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Abstract—Given a weighted graph, the maximum weight
matching problem (MWM) is to find a set of vertex-disjoint
edges with maximum weight. In the 1960s Edmonds showed
that MWMs can be found in polynomial time. At present the
fastest MWM algorithm, due to Gabow and Tarjan, runs in
Õ(m

√
n) time, where m and n are the number of edges and

vertices in the graph. Surprisingly, restricted versions of the
problem, such as computing (1 − ε)-approximate MWMs or
finding maximum cardinality matchings, are not known to be
much easier (on sparse graphs). The best algorithms for these
problems also run in Õ(m

√
n) time.

In this paper we present the first near-linear time algorithm
for computing (1− ε)-approximate MWMs. Specifically, given
an arbitrary real-weighted graph and ε > 0, our algorithm
computes such a matching in O(mε−2 log3 n) time. The pre-
vious best approximate MWM algorithm with comparable
running time could only guarantee a (2/3 − ε)-approximate
solution. In addition, we present a faster algorithm, running in
O(m log n log ε−1) time, that computes a (3/4−ε)-approximate
MWM.
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I. INTRODUCTION

The history of the maximum matching problem is inter-
twined with the development of modern graph theory, com-
binatorial optimization, matroid theory, and the conflation
of polynomial time computation with feasibility [8]. After
decades of research on the problem, the computational com-
plexity of finding an optimal matching remains quite open.
(We recommend [33], [48], [1] for a review of definitions
and algorithms.) In bipartite graphs, finding a maximum car-
dinality matching in polynomial time is trivial, but the same
is not true in general graphs. In 1965 Edmonds presented
elegant polynomial time algorithms for finding matchings
in general graphs with maximum cardinality (MCM) [8]
and maximum weight (MWM) [7]. In the intervening years
we have seen a succession of faster and more complex
algorithms for solving these problems, usually based on
new structural characterizations and more sophisticated data
structures.

Algorithms: Early implementations of Edmonds’s al-
gorithm required O(n3) time [26], [12], [31], [3] using ele-
mentary data structures. Following the approach of Hopcroft
and Karp’s MCM algorithm for bipartite graphs [25], Micali
and Vazirani [38] presented an MCM algorithm for general

graphs running in O(m
√

n) time, where m and n are
the number of edges and vertices.1 Over the years others
have proposed alternative O(m

√
n)-time MCM algorithms

that generalize Micali and Vazirani’s [16], [18]. All of the
algorithms cited above are based on incrementally improving
a matching via augmenting paths. Using an algebraic char-
acterization of the problem [45], Mucha and Sankowski [39]
and Harvey [22] presented MCM algorithms whose running
time is roughly O(nω), the complexity of square matrix
multiplication.

If the input graph is weighted one may naturally ask
for a matching whose weight is minimum or maximum,
possibly with the restriction that it simultaneously have
maximum cardinality. All these variants are equivalent;
see [16]. For bipartite graphs, the implementation of the
Hungarian algorithm [30] using Fibonacci heaps [11] runs
in O(mn + n2 log n) time, a bound that is matched in
general graphs by Gabow [13] using more complex data
structures. Faster algorithms are known when the edge
weights are bounded integers in [−N, . . . , N ], where a word
RAM model is assumed, with log(max{N,n})-bit words.
Gabow and Tarjan [15], [16] gave bit-scaling algorithms
for MWM running in O(m

√
n log(nN)) time in bipartite

graphs and O(m
√

n log n log(nN)) time in general graphs.
Extending [39], Sankowski [46] gave an O(Nnω)-time
MWM algorithm for bipartite graphs.

Approximation Algorithms: Let a δ-MWM be a match-
ing whose weight is at least a δ fraction of the maximum
weight matching, where 0 < δ ≤ 1, and let δ-MCM
be defined analogously. The O(m

√
n)-time MCM algo-

rithms [25], [38] are all actually (1−1/k)-MCM algorithms
running in O(km) time. In each phase they augment the
current matching using a maximal set of augmenting paths
with minimum length. It is easy to show [25] that (i) the
length of the augmenting paths increases in each phase, (ii)
any matching without length 2k − 3 augmenting paths is a
(1 − 1/k)-MCM, and that (i,ii) imply that O(

√
n) phases

1A complete description and proof of correctness of the Micali-
Vazirani algorithm appears in [49]. The Micali-Vazirani algorithm was
preceded by one of Even and Kariv [10] who claimed a running time of
O(min{n5/2, m

√
n log n}) in an extended abstract. However, a complete

description of the algorithm was never published.



suffice to compute an MCM.
Surprisingly, the best approximate MWM algorithms do

not achieve anything close to the accuracy and efficiency of
the decades old approximate MCM algorithms [25], [38].
On real weighted graphs the Gabow-Tarjan algorithm [16]
gives a (1 − n−Θ(1))-MWM in O(m

√
n log3/2 n) time,

simply by retaining the O(log n) high order bits in each
edge weight, treating them as polynomial size integers. It
is well known that the greedy algorithm—iteratively choose
the maximum weight edge not incident to previously chosen
edges—produces a 1

2 -MWM. A straightforward implementa-
tion of this algorithm takes O(m log n) time. Preis [43], [5],
reviving the δ-MWM problem from its long slumber, gave
a 1

