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This paper gives an elementary, inductive proof-“graphical” in spirit-of a 
theorem of Edmonds’ which specifies the convex hull of the matchings of an 
arbitrary, finite, undirected graph in terms of a fmite system of linear 
inequalities. 

Given an undirected finite graph G = {N, E} with node-set N and 
edge-set E, each edge of E consisting of an unordered pair of distinct 
nodes, a matching (or simple-matching) M of G is a subset of E with the 
property that no two edges of M meet the same node. In other terms, a 
matching is a feasible solution to the constraints 

2 44 G 1 for each i E N, and x(e) = 0 

or 1 for each e E E, (1) 

where e E i means the summation extends over those edges e which are 
incident to the node i. In words: weights x(e) are to be assigned to edges e 
in such a way that the sum of the weights incident to any node i does not 
exceed 1, and each weight must be 0 or 1. The maximum-cardinality 
matching problem is to find a matching having a maximum number of 
edges. This is a much studied problem for which several good algorithms 
have been devised [2,4,6]. 

One view of the maximum matching problem is as an integer program 
(“on a graph”), that is, a linear program in which variables must take on 
integer values. As is well known (see, e.g., [l]) a principal approach to the 
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solution of integer programs consists in generating supplementary linear 
constraints, in our case implied by the constraints of (l), until a derived 
linear program is found whose solution is integer valued and hence a 
matching. Thus, both for its inherent interest and to gain greater under- 
standing of integer programming by knowing “best” supplementary 
constraints or “cuts,” it is of particular interest to be able to specify the 
convex hull of the matchings or the feasible integer solutions to (l), which 
we now call the matchingpolytope. In [3] Edmonds determined this poly- 
tope. To explain this theorem we introduce the notation: ( S / for SC N 
denotes the cardinality of S; x(S, T), S, T C N denotes the sum of the 
weights on distinct edges e having one end in S and the other end in T. 

THEOREM [3]. Given a graph G = {N, E}, the extreme points of 

x(i, N) = 1 x(e) < 1 each i E N, x(e) Z 0 each e E E, 
eei 

(2) 

x(S, S) < s each odd set of nodes S, 1 S 1 = 2s + 1, are integer valued. 

It is obvious that any matching must satisfy the constraints of (2), for 
the new constraints simply say (for x(e) = 0 or 1) that 2s + 1 nodes can 
contain at most s matching edges. The fact that (2) is the matchingpolytope 
is also immediate, given the truth of the theorem, for any extreme point 
of (2), being integer valued, is clearly a matching. On the other hand, any 
matching x is an extreme point of (2) for, otherwise, x could be expressed 
x = +x’ + Qx”, x’, x” feasible for (2) and different from x, which is a 
contradiction since each component of x’ and x” must lie between 0 and 1 
inclusive. 

The proof of Edmonds is difficult and rather indirect. This paper 
provides an elementary, inductive proof which is “graphic” in spirit 
and directly displays any non-integer feasible solution x of (2) as a convex 
combination of other feasible solutions. On the other hand, an important 
aspect of Edmond’s method [3] is that his proof of the theorem is given 
in terms of a good algorithm for solving the maximum-weight matching 
problem: that is, given arbitrary real “profits” c(e), e E E, find-weights 
x(e) satisfying (1) and maximizing & c(e) x(e). Edmonds, Johnson, and 
Lockhart [5] have further developed the method to solve a more general 
class of integer programs “on graphs,” sometimes also referred to as 
generalized matching problems. 

