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This paper discusses the balanced circulation polytope,
that is, the convex hull of balanced circulations of a
given balanced flow network. The LP description of this
polytope is the LP description of ordinary circulations
plus some odd-set constraints. The paper starts with
an exposition of several classes of odd-set inequalities.
These inequalities are described in terms of balanced
network flows as well as matchings and put into rela-
tion to each other. Step by step, the problem of finding
a cost minimum balanced circulation can be reduced to
the b-matching problem. We present an LP characteriza-
tion of the b-matching polytope by blossom inequalities.
With a moderate effort, these odd sets are lifted to the
setting of balanced-network flows. We finish with the
dualization of the derived LP formulation, an introduc-
tion of reduced-cost labels, and a corresponding opti-
mality condition. © 2001 John Wiley & Sons, Inc.
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30. PRELIMINARIES

This paper continues our discussion of balanced network
flows which can be viewed as a network-flow description
of matching problems. In [4, 5, 6], we presented the al-
gorithmic concepts available for nonweighted problems.
In [7], one can find a duality theory for nonweighted
matching problems which does not use polyhedral de-
scriptions.

Part V [8] of this series discusses the relationships
between ordinary flows, fractional balanced flows, and
(integral!) balanced flows of a balanced flow network
N. The outcome was an algorithm which applies as a
starting heuristic to algorithms for nonweighted as well
as weighted problems. That paper gave a first glimpse
of polyhedral descriptions. In particular, we discussed
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the polyhedron F(N) of fractional balanced circulations,
which is defined by the constraints

(p1a) lower(a) ≤ f(a) for all arcs a ∈ A(N),

(p1b) f(a) ≤ cap(a) for all arcs a ∈ A(N),

(p2) f(a) = f(a′) for all arcs a ∈ A(N),

(p3) e(v) = 0 for all nodes v ∈ V(N).

We do not repeat all of the basic definitions given in the
previous parts, but only the notion of pseudobasic circu-
lations, which is essential. So, let f be some fractional
balanced circulation on N.

If 2f is integral, then f is called half-integral. An arc
a ∈ A(N) is called free if and only if rescapf(a) and also
rescapf(ā) are strictly positive. A free path is a path that
entirely consists of free arcs.

We call a cycle in N odd if and only if it is simple and
contains arcs a and ā′ always pairwise. An odd-cycle Q
can be written as Q = q ◦ q̄′, where q is a strictly simple
vv′-path and v ∈ Q is arbitrary.

In the previous parts, we considered bipartite balanced
networks. Then, the path q indeed has odd length. Later,
we will show that the bipartiteness requirement is imma-
terial.

We call a fractional balanced flow f pseudobasic if
and only if f is half-integral, and the fractional arcs form
pairwise disjoint odd cycles. We refer to these cycles
Q1, Q2, . . . , Qr as the odd cycle system associated with f.

In [8], we showed that f is a vertex of the poly-
tope F(N) if and only if every free cycle in N(f)
is odd. Thus, any vertex of the polytope F(N) is
pseudobasic.

As an example, consider the balanced network given
in Figure 1 with unit capacities. The reader may ver-
ify that exactly three pseudobasic circulations exist: f0,
the zero flow, f1 := 1

2 χp, where p := (u, u′, v, v′, u), and
f2 := χq, where q := (u, u′, v′, u).

Note that f0 and f2 are integral, but f1 is not. It turns
out that f0, f1 and f2 are the vertices of F(N).
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FIG. 1. A balanced-flow network.

31. ODD-SET INEQUALITIES

We start the characterization of balanced circulation
polytopes by specifying some sets of feasible (and par-
tially redundant) inequalities.

Let V(N) = U ! U and U = U′. We call the node set
U nontrivial if and only if N[U] as well as N[U] contain
at least one odd cycle and if N[U] is connected. An edge
set Ã ⊆ A(N) is called a nontrivial edge cut if one can
partition V(N) = U ! U so that U = U′, Ã = [U, U], and
U is nontrivial.