2 -MWM algorithm running in linear time. Vinkemeier
and Hougardy [50] and Pettie and Sanders [42] proposed
several ( 2

3 − ε)-MWM algorithms (see also [37]) running in
O(m log ε−1) time; each is based on iteratively improving
a matching by identifying sets of short weight-augmenting
paths and cycles. No linear time algorithms with approxi-
mation ratio better than 2

3 are known.
New Results: Our main result is the first (1−ε)-MWM

algorithm for arbitrary weighted graphs whose running
time is nearly linear. In particular, we show that such a
matching can be found in O(mε−2 log3 n) time. We also
present a faster algorithm that finds ( 3

4 − ε)-MWMs in
time O(m log n log ε−1), which improves the accuracy of
( 2
3 − ε)-MWM algorithms [50], [42] though is a logarithmic

factor slower. (In independent and unpublished work, Hanke
and Hougardy [21], [20] obtained a similar ( 3

4 − ε)-MWM
algorithm, as well as a ( 4

5 − ε)-MWM algorithm running in
O(m log2 n log ε−1) time.)

Technical Challenges: After one surveys the state-of-
the-art in exact and approximate MWM algorithms, one
finds two natural avenues to a (1 − ε)-MWM algorithm.
The first is to extend the 2

3 -MWM algorithms [42], [50]
in a straightforward way, by looking for weight-augmenting
paths and cycles with length on the order of 1/ε. Due to the
haphazard way edges are placed in the current matching it is
very difficult to find long augmentations, augmenting cycles
in particular. We are able to improve the approximation ratio
of [42], [50] to 3

4−ε by better handling augmenting 6-cycles.
However, new obstacles arise that prevent us from going
further. A more principled approach to the problem is to
start with Gabow and Tarjan’s [16] scaling algorithm, which
solves a version of the problem at each of log N scales, each
of which consists of O(

√
n) iterations. The goal of each

scale is not to compute a matching per se, but to compute
a hierarchy of nested blossoms and a set of nearly tight
dual variables on the vertices and blossoms. Is it necessary
to perform all O(

√
n) iterations at one scale? The answer,

unfortunately, seems to be yes. Performing Õ(ε−1) iterations
before prematurely jumping to the next scale leaves us with
essentially useless dual variables. This difficulty arises in the
absence of blossoms and is exacerbated by their presence.

We develop a new scaling technique that does not require
that dual variables be carried from one scale to the next.
This technique is fit for finding approximate-MWMs but not
exact ones. At each scale we apply a new and simple (1−ε)-
MWM algorithm for small integer weights, which follows
the standard primal-dual approach to the problem.

Some Applications of Approximate Matching: In input-
queued switches packets are routed across a “switch fabric”
from input to output ports. In each cycle one partial per-
mutation can be realized. Existing algorithms for choosing
these matchings, such as iSLIP [35] and PIM [2], guarantee
1
2 -MCMs and it has been shown [36], [17] that (approxi-
mate) maximum weight matchings, where edge weights are
based on queue-length, have good throughput guarantees.
(Of course, computing exact MWMs is unrealistic in this
application.)

Approximate MWM algorithms are a key component
in several clustering libraries.2 These clustering algorithms
are used, for example, to partition a graph across many
parallel processors so as to minimize the communication
cost in certain algorithms [28], [29], [24]. Maximum weight
matching algorithms are used as a heuristic preprocessing
step in several sparse linear system solvers [40], [6], [47],
[19]. The goal is to permute the rows/columns to maximize
the weight on or near the main diagonal.

Definitions and Conventions: The input is a graph G =
(V,E, w) where |V | = n, |E| = m, and w : E → R. A
matching M is a set of vertex-disjoint edges. Vertices not
incident to an M edge are free. We use v′ to refer to the mate
of a matched vertex v, that is, if (v, v′) ∈M . An alternating
path (or cycle) is one whose edges alternate between M
and E\M . An alternating path/cycle P is augmenting if
M ⊕ P is a matching, where ⊕ is symmetric difference,
and w(M ⊕ P ) > w(M), where w(M) =

∑
e∈M w(e).

If weights are not discussed, an augmenting path is one
whose ends are free vertices. Since we only seek (1 − ε)
approximate solutions, we can afford to scale and round edge
weights to small integers. Henceforth, w : E → {1, . . . , N},
where N ≤ n2. In Section II N is regarded as being a much
smaller number.

Overview: In Section II we give a (1− ε)-MWM algo-
rithm whose running time depends linearly on the maximum
edge weight. In Section III we present a scaling algorithm
for (1− ε)-MWM running in O(m log3 n) time, for fixed ε.
Section IV gives a (3/4 − ε)-MWM algorithm running in
O(m log n) time.

II. APPROXIMATE MWMS FOR SMALL WEIGHTS

In this section we describe a simple algorithm for finding
(1−ε)-MWMs in graphs with integer weights in {1, . . . , N}

2The clustering libraries METIS [27], PARTY [44], PT-SCOTCH [41]
CHACO [23], and JOSTLE [51] all use some approximate matching
routine. PARTY, for example, builds a hierarchical clustering by iteratively
finding and contracting approximate MWMs. Preis’s algorithm [43] was
specifically motivated by this application.



