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AN ALGORITHM FOR THE SOLUTION OF THE ASSIGNEMT PROBLEM
UDC 518.5

E. A. DINIC AND M. A. KRONROD

Let (ai].) be a square matrix of order n. A solution of the assignment problem for this matrix is a
set of n elements of the matrix, one in each row and each column, such that the sum of these elements
is minimalrwith respect to all such sets. Algorithms are known which solve the assignment problem af-
ter Cnt operations,” for example the Bradford method .

In the present article an algorithm is constructed which solves the problem more rapidly: one mo-

dification after Cn’logn operations, the other after Cn3 operations.

Definition. Let some vector A = (AI, A,,-++, A) be given. An element a;; is called A-min-
imal , if o, - A]_ <ag, -A, forall k.

Lemma. For any A let there be given a set of n A-minimal elements @iy %52y Gy
one from each row and column. Then this set is a solution of the assinment problem.

Proof.

n n I
% A
Zz Ay ) = Z Ay 4 Z (@5 @y — A @y)-
k=1

i=1 i=1

The first sum in the right member is constant for all sets, and the second is minimal.

For any vector A let us select in each row one of the A-minimal elements (we shall call these
selected elements basics). The number of free columns (columns without basics) is called the defi-
ciency of the set of basics. From the lemma it follows that the set of basics with deficiency zero is a

solution of the problem.
An algorithm is derived below permitting iteration: for a given vector A and a set of basics with
nonzero deficiency, find a new vector and a set of basics possessing a lesser deficiency .

Taking the zero vector as A and some set of basics for it, we can solve the problem by succes-
sive iteration.

Iteration. For any vector A let us have a set of basics alj(l), Gyiiay 0 Coiin with deficien-
cy m # 0. We single out some free column. Let its index be $,. We increase A_  to the maximum §
such that all basics remain A-minimal elements (a method of finding & is indicated below). We ob-

tain that for some @iy = A].(i) = airsl - Asl, i.e. the element ais1 remains A-minimal. We call it
an alterpative basic and single out a column with index s,=7] (i), containing a basic of this row (we
now have two marked columns). We increase Asl and Asl to the maximal & such that all basics re-
main A-minimal, we find a new alternative basic in one of the columns and single out a new column,

and so on until we single out a column with two or more basics .

Now we shall construct a new set of basics. We observe that in each row there is not more than
one alternative basic.

) Contemplated is a number of operations realizable on a computer under a program realizing the algorithm.
C is a multiplier not depending on n.
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We shall call a change of basic in a row the following operation: an alternative basic in this row
is declared basic, and the old basic ceases to be basic. We shall produce a change of basic in a row
in which the last alternative basic lies. In this connection, in the last singled out column the number
of basics is decreased by 1. In the column where the new basic appears we take the old basic and
effect a change of basics in the corresponding row, and so on until a basic appears in the column with
index s . Thereby we have obtained the vector A we require and the set of basics for it with
deficiency equal to m-1.

It is easy to see that each iteration of the described algorithm requires Cn? operations, not count-
ing operations entering into the calculation of & at each stage of the iternation. Inasmuch as the

number of iterations does not exceed n, only the time of computation of § is of interest to us.

We shall now indicate various methods of computing 8. Let us consider an arbitrary stage of some
iteration .

Let S be the set of indices of the marked columns, and R the set of indices of those rows in

which there are no alternative basics. Then we have 6 =min¢p ;o5 o) - A, - (ai].(i) - A].(i))].

If at each step of the iteration to compute § directly by this formula as the minimum of a group of a

/length of order n?, then in all the algorithm requires Cn* operations .

We can write § = min, ¢ ¢ (mi“iER [(aik - Ak) - (ai].(i) - A, )]); this formula is used for the first

J()
modification of the algorithm which permits one rapidly to find min g p [(aik - Ak) - (aji(i> - A}.(i))]

iy~ D))
this formula is used for the second modification, which permits one quickly to compute min, ¢ (@, A,)

. . 3 . . _ . .
and which requires Cn’log n operations, or to write § = min_ ¢ p [mmkes (g;”C — Ak) —{a

and requires Cn3 operationa .

First modification. We introduce a certain method of listing the ordering of the group of numbers
without permutation of its terms, permitting quick reaction to cancellation (without re-enumeration) of
its elements .

