMGS methods, and then use the same way (described in Section 7.2)

to compute the 3D positions of the evaluation points. Note that we can only get the motion

parameters from Bundler and can not directly get the 3D positions for the evaluation points,

because the evaluation points are a different set of points from the SIFT features.
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Figure 6.9: Normal views under different normal samples. Each normal view corresponds

to the view of the planar component under a sampled normal of the component. The last

image shows the normal view for the best normal estimate.

In our experiments, we set both σ h in Eq. 6.21 and σ e in Eq. 6.22 to 10. Based on

our observation, the estimation results are not sensitive to σh and σ e, because what matters

is the relative rather than absolute likelihood for the normal hypotheses for the tracked

planar region feature.
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6.5.3 Probability Distribution of Component Normal

The probability distribution of the normal of the tracked component evolves over time.

Fig. 6.7 shows the probability distribution evolution process for the Twinings dataset. The

probability distribution is initially uniform. With more and more observations coming in, it

eventually converges to a Gaussian-like distribution. In this evolution process, the entropy

of the distribution decreases over time, as shown in Fig. 6.8.

Figure 6.10: Normal trajectories for HMB and LSMGS when the camera moves on a line

without rotation. The left image shows the scene with a tracked planar region feature (red

contour on the book). The right graph shows the trajectories of the three normal elements

(Nx, Ny, Nz) for the two solutions from HMB (red and green) and the unique solution from

LSMGS (blue). Both solutions from HMB have very good consistency, which prevents

us from selecting the correct solution (the red curve corresponds to the correct solution).

In contrast, the solution from LSMGS converges correctly with the help of point features

outside the planar region feature.

For each sampled normal, we can generate a normal view for the component. Fig. 6.9

shows the normal views for the component corresponding to a set of sampled normals,

where the last one corresponds to the best estimated normal.
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Figure 6.11: Probability distribution with and without point features. Without point fea-

tures and the essential matrix constraint, the probability distribution will converge to two

peaks, which leads to solution ambiguity. When point features and the essential matrix con-

straint are used, the distribution eventually converges to a single peak and resolves solution

ambiguity.
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Figure 6.12: Entropy trajectory with and without point features. Using point features leads

to a lower entropy.

6.5.4 Solution Disambiguation

In the HMB approach, the decomposition of a homography matrix has the form H =

R+ T NT
0 /d0 (R and T are camera rotation and translation, and N0 and d0 is defined in

Eq. 6.2). The decomposition can generate two physically possible solutions because T/d0

and N0 are interchangeable. The disambiguation of the two solutions is usually made by

choosing the solution that has better consistency with solutions in previous frames [Ma,

2004; Cobzas et al., 2009]. When the camera moves on a line without any rotation (which

is a common motion pattern for a mobile robot), for example, on the line along the camera’s

z-axis, it will be impossible to select the correct solution from the two solutions because

both solutions will ideally keep unchanged all the time. In this case, no filtering process

such as Kalman Filter can resolve the ambiguity. However, with the help of the points fea-

tures that lie outside of the planar region feature, the LSMGS method converges well to the

correct solution (Fig. 6.10).

In order to better demonstrate that the proposed LSMGS method avoids solution

ambiguity, we investigate the evolution process of the probability distribution over normal

parameters. When point features and the essential matrix constraint are disabled (Le
t in

Eq. 6.23 is fixed to 1), there will be two peaks in the probability distribution; when they
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are enabled, the distribution will eventually converge to have only one peak (Fig. 6.11).

Fig. 6.12 shows the entropy trajectory with or without point features, where the entropy is

lower when point features are used.

6.5.5 Evaluation based on 3D Reconstruction Errors

Given the estimated camera rotation δRt and translation δTt , at each frame t > 0, the 3D po-

sitions of the selected evaluation point features are estimated by adapted linear triangulation

[Hartley and Zisserman, 2003], for the HMB, EMB, Bundler, and LSMGS methods.

For the set of selected evaluation points, we normalize the sum of the distance

between their 3D positions to 1, for both the ground truth data and the estimation results

from HMB, EMB, Bundler, and LSMGS, which eliminates the different scaling factor.

Let P1,P2, ...,Pm be the normalized ground truth 3D positions for the selected points, and

P̂1, P̂2, ..., P̂m be the corresponding estimated 3D positions from HMB, EMB, Bundler, or

LSMGS. The 3D reconstruction error is defined as

E3D = ∑
i, j
|‖Pi −Pj‖−‖P̂i − P̂j‖| (6.29)

which is the sum of the absolute difference between each two points’ 3D distance in the

ground truth data and in the HMB, EMB, Bundler, or LSMGS estimation results.