Figure 1. A blossom (u1, u2, S1, u8, u9, u10, S2) containing non-trivial
sub-blossoms S1 = (u3, u4, u5, u6, u7) and S2 = (u11, u12, u13). Solid
edges are in the matching.

that runs in O(Nm/ε) time. This algorithm serves as a
component in our (1 − ε)-MWM algorithm for arbitrarily
large weights, presented in Section III. We use the standard
LP formulation of Edmonds [7], but maintain only “ε-
optimal” dual variables (see Bertsekas [4] and Gabow and
Tarjan [15], [16]) with respect to the current matching.
Roughly speaking, they satisfy the complementary slackness
conditions up to an additive ε.

Preliminaries: The algorithm maintains a dynamic set
Ω of nested blossoms. Blossoms are formed inductively as
follows. If v ∈ V then the set {v} is a trivial blossom, and
not kept in Ω. An odd length sequence (A0, A1, . . . , A`)
forms a blossom B =

⋃
i Ai (with respect to a matching M )

if the {Ai}i are blossoms and there is a sequence of edges
e0, . . . , e` where ei ∈ Ai×Ai+1 (modulo `+1) and ei ∈M
iff i is odd, that is, A0 is incident to unmatched edges e0, e`.
See Figure 1. The set of blossom edges EB are {e0, . . . , e`}
and those used in the formation of A0, . . . , A`. The set
E(B) = E ∩ (B × B) may include many non-blossom
edges. At any time the nested structure of blossoms in Ω is
represented as a forest of rooted trees, where the children of
a node correspond to its constituent blossoms. The roots in
the blossom forest are root blossoms. The contracted graph
is formed by contracting all root blossoms to single vertices.
To dissolve a root blossom B means to delete its node in
the blossom forest and, in the contracted graph, to replace
B with individual vertices A0, . . . , A`. Observe that if M is
a matching in G then what remains of M in the contracted
graph is also a matching. Furthermore, an alternating path
in the contracted graph extends to an alternating path in G.

We maintain two potential functions y : V → R and
z : Ω → R that satisfy Property 1 with respect to the
current matching M . For (u, v) ∈ E let yz(u, v) = y(u) +
y(v) +

∑
B∈Ω,(u,v)∈E(B) z(B).

Property 1. (Relaxed Complementary Slackness) Let k
be a fixed positive integer.

1) z(B) ≥ 0 for all B ∈ Ω and z(B) > 0 if B is a root
blossom.

2) yz(e) ≥ w(e)− 1/k for all e ∈ E.
3) yz(e) ≤ w(e) when e ∈ M or e ∈ EB for some

B ∈ Ω.
4) The y-values of free vertices are equal; the y-value of

a matched vertex is at least that of a free vertex.

Lemma 1 shows that when y-values of free vertices are
reduced to zero, Property 1 guarantees that we have found
a sufficiently good matching.

Lemma 1. Suppose Property 1 holds for a matching M
where y-values of free vertices are zero, and let M ′ be any
other matching, possibly the MWM.

1) w(M) ≥ w(M ′)− |M ′|/k.
2) M is a (1− 1/k)-MWM.
3) Let P ⊆ M ⊕ M ′ be an alternating cycle or an

alternating path whose ends are free vertices or edges
in M . Then w(M ∩ P ) ≥ w(M ′ ∩ P )− |M ′ ∩ P |/k.

Proof: By the integrality of edge weights, Part 1 implies
Part 2. We prove Part 1 first. By Property 1 we have:

w(M ′) ≤
∑

u∈V (M ′)

y(u) +
∑

e⊆M ′∩E(B),
B∈Ω

z(B) + |M ′|/k (1)

≤
∑
u∈V

y(u) +
∑
B∈Ω

z(B)|M ′ ∩ E(B)|+ |M ′|/k

(2)

≤
∑
u∈V

y(u) +
∑
B∈Ω

z(B)b|B|/2c+ |M ′|/k (3)

≤ w(M) + |M ′|/k (4)

Inequalities (1–3) follow from Property 1 parts 2, 4, and 1,
respectively. Inequality (4) follows from part 3 of Property 1
and that fact that y(u) = 0 for free u. Part 3 is proved
similarly:

w(M ′ ∩ P )

≤
∑

u∈V (M ′∩P )

y(u) +
∑
B∈Ω

z(B)|M ′ ∩ P ∩ E(B)|

+ |M ′ ∩ P |/k Property 1(2)

≤
∑

u∈V (P )

y(u) +
∑
B∈Ω

z(B)|M ′ ∩ P ∩ E(B)|

+ |M ′ ∩ P |/k y-values are non-neg.

The last line follows since y-values are non-negative and the
ends of P , if P is a path, are unmatched vertices or edges
in M . Furthermore, observe that M ′∩P ∩E(B) consists of
subpaths of P , each of which cannot have both end edges in
M ′, since there is only one unmatched vertex with respect



to M ′ in the subgraph on B. Thus |M ∩ P ∩ E(B)| ≥
|M ′ ∩ P ∩ E(B)|. Continuing:

≤
∑

u∈V (P )

y(u) +
∑
B∈Ω

z(B)|M ∩ P ∩ E(B)|

+ |M ′ ∩ P |/k From the obs. above
≤ w(M ∩ P ) + |M ′ ∩ P |/k Property 1(3)

A. The High-Level Algorithm
Initially M = ∅,Ω = ∅, and y(v) = N for all v ∈ V ,

which clearly satisfies Property 1. The algorithm repeatedly
finds sets of augmenting paths of eligible edges, creates and
destroys blossoms, and performs dual adjustments on y, z
in order to maintain Property 1 and increase the number of
eligible edges.