In Section 1, “Preliminaries,” various combinatorial lemmas, needed 
in the subsequent arguments, are stated and proved together with a number 
of facts regarding the structure of feasible (non-integer) solutions to the 
constraints (2) which, while needed for the proof of the theorem, are of 
some interest in themselves. Section 2 contains the proof. 
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1. PRELIMINARIES~ 

An arc is taken to be a connected graph which has two nodes of degree 1 
and whose other nodes all have degree 2. A circuit is a finite connected 
graph all of whose nodes have degree 2. The set of nodes (edges) of a 
graph G will be denoted N(G) (respectively, E(G)). A circuit C is odd or 
even, respectively, if 1 N(C)1 is odd or even. A graph is separable if it is 
either disconnected or the union of two subgraphs H and K such that 
E(H) # 0, E(K) # %, E(H)nE(K) = 0, I N(H)n N(K)I = 1. A 
block of a graph G is a maximal non-separable subgraph of G. A cut in 
a graph G = {N, E} is a partition of the nodes into two non-void disjoint 
sets N’ and N - N’, the cut-edges of this cut are the edges joining nodes 
in N’ to nodes in N - N’, and the value of the cut is the number of such 
edges. 

LEMMA 1. Let G = {N, E} be a finite connected graph such that 
/ N I > 1 and G contains no even circuit. Then, every block of G is either 
an edge or an odd circuit. 

Let B be a block of G. If B contains no circuit, it must be an edge. 
If B contains a circuit it necessarily contains an odd circuit C. Suppose 

that B # C. Let H be the subgraph of B consisting of the edges in 
E(B) - E(C) and their incident nodes. Since B is non-separable each 
component of H has two or more nodes in common with C and therefore 
H contains at least one arc joining two distinct nodes of C. Let A be a 
minimal arc of this kind, and let A, and A, be the two arcs contained in C 
which join the end-nodes of A. Since A is minimal and contained in H, 
E(A) n E(C) is empty and N(A) n N(C) includes only the two end-nodes 
of A. Therefore, A u A, , A u A, , and A, u A,(=C) are all circuits. 
Since these circuits cannot all be odd, the hypothesis that G contains no 
even circuit is contradicted. Hence B = C, and so B is an odd circuit. 

LEMMA 2. Let G = (N, E} be a jinite graph such that 1 N 1 > 1, G 
contains no even circuit, and the values of all cuts of G are at least 2. Then 
every block of G is an odd circuit. 

The proof is immediate from the above and the observation that, if 
a block were a single edge, then that edge would be the sole cut-edge 
of a cut of G with value 1. 

We turn now to the “structure” of feasible solutions x to (2). 

1 The author is indebted to a referee, who identiiied some faulty argument and 
suggested the definitions, reformulations, and proofs through Lemma 2. 
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LEMMA 3. If x is feasible and T C N then 

x(T, T) < -HI T I - XV, N - T)>. 

From x(i, N) < 1 we have / T 1 3 CiET x(i, N) = 2x(T, T) + x(T, N - T). 

Given a feasible x we say that an odd set of nodes S, ( S I = 2s + 1, 
is minimal if x(S, S) = s and T C S, 1 T 1 = 2t + l( > 1) implies 
x(T, T) < t. 

LEMMA 4. Suppose S,TCN, ISI =2s+I, /TI =2t+l, and S 
isminimaLIf/SnT[=2i+l>landS$?T,thenx(T,T)<t. 

If T C S, the statement is true by definition. Otherwise, suppose 
x(T, T) = t. FromSn TCSandx(Sn T,Sn T) < iwe have 

x(S u T, S v T) 

= x(S, S) + x(T, T) + x(S - T, T - S) - x(S n T, S n T) 

2 x(S, S) + x(T, T) - x(S n T, S n T) > s + t - i, 

a contradiction, since j S u T 1 = 2(s + t - i) + 1 and x is feasible. 

LEMMA 5. Suppose S, TC N, 1 S I = 2s + 1, I TI = 2t + 1, and S 
isminimal.IfISnTI =2iandIS-T/ >l,thenx(T,T)<t. 