Our aim is to find appropriate cuts which separate the
odd cycles of a pseudobasic flow and, by that, to separate
this pseudobasic flow from the integral solutions. The
first statement is a special case of Lemma 27.6 in [8]:

Corollary 31.1. Let N be a balanced flow network, f be
a balanced circulation on N, and V(N) = U!U, U = U′.
Then, f(U, U) is even.

Corollary 31.2. (Cut Inequalities).
Let

Ucut(N) := {U : V(N) = U ! U, U = U′,

U nontrivial, cap(U, U) odd},

Lcut(N) := {U : V(N) = U ! U, U = U′,

U nontrivial, lower(U, U) odd}.

Every balanced circulation satisfies the conditions

(p4a) f(U, U) ≤ cap(U, U) − 1 for U ∈ Ucut(N)
(p4b) f(U, U) ≥ lower(U, U) + 1 for U ∈ Lcut(N).

!
If one has N = NM, where M is an instance of the perfect
1-matching problem, the restrictions (p4b) are the well-
known cut constraints for the perfect matching polytope.

Unfortunately, N admits no odd cuts in our introduc-
tory example, that is, the circulation f1 cannot be sepa-
rated by odd-cut inequalities.

It turns out that (p4a) and (p4b) appear as extreme
cases of a more general set of inequalities:

Corollary 31.3. (Skew-cut Inequalities).
For partitions V(N) = U ! U, U = U′ and [U, U] =

A1 ! A2, let

scap(A1, A2) := lower(A2) − cap(A1).

Denote

Oskew(N) := {(A1, A2) :
A1 ! A2 nontrivial, scap(A1, A2) odd}.

Every balanced circulation satisfies the conditions (p4c):

f(A2) − f(A1) ≥ scap(A1, A2) + 1

for (A1, A2) ∈ Oskew(N).

Proof: Observe that f(A2) − f(A1) = f(U, U) − 2f(A1),
which is even by Corollary 31.1. !

If a skew cut satisfies (p4c) with equality, we say it is
tight with respect to the circulation f.

The polytope which is defined by the constraints
(p1a), (p1b), (p2), (p3), and (p4c) is called the balanced
circulation polytope and denoted by P(N). We will show
that P(N) is the convex hull of all balanced circulations.
In the remainder of this section, we will discuss the odd-
set constraints which are relevant for particular matching
problems.

Let N be bipartite and W ⊆ Outer(N). If not stated
otherwise, we associate with W the sets U := W ! W′

and U := V(N) \ U. We say that W is nontrivial if and
only if U is nontrivial.

Lemma 31.4. (Comb Inequalities).
Let W ⊆ Outer(N) be nontrivial. For partitions [W, U] =
A1 ! A2, let

ζ(W, A1) := cap(U, W) + cap(A1) − lower(A2).

Denote

Ocomb(N) := {(W, A1) : W nontrivial, A1 ⊆ [W, U],
ζ(W, A1) odd}.

Every balanced circulation satisfies the conditions (p4d):

f(W, W′) + 2f(A1) ≤ cap(W′, W) + ζ(W, A1) − 1
for (W, A1) ∈ Ocomb(N).

Proof: Adding the flow-conservation conditions for the
nodes in W yields

f(W, W′) + 2f(A1)
=f(W′, W) + f(U, W) − f(W, U) + 2f(A1)
=f(W′, W) + f(U, W) + f(A1) − f(A2).

Observe that f(W, W′) and cap(W′, W) are even. Hence,
we have

f(W, W′) + 2f(A1)
≤ cap(W′, W) + cap(U, W) + cap(A1) − lower(A2),
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and the inequality is strict if ζ(W, A1) is odd. !

This set of inequalities is a generalization of the facet-
generating constraints for the 2-factor polytope where
the arcs in A1 are teeth with pairwise different end nodes
and W is called the handle. These 2-factor comb con-
straints also have been embedded into a powerful set of
inequalities for the TSP (see [3]). Letting A1 = ∅ in
Lemma 31.4, we obtain the following important special
case:

Corollary 31.5. (Blossom Inequalities).
For W ⊆ Outer(N) nontrivial, let θ(W) := cap(U, W) −
lower(W, U). Denote

Oblossom(N) := {W ⊆ V(N) : W nontrivial, θ(W) odd}.