Definition 1. An edge e is eligible if e ∈ M and yz(e) =
w(e), if e 6∈ M and yz(e) = w(e)− 1/k, or if e ∈ EB for
some B ∈ Ω. Let G′ be the graph of eligible edges and H
be G′ after contracting root blossoms in Ω.

Note that the eligible edges in H satisfy one of the first
two criteria since all blossom edges are contracted. Also
note that G′ and H are initially the graph (V, ∅).

In contrast to Edmonds’s [7] primal-dual weighted perfect
matching algorithm, we do not halt when M is perfect,
but when the y-values of free vertices reach zero. One
iteration of the algorithm consists of Augmentation, Blossom
Shrinking, and Dual Adjustment steps:

1) Augmentation: Find a maximal set Ψ of augmenting
paths in H and set M ←M ⊕ (

⋃
P∈Ψ P ). Update G′

and H .
2) Blossom Shrinking: Let Vout ⊆ V (H) be the vertices

(that is, root blossoms) reachable from free vertices by
even-length alternating paths; let Ω′ be a maximal set
of (nested) blossoms on Vout

3. Let Vin ⊆ V (H)\Vout

be those vertices reachable from free vertices by odd-
length alternating paths. Set z(B) ← 0 for B ∈ Ω′

and set Ω← Ω ∪ Ω′. Update G′ and H .
3) Dual Adjustment: Let V̂in, V̂out ⊆ V be original

vertices represented by vertices in Vin and Vout. The
y- and z-values for some vertices and root blossoms
are adjusted:

Set y(v)← y(v)− 1
2k for all v ∈ V̂out.

Set y(v)← y(v) + 1
2k , for all v ∈ V̂in.

Set z(B)← z(B)+ 1
k , if B ∈ Ω is a root blossom

containing vertices in V̂out.
Set z(B)← z(B)− 1

k , if B ∈ Ω is a root blossom
containing vertices in V̂in.

After dual adjustments some root blossoms may have
zero z-values. Dissolve such blossoms (remove them

3That is, if (u, v) ∈ E(H)\M and u, v ∈ Vout, then u and v must be
in a common blossom.

from Ω) as long as they exist. Note that non-root
blossoms are allowed to have zero z-values. Update
G′ and H by the new Ω.

The augmentations performed in Step 1 take time linear in
their length in H , not G. We do not need to consider the parts
of augmenting paths inside shrunken blossoms until such
blossoms are dissolved, in Step 3. Using a slightly modified
depth-first search4 and a standard union-find data structure
one can execute Step 1 in O(mα(m,n)) time, or in O(m)
time using the incremental-tree set-union structure [14];
see [16, §8].5 Steps 2 and 3 can be implemented in linear
time using a modified depth first search. When the input
graph is bipartite Step 1 is easy to implement in linear time
(there being no need to detect or deal with blossoms), Step
2 is unnecessary, and Step 3 remains trivial.

Lemma 2. After the Augmentation and Blossom Shrinking
steps H contains no augmenting path, nor is there a path
from a free vertex to a blossom.

Proof: If there is an augmenting path P in H after
augmenting along paths in Ψ, since Ψ is maximal, P must
intersect some P ′ ∈ Ψ at a vertex v. (View P ′ as a path
in H . Portions inside Ω blossoms are contracted.) However,
every edge in P ′ will become ineligible after augmenting,
so the matching edge (v, v′) in M will not be in H . Thus
there is no augmenting path in H post-augmentation. Since
Ω′ is maximal there can be no blossom reachable from a
free vertex in H after the blossom shrinking step.

Lemma 3. After the Dual Adjustment step, all edges will
not offend Property 1.

Proof: Property 1(4) is obviously maintained. Prop-
erty 1(1) is also maintained since all the new root blossoms
discovered in the Blossom Shrinking step are in Vout and
will have positive z-values after adjustment. Furthermore,
each root blossom whose z-value drops to zero is removed.

The algorithm clearly ensures that y- and z-values are
multiples of 1

2k and 1
k , respectively, and that y-values of

free vertices are equal. Thus, the y-values of all vertices in
V̂in ∪ V̂out must have the same parity (that is, they have
the same parity in multiples of 1

2k ), since each is connected
by a path of eligible edges to a free vertex. Recall that an
eligible edge e must have yz(e) = w(e) or w(e)−1/k. With
these observations we can show that Property 1(2,3) is not
offended. Let e = (u, v) be an edge, and suppose first that
both u, v are in V̂in ∪ V̂out. If u, v ∈ B ∈ Ω then yz(e) is

4The chief modification is to visit a vertex u after an even-
length alternating path from a free vertex to u is detected. For
example, in Figure 1 the vertices could be visited in the order
u1, u3, u6, u9, u11, u13, u12, u4, u5, u7, u10, u8, u2.