Again, if T C S, the statement is true by definition. Otherwise, since 
IS-T] =2(s-ii)+1 >l,andusingLemma3forx(SnT,SnT), 
we find 

s = x(S, S) 

= x(S - T, S - T) + x(S n T, S n T) + x(S - T, S n T) 

-c s - i + $(I S n T I - x(S n T, S - T) - x(S n T, T - S)} 

+ 4s - T,Sn T) 

= s - i + i + Q{x(S n T, S - T) - x(S n T, T - S)}, 

implying x(S n T, S - T) > x(S n T, T - S). Using the same formula 
for x(T, T), recalling I T - S 1 = 2(t - i) + 1, we have, by symmetry, 

x(T, T) < t + g{x(S n T, T - S) - x(S n T, S - T)} < t. 

LEMMA 6. Suppose I S I = 2s + 1 > 3, S is minimal, and Hs is the 
subgraph of nodes S and edges joining nodes of S for which x(e) > 0. If Hs 
contains no even circuit then it is an odd circuit of 2s + 1 edges. 

We show, first, that the value of all cuts of Hs is at least two. For suppose 
there is a cut of value zero, i.e., Hs is disconnected. Then S, the nodes of 
Hs , are partitioned into two sets S, , S, with x(S, , S,) = 0, I S, ) = 2i + 1, 
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/ S, 1 = 2(s - i). If 1 S, 1 > 1, then, since x(S, , SJ < i, x(&,&J < s - i, 
we find x(S, S) = x(S, , S,) + x(S, , Sa < s, a contradiction. If 
IS’,1 = l,letkbeanynodeofS,.Then 

x(S, S) = x(k, N) + x(S, N(k), s, -{k}) < 1 + s - 1 = s, 

a contradiction. Now suppose Hs has a cut of value 1. Let e = (k, , ka 
be the cut-edge with S partitioned into S, , S, , ki G Si , and 1 S, 1 = 2i + 1, 
1 s, 1 = 2(s - i). If ) s, 1 > 1, 

x(S, S) = x(S, , S,> + x(S, u {kl}, S, u {k,}) < i + s - i = s, 

a contradiction. If ) S, ) = 1, 

x(S, S) = x(k, , N) + x(S, - (k,}, S, - {kz}) < 1 + s - 1 = s, 

a contradiction. 
So the values of all cuts of Hs are at least two, Hs contains no even 

circuit, and ( N(Hs)I = ( S I = 2s + 1 > 5. Hence, by Lemma 2, each 
block of Hs is an odd circuit. If Hs had more than one block, it would 
have a block B with just one node in common with the union, call it U, 
of the other blocks of Hs . Then, taking I N(B)1 = 2i + 1, we would 
have I N(U)1 = 2(s - i) + 1 and therefore 

x(S, S) = x(N(B), N(B)) + x(N(U), N(U)) < i + s - i = s, 

a contradiction. Hence, Hs can have only one block and is an odd circuit. 
This simple sturcture of Hs allows x(e), e E (S, S), to be represented 

easily in terms of (0, l)-matchings of the subgraph Hs . To explain this 
let x(Hs) be the vector of values x(e), e E Hs , and let f(Hs) be the vector 
representing the unique (0, I)-matching of Hs in which node i 

0 i 

FIGURE 1. Matching y’(Hs) of HS 

is exposed (i.e., y”(i, S) = 0, see Figure 1). 

LEMMA 7. Suppose I S I = 2s -I- 1, S is minimal and Hs , the subgraph 
defined in Lemma 6, an odd circuit of 2s f 1 edges or, if I S 1 = 3, an arc or 
circuit. If qi = 1 - x(i, S), i E S then 

x(Hs) = c qr YtHs), 
ieS 

(3) 
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We have 

~qi=2s+l-~x(i,S)=2s+l-2x(S,S)=l. (4) 

In fact, for I S I > 3, qi > 0, for, if qi = 0, S would not be minimal. The 
“excesses” qi , i E S, uniquely determine the weights x(e), e E Hs . Let the 
edges of Hs be (1,2) ,..., (2s, 2s + I), (2s + 1, 1). Then 

-4.A j + 1) = (%+!z + qi+4 + **I + k+-1 + qj-3 + .9, 

summation extending to where it makes sense, since then 

x(j - Lj) + x(j,j + 1) = x(j, S) and x(j,S) +qi = 1, jES. 