Every balanced circulation satisfies the conditions (p4e):

f(W, W′) ≤ cap(W′, W) + θ(W) − 1
for W ∈ Oblossom(N).

Let M be a subgraph network with degree sequences a,
b, underlying graph G, and N = NM. In what follows, we
need some notation which is familiar in matching theory
(Lovasz and Plummer [11] is our reference):

By γG(W), we denote all arcs with both end nodes in
W ⊆ V(G). By δG(W), we denote all arcs in E(G) with
exactly one end node in W. Since G is obvious here, we
will omit the subscript.

Partition V(G) = W ' W, W = W1 ' W2 and γ(W) =
E1 'E2. Let A1, A2 denote the images of the arc sets E1,
E2 under the construction of NM.

Using this notation, the inequalities (p4a)–(p4e) be-
come

(m4a) degx(W) + x(δ(W)) ≤ c(δ(W)) + b(W) − 1
(m4b) degx(W) + x(δ(W)) ≥ a(W) + 1
(m4c) degx(W2) − degx(W1) + x(E2) − x(E1)

≥ a(W2) − b(W1) − c(E1) + 1
(m4d) 2x(γ(W)) + 2x(E1) ≤ b(W) + c(E1) − 1
(m4e) 2x(γ(W)) ≤ b(W) − 1.

Note that W is nontrivial if G(M)[W] is connected and
contains an odd-length cycle. The subgraph G(M)[V(M)\
W] may be bipartite! The explicit translation of the re-
spective odd sets for (m4a)–(m4e) is left to the reader.

Lemma 31.6. Let M be a subgraph network and N =
NM. All the constraints (p4a)–(p4e) with t ∈ U are si-
multaneously redundant.

Proof: In the case of (p4a)–(p4c), we can exchange U
with U, and A1 with A′

1 to obtain an equivalent inequal-
ity. The constraints (p4e) specialize the constraints (p4d)
which are discussed in what follows:

Let V(M) = W'W, U := W'W′, U = W'W
′'{s, t},

and A1 ⊆ [W, W
′]. Note that f(W′, W) = cap(W′, W) =

0. The reader may check that

ζ(W, A1) = b(W) + c(E1) = ζ(W ' {t}, A′
1).

The comb inequality formulated for (W, A1) is

f(W, W′) + 2f(A1) ≤ b(W) + c(E1) − 1. (1)

Adding the flow-conservation equalities for the nodes in
W and W yields

f(W, W
′) = f(s, W) − f(W, W′) ≥ a(W) − f(W, W′), (2)

and, respectively, f(W, W′) = f(s, W) − f(W, W
′), and,

hence,

f(W, W′) = f(W, W
′) − f(s, W) + f(s, W). (3)

If we apply Eqs. (3), f(ts) = f(s, W) + f(s, W), f(A1) =
f(A′

1), and the inequality f(s, W) ≤ b(W), we obtain

f(W, W
′) + f(ts) + 2f(A′

1)
(4)

≤ 2b(W) + b(W) + c(E1) − 1,

which is the redundant (!) comb inequality formulated
for (W ' {t}, A′

1). !

It follows that (p4b) and (m4b), (p4c) and (m4c), (p4d)
and (m4d), as well as (p4e) and (m4e) are equivalent.