5We are not aware of a linear time pointer machine implementation
of Step 1 using “elementary” data structures or an O(m

√
n)-time MCM

algorithm using elementary data structures. The set-union structure of [14]
uses precomputed tables and world-packing techniques, which are not
available on a pointer machine.



unchanged, preserving the property, so we can assume that u
and v are in different root blossoms. If e 6∈M is ineligible
then, due to parity, yz(e) ≥ w(e) before adjustment and
yz(e) ≥ w(e)−1/k afterward, which preserves the property.
If e 6∈ M is eligible then at least one of u, v is in V̂in

(otherwise another blossom or augmenting path would have
been formed), so yz(e) cannot be reduced. If e ∈ M then
it must be eligible, so u ∈ V̂in and v ∈ V̂out and yz(e) is
unchanged. Now suppose u, but not v, is in V̂in ∪ V̂out. If
e 6∈M is eligible then u ∈ V̂in and yz(e) will increase; if it
is ineligible then yz(e) ≥ w(e)− 1

2k before adjustment and
yz(e) ≥ w(e) − 1/k afterward. If e ∈ M then it must be
ineligible, so u ∈ V̂in, yz(e) ≤ w(e)− 1

2k before adjustment
and yz(e) ≤ w(e) afterward.

Thus, in O(kNm) time we can obtain a matching M
satisfying Property 1, whose free vertices have zero y-values.
Lemma 1 implies that w(M∗) − w(M) ≤ |M∗|/k, and,
consequently, that M is a (1− 1/k)-MWM.

III. A SCALING TECHNIQUE FOR LARGE WEIGHTS

We introduce a scaling approach tailored to the ap-
proximate maximum weight matching problem that has a
logarithmic dependence on the maximum edge weight N ,
rather than linear, as in Section II. The standard scaling
technique [16], [15] is not easily applicable. Between scales
it performs a dual variable adjustment on a near-optimal
perfect matching and near-tight set of dual variables. Unless
the matching satisfies these properties it is not obvious
how to proceed at the next scale. It is also not clear how
to transform our algorithm from Section II into a scaling
algorithm. Among other obstacles, its running time depended
on the positiveness and uniqueness of the dual variables of
free vertices, which would be destroyed in a series of scaling
steps.

A. The Algorithm

Our (1 − ε)-MWM algorithm uses the algorithm from
Section II as a black box. Recall the input graph is G =
(V,E, w), where weights are at most N . At the ith iteration
in the algorithm we have a matching Mi and a current
graph Gi on the vertex set V \V (Mi) whose edge weights
are bounded by Ni. We find an approximate MWM M̃ in
a reweighted version of Gi, and add all sufficiently heavy
edges in M̃ to Mi, yielding Mi+1.

Initially M0 = ∅, G0 = G, N0 = N . Perform iterations
i = 0, . . . , log N and return Mlog N+1.

Iteration i:
1) Let G′

i have the same structure as Gi, but with weight
function w′(e) = bx · w(e)/Nic, where x will be
determined later.

2) Let M̃ be the approximate MWM of G′
i returned by

the algorithm in Section II, with parameter k = 1. The
running time will be O(xm). (In our analysis we only

use Lemma 1(1,3), not (2). M̃ is trivially a (1−1/k)-
MWM = 0-MWM.)

3) Prepare Mi+1, Ni+1, Gi+1 for the next iteration:
Set Mi+1 = Mi ∪ {e | e ∈ M̃ and w(e) > Ni/2}.
Set Ni+1 = Ni/2.
Set Gi+1 to be the graph with vertex set V \V (Mi+1)
and edge set {e ∈ E | w(e) ≤ Ni+1}.

Since w′ assigns integer weights at most x, independent of
i, the running time is dominated by the cost of computing
M̃ , which is O(xm log N) = O(xm log n) over all itera-
tions. To analyze the approximation ratio of the matching
obtained by this algorithm, we need a modification of a
lemma of Pettie and Sanders [42]. The proof of Lemma 4
appears in the appendix.

Lemma 4. Let M be a matching, M∗ the MWM, and p
an integer. There exists a collection A of vertex-disjoint
alternating paths/cycles w.r.t M and M∗ with the follow-
ing properties. Each augmentation in A has at most 2p
edges from M∗; the ends of augmenting paths in A are
either free vertices with respect to M or edges from M ;
w(M ⊕A) ≥ p

p+1w(M∗).

B. The Analysis

We begin by focusing on the first iteration, where we find
a matching M̃ of G = G0 under the weight function w′.
Let A be the set of augmenting paths/cycles guaranteed by
Lemma 4, for some p to be determined later. Following Step
2, Lemma 1 implies that for each P ∈ A, w′(M∗ ∩ P ) ≤
w′(M̃ ∩P )+ |M∗∩P |, so w′(M∗∩P ) ≤ w′(M̃ ∩P )+2p.
Since w′(e) = bx ·w(e)/Nc, w(e) < Nw′(e)/x+N/x, and
we can bound w(M∗ ∩ P ) as follows:

w(M∗ ∩ P ) ≤ N
x w′(M∗ ∩ P ) + 2Np/x

Since |M∗ ∩ P | ≤ 2p from Lemma 4

≤ N
x w′(M̃ ∩ P ) + 4Np/x Lemma 1

≤ w(M̃ ∩ P ) + 4Np/x Defn. of w′

If there is an edge e ∈ P satisfying w(e) > N/2 then
either w(M̃ ∩P ) > N/2 or w(M∗ ∩P ) > N/2; the bound
above implies that in either case w(M̃∩P ) > N/2−4Np/x.
If P does have an edge with weight greater than N/2 it
follows that:

w(M∗ ∩ P )
w(M̃ ∩ P )