But, with this notation, y”(j, j + 1) = 1 if i = j + 2, j + 4 ,... or 
i = j - 1, j - 3,..., establishing the left equation of (3). 

In order to prove the theorem we need one construction. Given a 
subgraph Hs as in Lemma 7 shrink Hs to obtain the reduced graph G/Hs 
consisting of all nodes of G not in Hs and a new node is (replacing all 
nodes S), and consisting of all edges of G not incident to a node of S and 
edges (j, is) for j 4 S if (j, i) E E, an edge of G, for some i E S. Given a 
feasible x for G, define weights Z for G/Hs by letting X(e) = x(e) for edges e 
not incident to S, and by letting X(j, is) = CiEs x(j, i) for j +! S (see 
Figure 2). 

G L G/Hs 

FIGURE 2 

LEMMA 8. If x is feasiblefir constraints (2) corresponding to G, then jz is 
feasible for GfHs , where Hs is as in Lemma 7. 

Since x(S, S) = s, we have x(S, N - S) < 1. Thus Z(is, N N S) < 1. 
If T is an odd set in G/Hs , ) T 1 = 2t + 1, including is and Z(T, T) > t, 
then since x(S u T) = 2(s + t) + 1 in G we would have 

x(S u T, S v T) = x(S, S) + X(T, T) > s + t, 

a contradiction. The remaining constraints are automatically satisfied. 
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2. THE PROOF 

We will show that, if x is feasible for (2) but not all integer valued, 
then x is not an extreme point of (2). If (Case 1) no constraint of type 
x(S, S) < s, 1 S ( = 2s + 1, holds as an equation, we directly display x 
as a convex combination of two “close” feasible points. If, on the other 
hand, some one or more constraints of that type hold strictly, then we 
choose a minimal S. If (Case 2) the subgraph Hs = {e E (57, S); x(e) > 0} 
contains an even circuit, then we again display X as a convex combination 
of two “close” feasible points. But, if (Case 3) Hs contains no even circuit, 
then we use induction on the number of nodes of the graph to display X 
as a convex combination of integer extreme points for the graph G/Hs and 
show how this convex combination can be extended to display x as a 
convex combination of feasible integer points. 

CASE 1. Suppose no constraint of type x(S, S) f s holds as an 
equation for the given x, i.e., all hold as strict inequalities. Consider a 
connected subgraph consisting of edges e for which x(e) # 0, 1 and nodes i 
for which x(i, N) = 1. This means we are considering a connected 
“subgraph” in which there may be some “dangling” edges having only 
one end in the graph; the other end, say node k, is “dangling,” 
0 <x(k,N)< 1. 

(a) Suppose the subgraph contains an even circuit of edges, say 
6 , e2 ,..., e2, . Define xE to be the same as x except that 

xc(eJ = x(q) + (- 1)j E. 

Then x and x-’ are feasible for small enough E > 0 while x = 4~’ + $x-~. 

(b) Suppose (a) does not hold but that the subgraph contains at least 
one dangling edge e, with dangling node k. Then, following a path of 
incident edges in the subgraph beginning with e, either another dangling 
edge is reached (see Figure 3a) or a node is reached that is already incident 
to two edges of the traced path (see Figure 3b). In the first case there is 
an arc e, ,..., e, joining two dangling nodes. Define xE to be the same as x 

(a) 
FIGURE 3 

b) 
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except that xc(ej) = x(eJ + (-l)j E. Then xf, x-~ are feasible for small 
E > 0 and x = *xc + +XP. In the second case there is an arc e, ,..., e3, 
together with an odd circuit of edges e9+1 ,..., e9+2n+l having e, , e,,, , 
and eP+2n+l as the only three edges incident at one node. Define x’ to be 
the same as x except that xc(ej) = x(ej) + 2(-l>j E for j = l,..., p, and 
x<(eJ = x(eJ + (-l>i E forj =p + l,...,p + 2q + 1. Then xE, x-~ are 
feasible for small E > 0 and x = &xx’ + Qx-<. 