Let a group of n numbers be given. For listing of the ordering, a group of n boxes of information
isrequired. In the box corresponding to some element of the group we place the indices to the preceding

and succeeding (in the ordering sense) elements, i.e. their numbers.
Let it be required for us to delete a certain element of the group. From its information box we

know the indices of its neighbors in the ordering . We change their information boxes, placing instead
of the indicators to the deleted element the indicators to its opposite neighbor. It is obvious that the
remaining group will be a list of its ordering in the sense indicated above.

/ For the initial ordering Cn log n operations are required, for the change associated with a dele-
tion C operations are required.

We use this method for rapid finding of min . p [(qik -A) - (ai;‘(i) - A]-(i))] for each £ €S.

Let bik = [(aik - Ak) - (ai],(i) —Aj(i))]. Each of the columns of (bik) we order and list this order-
ing according to columns of a table of n x n information boxes. We write out separately the row of
minima by columns, equal to minibik at the beginning of the iteration.

In the process of execution of an iteration we must delete from the matrix B the rows in which
alternative basics appear, in order that the minimum by columns of the remaining matrix will be the
sought min ¢ zb,, . The corresponding change in the information table and the row of minima, and
also the finding of § according to the formula 0 =min, ¢ (min, e p b,,) requires Cn operations at
each step of the iteration. But because the composition of the information table for each iteration

. . . . Val 3 .
requires Cn3log n operations, the total course of the algorithm requires Cn’logn operations.
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Second modification. We have 9 =min,qp[min g (o, = A~ (aij(i) - A].(i))]. Let us consider
the vectorq=1(g,,9,, "+, q,), where ¢,=min . (a, ~A). We have d=min ¢ p [g, —-(ai].(i) ~ A].(L. ))].

From this formula it follows that for solution of the problem after Cn® operations it is sufficient
to be able to calculate at each step the vector q after Cn operations. We shall show how to do this.

At the first step of the iteration the vector g coincides with the first earmarked column. At each suc-
ceeding step the vector q is obtained from the old vector q also from a new earmarked columnaccord-

ing to the following formula: qli = min (ais 59, 5), where s is the index of the earmarked column.
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ON THE QUASI-EQUIVALENCE OF BASES IN THE INFINITE CENTER

: OF THE HILBERT SCALE
UDC 513.88

V. P, ZAHARJUTA
1° Let {xk§ be an unconditional Schauder basis in a linear topological space E. Clearly, the
system

Y = )\kT(xnk)
is an unconditional basis in £ for any: permutation of the natural numbers {nk},sequence of scalers

A, # 0, and isomorphism T: E — E. The bases {x,}and ly, }are called quasi-equivalent [1. 7],

§

k

There naturally arises the question: are all unconditional bases quasi-equivalent in E?* This
problem was answered affirmatively for the entire class of nuclear countably normes spaces [1=4].
The assumption of the nuclearity of the space was removed in {5] for the case of the so-called finite
centers of Hilbert scales.™ In this paper we establish the quasi-equivalence of all unconditional
bases in the infinite centers of completely continuous Hilbert scales. The proof of the quasi-equiva-
lence in infinite centers differs qualitatively from the arguments of [5]. This is related to the fact
that Lemma 3 of [5] has no analog for infinite centers.

2° Every positive selfadjoint bounded operator 4 on a Hilbert space H generates a Hilbert
scale {H } of Hilbert spaces H, with scalar products

(2, 9y, = (4 2, A7),

where (x, y) is the scalar product in H = Ho[la 6]. A scale {H} is called completely continuous if

. . . a
the operator A is completely continuous. In this case we can assume that H = lz(ak), where

a, = 1/A,, where the A, are the proper (eigen) values of A decreasingly ordered, i.e. a, } .
Following [ 1}, the countable Hilbert space Ea(ak) :lim}\<apriz(a2') is called the center of the
scale {H,}—finite if o < o~ and infinite if o=, For x = (fl, ceey, £ , )€ Hx we will write

2A\ 1/,
[ = Iy, = (315 Pad ™.

If HO ) Hl are two Hilbert spaces with (completely) continuous embedding, then there exists a
(completely continuous) Hilbert scale {G} such that G, =H , G, = H . We will say that {G,} is the
scale stretched over H and H1 and use the notation

Ga = (Ho)'"*(H1)™

We will repeatedly use the following simple consequence of a known interpolation theorem [71.

Lemma (cf. [9]). Le: Hl P H2 D) H3 D) H4 be four Hilbert spaces with (completely) continuous
embeddings. Then for any a: 0 < a< 1 we have the (completely) continuous embedding:

(1) (Hs)™ = (Hz)' ™ (Hs)*

* This question was first raised by M. G. Haplanov for a space of analytic functions.

** Here and below we will use the terminology of Ls].
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