≤ w(M̃ ∩ P ) + 4Np/x

w(M̃ ∩ P )

< 1 +
4Np/x

N/2− 4Np/x
= (1− 8p/x)−1

To analyze the approximation ratio we need to show
there is little “loss” by permanently putting the edge set
M1 = {e ∈ M̃ | w(e) > N/2} into our final matching. Let
M∗

i be the maximum weight matching of Gi. We first show
that w(M1) + w(M∗

1 ) is a good approximation to w(M∗).



Imagine constructing a matching Q of G that contains edges
in G1 and M̃ satisfying one of three conditions:

Condition 1. If P ∈ A contains an edge with weight larger
than N/2, include M̃ ∩ P in Q.

Condition 2. For other P ∈ A, include M∗ ∩ P in Q.
Condition 3. Include M̃ \A in Q.
It is easy to see that Q is a matching. Since M1 is disjoint

from G1 and M1 ⊆ Q (due to Conditions 1 and 3), it follows
that w(Q) ≤ w(M∗

1 ) + w(M1). Combining the inequalities
we have obtained so far, we can lower bound w(Q) as:

w(Q) = w(M̃ \A) +
∑

P in Condition 1

w(M̃ ∩ P )

+
∑

P in Condition 2

w(M∗ ∩ P )

≥ w(M̃ \A) +
∑

P in Cond. 1

(1− 8p
x )w(M∗ ∩ P )

+
∑

P in Condition 2

w(M∗ ∩ P )

≥ w(M̃ \A) + (1− 8p
x )

∑
P∈A

w(M∗ ∩ P )

≥ (1− 8p
x )w(M̃ ⊕A) (5)

≥ (1− 8p
x )(1− 1

p+1 )w(M∗) (6)

Inequality (5) follows from the identity M̃ ⊕ A = (M̃ \
A) ∪ (A \ M̃) = (M̃\A) ∪ (A ∩M∗) and Inequality (6)
follows from Lemma 4. Thus, w(M∗

1 ) + w(M1) ≥ w(Q) ≥
(1− 8p

x )(1− 1
p+1 )w(M∗). This proof clearly applies to any

level i, that is, if we just restrict our attention to Gi (rather
than all of G0, which we did above),

w(M∗
i+1)+w(Mi+1\Mi) ≥ (1− 8p

x )(1− 1
p+1 )w(M∗

i ) (7)

The bounds given in Lemma 5 let us select the parameters
p, x in the final algorithm:

Lemma 5. w(Mi)+w(M∗
i ) ≥ [(1− 8p

x )(1− 1
p+1 )]iw(M∗).

Proof: The proof for i = 1 was shown above. Let δ =
(1− 8p

x )(1− 1
p+1 ). Assuming the lemma is true for Mi we

show it holds for Mi+1 as well.

w(Mi+1) + w(M∗
i+1)

= w(Mi) + w(Mi+1\Mi) + w(M∗
i+1)

≥ w(Mi) + δ · w(M∗
i ) Inequality (7)

≥ δ(w(Mi) + w(M∗
i )) δ < 1

≥ δi+1w(M∗) Inductive hypothesis

Theorem 1. A (1 − ε)-MWM can be computed in
O(ε−2m log3 n) time.

Proof: By Lemma 5 the matching Mlog N+1 returned
by the algorithm satisfies w(Mlog N+1) ≥ [(1 − 8p

x )(1 −

1
p+1 )]log N+1w(M∗). If we intend to find a (1 − ε)-
approximate MWM, set p = 2ε−1(log N + 1) − 1 and
x = 8p(p + 1), so the approximation ratio is:

w(Mlog N+1)
w(M∗)

≥ [(1− 8p
x )(1− 1

p+1 )]log N+1

= (1− 1/(p + 1))2(log N+1)

= (1− 1
2ε−1(log N+1) )

2(log N+1)

> 1− ε

Thus, the total running time is O(xm log N) =
O(ε−2m log3 n).

IV. A 3/4-APPROXIMATION TO MWM

A k-augmentation a with respect to a matching M is one
for which |a\M | ≤ k. Our algorithm starts with an empty
matching M and, in successive iterations, finds a set A of
disjoint 3-augmentations and applies them to M . Define the
gain g(a) with respect to M as w(a\M)− w(a ∩M); the
gain of a set of augmentations is the sum of their individual
gains. Say a k-augmenting path a is centered at e ∈ a\M
if the number of non-M edges on either side of e is at most
bk/2c. For the time being a k-augmenting cycle is centered
at any of its non-M edges.

Whereas 3-augmenting paths and 2-augmenting cycles are
relatively easy to find, 3-augmenting cycles (that is, cycles
with length 6) are not. Lemma 6 states that there always
exists a set A3 of disjoint 3-augmenting paths/cycles that
brings us geometrically closer to a 3/4-MWM, even if the
gain of an augmenting cycle is devalued. We can implement
each iteration of our algorithm in near-linear time by not
specifically looking for 3-augmenting cycles; Lemma 6
essentially lets us look for 3-augmenting paths using an edge
e whose gain is at least as good as the devalued gain of a
3-augmenting cycle using e. This distinction will become
more clear in the analysis.