(c) Suppose neither (a) nor (b) holds. Then, by Lemma 1, every block 
of the subgraph is either an edge or an odd circuit. Suppose there exists 
a block which is an edge. Assign it a right and a left. March through the 
sequence of adjacent blocks going to the right until an odd circuit block 
is encountered. Such a block must be encountered or the sequence would 
terminate in a dangling edge. Considering the same sequence going to 
the left we find that there is a simple path e, ,..., ep joining two odd circuits, 
e 8+1 ,..., e,,,,,, and e2’ ,..., e;l, with edges e, , e2’, e.& incident at a node 
and e, T eBtl y eDtsqtl incident at a node. Define xE to be the same as x 
except that Y(eJ = x(eJ + 2(--l)G forj = l,...,p, P(eJ = x(eJ + (-1)‘~ 
for j =p + l,...,p + 2q + 1, and x’(ej’) = x(ej’) + (-l)j E for 
j = 2,..., 2r. Again, xE and X+ are feasible for small E > 0 and 
x = &xc + &Xx-‘. 

FIGURE 4 

Therefore in all cases (a), (b), (c), unless in (c) the graph consists of blocks 
which are all odd circuits, x is not extreme. But in the latter case the graph 
contains an odd number of nodes S, S = 2s + 1, since the nodes may be 
counted by taking all nodes of one block, say Bl (odd), adjoining a block Bz 
having one node in common with B1 , thereby adding an even number of 
nodes, etc. Since the total weight on each node in the subgraph is exactly 1, 
we have, summing the weights of each node on S, 

2x(S,S)= Cx(i,N)=2s+l, or x(S, S) = s + 5, 
iss 

contradicting the constraint x(S, S) < s. This cannot occur since x was 
assumed to be feasible. 

Summarizing, if no odd-set constraint holds as an equation, then the 
theorem is easily proved directly by a simple adjustment argument. 
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CASE 2. S is minimal and Hs contains an even circuit. Notice that this 
implies 1 S j > 3 and x(e) # 1 for e E (S, S). For, otherwise, let T be 
all of S save the two end points of e; 1 T 1 = 2s - 1. Then, since 
x(T, S - T) = 0, we must have x(T, T) = s - 1, contradicting 
minimality. 

The adjustment of Case l(a) can be made to display x as x = QY + ;tx? 
for small E > 0, with xE and X+ feasible for (2) since no inequality of 
type x(T, T) < t, 1 T 1 = 2t + 1, can possibly be violated. 

If T n S = ia, the “adjustment” from x to xfr cannot effect the 
T-constraint. 

If T C S, the minimality of S assures x(T, T) < t, which allows adjust- 
ment for small enough E > 0. 

If SC T, then the even cycle of adjustment belongs to T and so the 
value of x( T, T) = x*‘(T, T). 

If I T n S 1 = 1, edges of (S, S) do not belong to (T, T) and the 
T-constraint cannot be effected. Otherwise, 1 T n S 1 is odd or even. 

If 1 T n S 1 = 2i + 1 > 1 then, by Lemma 4, x(T, T) < t, allowing 
adjustment for small enough E > 0. 

IfITnSI=2iandISw T 1 > 1 then , by Lemma 5, x(T, T) < t, 
again allowing adjustment. 

Finally, if I T n S I = 2i and j S N T I = 1, then any even simple 
cycle in Hs either belongs entirely to T or belongs to T save for two edges 
which are incident to the one node of S N T. In either case 
x(T, T) = x*‘(T, T). 