The reconstruction errors are shown in Fig. 6.13 and Fig. 6.14, with KLT and SIFT

features respectively. In the KLT feature case, our method (LSMGS) gets lower reconstruc-

tion errors than HMB, EMB, and Bundler, for all the four datasets. In the SIFT feature

case, our method gets lower errors for the Twinings, Pantech, and Ambulance datasets, but

it performs worse for the Yorkshire dataset (probably because the SIFT features are in high

quality for this dataset because of its good texture). The EMB method gets large error mean

in overall and its errors have significantly larger variance than the other methods, which

indicates that the EMB approach may not be well suited for the situation where the camera

motion is small or where the images are noisy. In order to better see the difference between

102



Figure 6.13: 3D reconstruction errors (with KLT features). The table shows the quantitative

3D reconstruction errors for HMB, EMB, Bundler, and our method (LSMGS). The errors

for EMB have significantly larger variance than the other methods, and the EMB results are

shown in only the table and not in the graphs. The table shows average error per frame with

± standard deviation. The point features used for EMB, Bundler, and LSMGS are KLT

features.
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Figure 6.14: 3D reconstruction errors (with SIFT features). The table shows the quantitative

3D reconstruction errors for HMB, EMB, Bundler, and our method (LSMGS). The errors

for EMB have significantly larger variance than the other methods, and the EMB results are

shown in only the table and not in the graphs. The point features used for EMB, Bundler,

and LSMGS are SIFT features.
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HMB, Bundler, and LSMGS, the EMB errors are shown only in the table and not in the

graphs.

Figure 6.15: 2D re-projection errors (with KLT features). The reconstructed 3D points

are re-projected in each frame, and the average of the errors between the 2D ground truth

locations and the re-projected locations is defined as the re-projection error for that frame.

The point features used for EMB, Bundler, and LSMGS are KLT features. The last figure

shows the error mean for each dataset.

6.5.6 Evaluation based on 2D Re-projection Errors

For the last three datasets, it is difficult to measure the ground truth 3D positions for the

evaluation points. Hence, they are evaluated based on their 2D re-projection errors. For

each dataset, the 3D positions of the evaluation points in the reference frame are obtained.

105



Figure 6.16: 2D re-projection errors (with SIFT features). The reconstructed 3D points

are re-projected in each frame, and the average of the errors between the 2D ground truth

locations and the re-projected locations is defined as the re-projection error in pixel for that

frame. The point features used for EMB, Bundler, and LSMGS are SIFT features. The last

figure shows the error mean for each dataset.

This is done by first calculating the 3D positions in each frame, then transforming them

in the reference frame, and then taking the average of the 3D positions for each point.

Once we have the estimated 3D points in the reference frame, we re-project them back into

each frame. The average of the errors between their 2D ground truth locations and their

re-projected locations is defined as the re-projection error,

E2D =
1

np

np

∑
i=1

‖p̂i − pi‖ (6.30)
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where np is the number of evaluation points, and p̂i is the corresponding re-projected point

for pi.

Fig. 6.15 and Fig. 6.16 show the 2D re-projection errors, with KLT and SIFT

features, respectively. In the KLT feature case, LSMGS performs better than HMB and

Bundler for all the three datasets. Bundler gets the worst results due to KLT feature drift.

In contrast, LSMGS is very robust to feature drift, thanks to the help of the planar region

feature. In the SIFT feature case, for the Disk and Glue datasets, LSMGS gets very similar

overall accuracy to Bundler. Its accuracy is lower for the Poster dataset compared with

Bundler, but the difference is only about one pixel.

Note that, in the Glue dataset, the planar region feature used for pose estimation

lies on a non-planar surface. When the viewing direction is beyond a certain range (about

π/6) around the feature’s surface normal, the tracking fails because the feature’s images in

different frames cannot be approximated by a homography matrix anymore. In this case,

the pose estimation also fails. But when the viewing direction is within the range (less than

π/6), we find that the feature can be tracked well and the system works as well as for the

other datasets (Fig. 6.15 and Fig. 6.16).
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Chapter 7

3D Model Construction

7.1 Introduction

After the camera motion is estimated, we will be able to obtain the 3D object models based

on tracked features. This chapter describes preliminary results for 3D3D model construc-

tion in the OSH.