Lemma 6. (see Pettie and Sanders [42]) Let M be a
matching in a graph and M∗ be the maximum weight
matching. Let gk(a) = k

k+1w(a\M)−w(a∩M) if a is an k-
augmenting cycle and gk(a) = g(a) if a is a k-augmenting
path. There is a set Ak of vertex disjoint k-augmentations
such that

∑
a∈Ak

gk(a) ≥ k+1
2k+1 ( k

k+1w(M∗)− w(M)).

Our algorithm looks for a high-gain augmenting path cen-
tered at each edge e = (u, v) ∈ E\M , i.e., one consisting of
(u′, u, v, v′) and two arms (x′, x, u′) and (v′, y, y′) anchored
at u′ and v′, respectively. See Figure 3. Let arms(u′) be a list
of arms (i.e., alternating paths of two edges) anchored at u′,
sorted by gain. Using the arms lists the procedure aug(u, v)
(Figure 2) will find the best augmenting path centered at
(u, v), in O(1) time. (As we will see, vertices progressively
become ineligible; arms(u′) actually stores arms containing
only eligible vertices Velig .) If, through luck, aug(u, v) finds
a 3-augmenting cycle (that is, if two arms intersect properly)



ApproxMWM(G = (V,E))
1. M ← ∅.
2. Repeat log14/13 ε−1 times:
3. A← Improve(G, M).
4. M ←M ⊕A.
5. Return M .

Improve(G = (V,E),M)
Returns a set of augmentations A w.r.t. M , yielding
a new matching geometrically closer to a 3

4 -MWM.
1. A← ∅.
2. Velig ← V {arms(v) restricted to vertices in Velig .}
3. For e ∈ E\M , r(e)← blog g(aug(e))c.
4. Repeat:
5. Let e ∈ E\M maximize r(e).
6. If r(e) > blog g(aug(e))c then r(e)← blog g(aug(e))c.
7. Else A← A ∪ {aug(e)}, Velig ← Velig\V (aug(e)).
8. Until r(e) < 0 or Velig = ∅.
9. Return A.

aug(u, v)
Returns an augmentation centered at (u, v) ∈ E, using only vertices in a set Velig ⊆ V .

1. Let c = (u′, u, v, v′).
2. Select highest-gain arms p1, p2, p3, p4 from arms(u′) and q1, q2, q3, q4 from arms(v′).
3. Return the highest-gain augmentation among: ∅, the 4-cycle (u′, u, v, v′, u′) (if it exists),

and any augmentation using p1, · · · , p4, c, q1, . . . , q4.

Figure 2. Given that arms(u′) and arms(v′) are sorted by gain, aug(u, v) takes O(1) time.

(A)

(B)

Figure 3. (A) A 3-augmenting path centered at (u, v). In general some
prefix of x′, x, u′ and suffix of v′, y, y′ may not exist. (B) A 3-augmenting
cycle centered at (u, v) whose arms (u′, x′, x) and (v′, x, x′) intersect at
(x′, x). Solid edges are in the matching.

it will return such a cycle. The procedure Improve (Figure 2)
takes a graph and matching and returns a set A of 3-
augmentations that approximates the gain of A3 guaranteed
by Lemma 6. The procedure ApproxMWM takes a graph and
calls Improve until the current matching is a ( 3

4 −ε)-MWM.
The correctness and running time of these procedures are
analyzed in Lemma 7 and Theorem 2.

Lemma 7. Let b∗ be a 3-augmentation centered at (u, v)
and let b be the augmentation returned by aug(u, v), if any.
If b∗ is a path or 4-cycle then g(b) ≥ g(b∗). If b∗ is a 3-
augmenting cycle (u, v, v′, x, x′, u′, u) then g(b) ≥ g(b∗)−
w(x, x′).

Proof: If b∗ is a 4-cycle then the claim is trivial. Sup-

pose b∗ is a path consisting of c and two arms p∗ ∈ arms(u′)
and q∗ ∈ arms(v′) and let b consist of c and arms pi, qj .
At most three arms in arms(v′) can be incompatible with
c∪p∗; a symmetric statement holds for arms in arms(u′) and
c ∪ q∗. Since the top four arms in arms(u′) and arms(v′)
are considered in forming b, g(b) ≥ g(b∗). If b∗ is a 3-
augmenting cycle (u, v, v′, x, x′, u′, u) then, by the same
argument g(pi) ≥ g(u′, x′, x) and g(qj) ≥ g(v′, x, x′),
which implies g(b) ≥ g(b∗)− w(x, x′) since only the edge
(x, x′) is double counted. See Figure 3(B).

Theorem 2. Let G be a graph and M∗ a maximum weight
matching of G. Then ApproxMWM(G) returns a matching
M in O(m log n log ε−1) time such that w(M) ≥ ( 3

4 −
ε)w(M∗).