CASE 3. S is minimal and contains no even circuit. Therefore, Hs is 
an odd circuit of 2s + 1 edges (or, if 1 S I = 3, perhaps an arc) by Lemma 6, 
and, by Lemma 7, 

XV&) = c qiY(Hs). 
S 

Shrink Hs to obtain a feasible X for the reduced graph G/Hs , having 
strictly fewer nodes than G. By induction, Z is a convex combination of 
(0, I)-matchings ?W) of G/Hs , say 
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where each ~i(~)(t = I,..., j,) is a matching of G/Hs for which 
P)(is , j) = 1, (is , j) an edge, and each Zo(t) is a matching for which 
.?“(t)(i, , j) = 0 for all j. 

We show how the .3ct) and the yi(H) can be “patched” together to form 
matchings of G, a convex combination of which is the feasible not all 
integer x. To begin, note that 

; 4(t) = & x(&j) and 1 boo, = c qi - x(S, N - S). 
t iES 

(5) 

The first equations hold since the right is the weight on edge (is, j) of G/H, 
and the left the sum of h’s corresponding to z’s having Z(& , j) = 1. 
Summing them overj # 0, 

which verifies the second equation of (5) since C h = 1 = C q. 

For each edge (i, j) E G, i E S, j # S, and each c of j(t) above define a 
(0, l)-matching zditt) of G as follows: - 

zyk, I) = p’(k, Z), for k, I $ S (or k, I # is); 

,“yi,j) = 1, for iES, j$S; (6) 

+(t)(H) = f(H) (for edges of H). 

Similarly, for each i E S and each t of O(t), define a (0, I)-matching zioft) 
of G: 

ziO@)(k, 1) = Z”‘t’(k, I), for k,l$S (ork,l#is); 

,ioyi,j) = 0, for iES, j$S; 

#“t’(H) = f(H) (for edges of H). 

(7) 

Then 

x = C *iIttl' 
U(t) 

' with a,,,,, 2 0 and *St 3*w = 1, (8) 

where 

and SiOft) = ~odqt - x(6 N - 9) 
ct ho(t) * 

(9) 

Clearly 6 3 0. That C 6 = 1 is immediate from (9) and (5). To show that 
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x is indeed the stated convex combination in (8) we verify over each of the 
three types of edges. If (k, 1) E G, k, l$ S, then 

x(k, 1) = C 8tittjzij(t’(k, Z) = 1 hjtt)P(k, 1) = I(k, l) 
i,j,t i,t 

as required. The second equation follows from (5) through summation 
over i. If (i,,j) E G, i ES, j $ S then 

x(&j) = C 8rt&l(t)(i,j) = x(i,j) 
Jbz,t 

as required. Again, the second equation follows from (5) through summa- 
tion over t. Finally, if e E H, , 

x(H,) = c t3~j(t)z~yH,) 
i,i,t 

= T [x(i, N - S) + qi - x(i, N - S)] yi(Hs) = 1 qiY(Hs) 

as required. This completes the proof. 

Example of Case 3. Let the graph G be as given below with weights 24x 
(to avoid denominators of 24) on edges and names of nodes encircled. 

G/HS; 31: 

f 
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+? -cb -c‘ -+ --c 
8~6”) + 828'1' -t- 4~8’2’ + 2z 7(l) -I- 2;ow 

=%a.ndeachtofj(t) 

Therefore, taking each edge (i,j), i E S, j 4 S, and each t ofj(t) we find: 

-a \ 
+(l), 6 16(l) -8 - @m, 6 38(l) 

8.4 
PC2), !?J,,(,) 

4.4 
= 12 = 12 

--m - -m 
237(1), 6 37(l) - - 2 Z4”‘), 64*(i) = - a.8 Z 4Sl2) 96 48(Z) = - 4,a 

12 12 

Taking each i E S and each t of O(t) (of which there is exactly 1) and, since 
qi - x(i, N - S) = 0 for i = 1,3, and 4, we find only: 
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