Various 3D models have been explored to represent an object such as point clouds,

voxels, meshes, and depth maps. Although these models can approximate arbitrary object

shapes well, they do not automatically identify compact 3D object parts/surfaces (for ex-

ample, these models will end up getting a far more complex representation than a compact

6-face model for a cubic box). In addition, construction of these models typically requires

stereo vision [Seitz et al., 2006]. While stereo vision can provide one type of cue for 3D

model construction, in this work we solve the problem based on another type of cue: motion

cue from a monocular camera. A monocular camera is much easier to set up than stereo

cameras, and we simply use a webcam in our experiments.

In Gallup et al. [2010], piecewise planar and non-planar regions are used to repre-

sent indoor and outdoor scenes using stereo vision. In our system we use similar compact

surface-based models. However, the model construction in Gallup et al. [2010] highly re-
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lies on appearance information as well as geometry. Although this approach fits well for

indoor or outdoor scenes, it is not suitable to segment the surfaces on a single object. This

is because different objects/regions in an indoor/outdoor scene usually have different ap-

pearance, but different surfaces on a single object tend to have similar rather than distinct

appearance. Thus, in our method, we construct surface-based models based on only geo-

metric surface smoothness.

A lot of state-of-the-art works [Snavely et al., 2008; Newcombe and Davison, 2010;

Klein and Murray, 2007; Pollefeys et al., 2004] construct 3D object models from monocu-

lar images. These works usually give a large set of pixels or point features with estimated

3D positions, but do not generate higher-level surface-based models. In addition, these

works use only point features and do not take advantage of planar region features. Planar

features are used in Cobzas et al. [2009] to estimate the 3D poses between different object

surfaces, but manual initialization is needed to mark each surface’s boundary.

We present a method to construct compact 3D object models from monocular im-

age sequences captured by a webcam. The constructed model contains a small number of

surfaces and the boundary of each surface is automatically identified. The full 3D object

structure is recovered from the camera motion as a collection of triangles in 3D space. The

normal of each triangle is modeled as a Gaussian distribution, and based on the triangles’ lo-

cal geometric continuity, the final model is constructed as a compact set of surfaces through

maximum a posteriori estimation.

7.2 Structure Recovery

In the reference frame I0, we detect a set of local interest point features p0, and track them

as pt in frame It . Based on the camera motion parameters δRt and δTt (see Eq. 6.28 in

Chapter 6), for each point feature we can draw two rays in the reference camera space at

time 0 and in the current camera space at time t, where each ray passes the optical center

and the point feature in the image plane. We then simply take the average of the two closest
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Figure 7.1: Object reconstruction. Top left: tracked point features, top middle: triangular

meshes from the point features, top right: reconstructed depth map. The bottom row shows

reconstructed images at different viewpoints based on the triangle positions with texture

mapping. The bottom middle image has distortions around the middle vertical line on the

object because the corresponding triangles cover areas that do not belong to a single planar

surface (the bottom left and right images do not have significant distortions under these

poses).

3D points on the two rays as the 3D position estimation of that point feature in the reference

camera space.

Based on the feature points p0 at time 0, the image I0 is divided into triangular

meshes using the Delaunay triangulation algorithm. The pixels within a triangle are as-

sumed to be on the same 3D plane as that triangle. The 3D scene structure is then created

as a collection of these 3D triangular surfaces. The texture of the 3D scene is mapped from

the reference image I0 by a linear transformation. Some reconstructed images are shown in

Fig. 7.1 for the example video we have used in Chapter 6.

The position and normal of each triangle is modeled as a Gaussian distribution and

is updated at each time step. The object structure is now represented as a collection of

triangles T = {T j} in 3D space. The next step is to build a compact model of the object

containing a small number of surfaces, where each surface has similar normals at points
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inside the surface and two adjacent surfaces have dissimilar normals.

7.2.1 Probabilistic Framework

The task of building a compact object model is to seek for M = {ns,S1, ...,Sns} where Si

(1 ≤ i ≤ ns) are the object surfaces (having a boundary and a 3D normal) and ns is the

number of the surfaces, such that with a small number ns, the model M explains well the

observation of the triangles T. The task now becomes finding M̂ by maximum a posteriori

estimation,

M̂= argmax
M

Pr(M|T) (7.1)

where Pr(M|T) ∝ Pr(M)Pr(T|M). (7.2)

To explore all configurations in M would be intractable. Instead, we take a bottom-

up grouping step to reduce the space of M. Neighboring triangles are grouped together if

the absolute value of the dot product of their normals is above a threshold ρ . Each ρ leads

to a configuration of M. By adjusting ρ , we get a set of candidate configurations. Thus

the number of candidate configurations has reduced to the number of discretization of ρ .