Proof: It suffices to show that Improve(G, M) runs
in O(m log n) time and returns a set of augmentations A
such that g(A) ≥ δ( 3

4w(M∗) − w(M)) for some constant
δ ≥ 1/14. The procedure maintains several invariants: (i)
that arms(v) is a list of v’s arms on the vertex set Velig ,
sorted in decreasing order of gain, (ii) that A is a set
of vertex disjoint augmentations on the set V \Velig , and
(iii) that r(e) ≤ log(3N) = O(log n) is nondecreasing.
Each e ∈ E\M is contained in 2 arms, so maintaining (i)
takes O(m log n) time using any standard search tree. Each
e ∈ E\M can be examined in line 5 O(log n) times before
aug(e) is included in A, in line 7. The overall running time
is therefore O(m log n). Let A3 be the set of vertex disjoint
augmentations guaranteed by Lemma 6, for k = 3, such
that g3(A3) ≥ 4

7 ( 3
4w(M∗) − w(M)). Define the center of

a 3-augmenting cycle a ∈ A3 as the edge in a\M opposite



the lightest edge in a ∩M . It follows from Lemma 7 that
if a ∈ A3 is centered at e, still eligible (contained in Velig),
and not a 3-augmenting cycle, then g(aug(e)) ≥ g(a). If a
is a 3-augmenting cycle with w(a ∩M) < 3

4w(a\M) (the
contrary case being trivial), Lemma 7 guarantees that:

g(aug(e)) ≥ g(a)− w(a ∩M)/3 (8)
= w(a\M)− 4

3w(a ∩M)
> 3

4w(a\M)− w(a ∩M) (9)
= g3(a)

Inequality (8) follows since a is centered at e and inequal-
ity (9) follows from the fact that w(a ∩M) < 3

4w(a\M).
Consider the moment an augmentation aug(e) is added to
A. Since | aug(e)∩M | ≤ 4 this augmentation intersects and
makes ineligible up to four augmentations a1, . . . , a4 ∈ A3

centered at, say, e1, . . . , e4. Since r(e1), . . . , r(e4) ≤ r(e),∑
i g3(ai) < 8g(aug(e)). Thus g(A) =

∑
a∈A g(a) ≥

1
8

∑
a∈A3

g3(a) ≥ 1
14 ( 3

4w(M∗) − w(M)). Thus, after
log14/13(

3
4ε−1) iterations of Improve, the matching obtained

is a ( 3
4 − ε)-approximate MWM. (The number of iterations

can be made roughly log7/6(
1
4ε−1) by starting with a 1

2 -
MWM and making the base in the definition of r(e) close
to 1.)

V. CONCLUSION

We presented the first near-linear time (1 − ε)-
approximation algorithm for maximum weight matching
(MWM), as well as a faster (3/4 − ε)-approximation al-
gorithm for MWM. Our results are a major improvement
over the exact MWM algorithms, which run in Ω(m

√
n)

time [13], [16], and the previous best linear time al-
gorithms [42], [50], which guaranteed only (2/3 − ε)-
approximations.

Our algorithm is close to optimal inasmuch as its running
time can only be improved in the logarithmic factors and
dependence on ε. However, some applications of approx-
imate matching [35], [2], [28], [29], [24] require a high
degree of parallelism, which both of our algorithms lack,
as do previous (2/3 − ε)-approximations [42], [50]. At the
moment the best efficient parallel/distributed approximate
MWM algorithm guarantees only 1/2-approximations [32].
.
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APPENDIX

Lemma 4 Let M be a matching, M∗ the MWM, and p
an integer. There exists a collection A of vertex-disjoint
alternating paths/cycles w.r.t M and M∗ with the follow-
ing properties. Each augmentation in A has at most 2p
edges from M∗; the ends of augmenting paths in A are
either free vertices with respect to M or edges from M ;
w(M ⊕A) ≥ p

p+1w(M∗).
Proof: The graph C = M ⊕M∗ consists of alternating

paths and cycles with respect to M and M∗. We assume
without loss of generality that C is a single path/cycle;
our argument is applied to each separately. If C is a cycle
of length 2l ≥ 4p + 2, list its edges in cyclic order:
e0, e

∗
0, e1, e

∗
1, ..., el−1, e

∗
l−1, where ei ∈ M, e∗i ∈ M∗. Let

q = 2p and let Ai, (0 ≤ i ≤ l − 1) be the set of disjoint
alternating paths of length 2q + 1 ending in edges in M :

{ei, . . . , ei+q} ,
{
ei+q+1, . . . , ei+2(q+1)−1

}
,

. . . ,

{
e
i+(q+1)(b l

q+1 c−1)
, . . . , e

i+(q+1)(b l
q+1 c)−1

}
plus another leftover alternating path with l mod (q + 1)
M -edges and max{0, (l mod (q + 1))− 1} M∗-edges.

Clearly maxi w(M ⊕Ai) ≥
∑

i w(M ⊕Ai)/l. Note that
each M∗-edge is counted l − dl/(q + 1)e times and that
M ⊕Ai consists solely of M∗-edges. Therefore

1
l

∑
i

w(M ⊕Ai) = 1
l

(
l − d l

q+1e
)

w(M∗)

minimized at l = 2p + 2

≥ 1
l

(
l −

(
2− 1

p+1

)
l

2p+1

)
w(M∗)

≥ p
p+1w(M∗)

The proof when C is a path is similar.