Each candidate configuration contains a set of surfaces, where each surface’s boundary is

the outermost contour of all associated triangles and the surface’s 3D normal is the average

of the normals of all associated triangles.

A good configuration of M should have three constraints: (1) ns is small, (2) each

surface and its associated triangles have similar normals, and (3) adjacent surfaces have

dissimilar normals. To expose the first constraint, we design the prior function in Eq. 7.2 as

Pr(M) ∝ 1+β/ns where β is pre-selected positive constant. Intuitively, the prior function

prefers to select models with a low number of surfaces.
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7.2.2 Likelihood Formulation

Now we formulate the likelihood function Pr(T|M) according to constraints (2) and (3). Let

T j be a triangle with area a j. The similarity score between the triangle and its associated

surface is denoted as d j ∈ [0,1], which is the absolute value of the dot product between the

triangle’s normal and the normal of the triangle’s associated surface. Let Si be a surface

with area Ai. The similarity score between two adjacent surfaces Si and Sk is denoted as

Dik ∈ [0,1], which is the absolute value of the dot product between the surfaces’ normals.

The likelihood function is formulated as

Pr(T|M) ∝
∑ j a jd j

∑ j a j

(
1− ∑{i,k:Si↔Sk}

√
AiAkDik

∑{i,k:Si↔Sk}
√
AiAk

)
(7.3)

where the symbol ↔ denotes the adjacency of two surfaces. The first term in the right-hand

side evaluates the normal similarity between each triangle and its associated surface, and

the second term evaluates the normal dissimilarity between adjacent surfaces.

7.3 Demos

When the 3D triangle based model is obtained for the object, we can generate various object

views corresponding to different virtual poses. Some generated views with virtual poses for

these datasets are shown in Fig. 7.2.

Fig. 7.3 shows the constructed compact models for the four datasets. Each contour

corresponds to an object surface (surfaces with very small area have been removed), and

the surface numbers are 4, 2, 3, and 2 for dataset Ambulance, Pantech, Twinings, and

Yorkshire, respectively. Each of these surfaces corresponds to a 2D3D planar component

in the OSH. In the Pantech dataset, the top surface and the bottom left surface are grouped

together, primarily because the triangles around the intersection of the two surfaces cover

across both surfaces and hence weaken their geometric dissimilarity.

Given the estimated camera pose, we have used only point features to build these
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Figure 7.2: Reconstructed images. These images are reconstructed by setting arbitrary

virtual viewing poses, and they do not correspond to any pose observed in the original

videos. The deformations on object surfaces are not caused by incorrect pose estimation,

but by (1) some triangles in Delaunay triangulation cover across different object surfaces

and (2) some point features have drifted during tracking.

Figure 7.3: Constructed compact object models. Each model consists of a small set of sur-

faces in 3D space (shown as colored contours). The number of surfaces and their boundaries

are automatically identified.
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compact models. Since the actual boundaries of the components may not have enough

detected point features, it is difficult to find the exact component boundaries using only

these tracked points. One future direction to improve the results is to combine edge/contour

information. For example, we can check whether the triangles on one side of a contour

fragment have similar normals as the triangles on the other side. If so, the contour fragment

will be labeled as a negative fragment; otherwise, it is a positive fragment. Then the positive

fragments can be connected to form final closed boundaries.
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Chapter 8

Conclusion and Future Directions

8.1 Summary

In this thesis, we have proposed the Object Semantic Hierarchy (OSH) and have described

a few key steps towards building the OSH.

The models of objects and the surrounding background in the OSH are built in a pro-

gressive manner. Initially everything in the sensory input is treated as noise; then the agent

identifies the background and builds a constant model for the background, where dynamic

foreground objects are treated as noise; then foreground object models are constructed by

identifying invariants in the remaining noise. For the background and each foreground ob-

ject, their representations evolve from 2D views, to 2D planar surfaces in 3D space, then to

full 3D models.

To build the 2D model for a foreground object, we have presented a novel MSMS

(Motor Signal based Motion Segmentation) method [Xu et al., 2011] to separate the fore-

ground object from the background based on motion cues. In contrast to existing approaches

which use only sensor images for object segmentation, our method exploits information

from both sensor images and motor signals. The use of motor signals allows the agent to

achieve fast and robust segmentation.
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We have evaluated the proposed MSMS method against the pixel-level background

subtraction and RANSAC-based homography fitting approaches, and the results show that

the proposed method gives better segmentation results on datasets with large translation,

rotation, scaling, and illumination changes.

To build the 3D model for a separated foreground object, we have presented a new

LSMGS (from Local Structure to Motion then to Global Structure) method for the recovery

of camera pose and object structure. This method starts by estimating the normal (Local

Structure) for a single tracked planar region feature, then obtain the dynamic camera pose

(Motion) based on the estimated normal, then recover the object/scene structure (Global

Structure) based on the camera poses. As opposed to existing approaches that use either

point features or planar region features and apply either the homography matrix based con-

straint or the essential matrix based constraint, our method uses both types of features and

applies both types of constraints.

We have evaluated the LSMGS method by comparing it against the HMB, EMB,

and Bundler approaches on various datasets. Comparison results show that our method pro-

vides better estimation accuracy and avoids solution ambiguity, which suggests that fusing

different types of features and geometric constraints improves the quality of the recovered

camera pose and object structure.

To summarize, we have presented a multi-layer representation for objects and the

surrounding background, and have described solutions to some key problems in building

these representations, including feature tracking, 2D object segmentation, 3D pose estima-

tion, and 3D structure recovery.

8.2 Future Work

Below we discuss a few ways to extend the current work, including combination of other

cues to build 3D3D object models, incorporation of data from other types of sensors, inves-

tigation of situations containing multiple foreground objects, and evaluation of the whole
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OSH framework.

Combination of other cues to build 3D3D models

We have used mainly geometric information to build 3D3D models after camera motion

is estimated, which provides the agent compact object representations. Other cues such

as information from edge/contour detection, static image segmentation (such as [Xu et al.,

2008]), and common-sense geometric context (such as [Bao et al., 2010]) will help build

more robust models.

Edge/contour and image segmentation will give better boundaries between differ-

ent planar components in the 3D3D model. For each contour fragment, we can examine

whether the region on one side has same or different normal compared to the region on

the other side, and then determine whether this contour fragment belongs to component

boundary. Image segmentation can also help get better component boundaries because the

contours of the segmented regions tend to lie on edge pixels.

Common-sense geometric context will facilitate object pose estimation by applying

prior knowledge of pose relations. For example, the normal of the ground in a typical image

is usually in the vertical direction, and the surfaces of a box on the ground are usually

parallel or perpendicular to the ground surface. With this prior knowledge, the searching

space for the box pose will be greatly reduced.

Incorporation of data from other types of sensors

Camera images capture rich information about the appearance of the environment and

provide a huge amount of details. We have used monocular vision sensors to infer depth

information, which relies on robot/object motion. In the case where there is no robot or

object motion, stereo cameras can be used for depth inference (such as [Murarka et al.,

2008]). Time-of-flight cameras have made fast progress these days, and can also be used

for distance measurement.

Laser-range finders have been widely used for indoor and outdoor robot navigation
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(for example, [Kuipers et al., 2004] and [Beeson et al., 2010]), and allow a robot to have

easy access to depth information. Fusing laser and vision sensors will help build high-

quality 3D models of the environment for navigation.

Investigation of situations containing multiple foreground objects

As the OSH itself has no specific limit for the number of foreground objects, the current

implementation has focused on building models for a single foreground object. Extension

to handle multiple objects will be similar to the single object case, but how the agent should

allocate resources for each object needs to be considered.

Evaluation of the whole framework

To solve the key problems in building the OSH, we have evaluated our proposed methods

for feature tracking, foreground segmentation, and recovery of object pose and structure.

These methods yet need to be eventually evaluated in the OSH framework as a whole.

Possible ways for the whole system evaluation include:

(a) Evaluation by reconstruction: reconstruct an image sequence from the background/object

models in the OSH, and show how reconstruction errors and model complexity change

across different layers.

(b) Evaluation by recognition: recognize objects in new images based on the constructed

object models (such as [Xu and Kuipers, 2011]) in the OSH, and show how multiple

representations can help improve recognition accuracy.

(c) Evaluation by object manipulation: let the robot manipulate objects using the con-

structed object models in the OSH, and investigate the success rate for object manipu-

lation (such as [Mugan and Kuipers, 2009]).
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