If we let W2 = ∅ and replace degx(W) = 2x(γ(W)) +
x(δ(W)), we obtain the constraints (m4d) as a subset of
(m4c). On the other hand, we observe that the constraints

(m4f) degx(W) + x(E2) − x(E1) ≥ a(W) − c(E1) + 1

can be obtained from (m4c) by letting W1 = ∅.
We show by an example that a fractional factor may

be separated by the constraints (m4f) where the con-
straints (m4d) fail. This example eventually shows that
(p4d) is less restrictive than is (p4c):

Let M be defined on the complete graph with node
set {1, 2, 3, 4}. Let c ≡ 1, b(1) = b(3) = b(4) = a(2) =
a(3) = a(4) = 2, b(2) = 3 and a(1) = 1. With small
effort, the reader may check that the fractional factor
x12 = x23 = x13 = 1

2 , x24 = x34 = 1, x14 = 0 is not a
linear combination of (integral) factors.

This solution is separated by the inequality degx(V) ≥
a(V)+1 = 8 which is among (m4f). A careful inspection
would show that all odd-comb constraints are satisfied.
The details are left to the reader.

With a slight modification of this example, one can
show that (m4f) is also less restrictive than is (m4c): Put
c(e12) := 2 and x(e12) := 3

2 . This fractional factor is
separated by the blossom inequality degx(V) ≤ b(V) −
1 = 8. On the other hand, (m4f) is satisfied.

212 NETWORKS–2001



Theorem 31.7. Let M be a subgraph network with de-
gree sequences a ≡ b, b(V) even and N = NM. Then,
the inequalities (m4b) and (m4e) are equivalent and the
inequalities (m4f) and (m4d) are equivalent.

Proof: Let V(M) = W"W, U = W"W′, U = W"W
′ "

{s, t}, and A1 ⊆ [W, W
′]. We have

lower(U, U) = a(W) ≡ b(W) = θ(W) mod 2,
scap(A1, A2) = a(W) − c(E1) ≡ c(E1) + b(W) = ζ(W, A1) mod 2.

Hence, W ∈ Oblossom(N) if and only if W ∈ Lcut(N), and
(W, A1) ∈ Ocomb(N) if and only if (A1, A2) ∈ Oskew(N).
By Eq. (2), we obtain

f(U, U
′) = f(W′, t) + f(W, W

′) = 2a(W) − f(W, W′) (5)

and, hence,

f(U, U
′) ≥ a(W) + 1 (p4b)

⇐⇒ f(W, W′) ≤ b(W) − 1 (p4e)

and

f(U, U
′) − 2f(A1) ≥ a(W) − c(E1) + 1 (p4c)

⇐⇒ f(W, W′) + 2f(A1) ≤ a(W) + c(E1) − 1. (p4d)

!

By the main theorem, it will turn out that the inequalities
(m4f) and (m4c) are likewise equivalent.

32. MATCHING POLYTOPES

As a preparation for the general setting, we derive
complete characterizations of b-matching problems. The
polyhedral results are well known ([2, 12]), but worth a
second reading from this perspective.

First, let M be an instance of the perfect b-matching
problem. The perfect b-matching polytope P(G, b) is
defined by the constraints

(m1a) x(e) ≥ 0 for e ∈ E(M),
(m3) x(δ(v)) = b(v) for v ∈ V(M),
(m4b) x(δ(W)) ≥ 1 for W ∈ Ocut(M),

where

Ocut(M) := {W ⊆ V(M) : W nontrivial, b(W) odd}.

By Lemma 31.6 and Theorem 31.7, it is evident that a
vertex of P(G, b) corresponds to a vertex of the polytope
which is defined by the constraints (p1a), (p1b), (p2),
(p3), and (p4b).

Theorem 32.1. Let M be an instance of the perfect b-
matching problem with a nonintegral vertex x in P(NM).
Let M be chosen with |V(M)| + |E(M)| minimum. Then,
no cut constraint (m4b) is tight at x.

Proof: Let V(M) = W"W, U = W"W′, U = W"W
′ "

{s, t}, and f be the flow on NM corresponding to x, and
assume that f(U, U) = lower(U, U) + 1 is even. By Eq.
(5), we have that f(W, W′) and f(W, W

′) are also even.

We contract the node sets W, W′ to nodes w and
w′ as follows: Identify the nodes W ∼ w and put
a(w), b(w) := a(W) − f(W, W′) for the new node w. All
arcs with both end nodes in W are deleted, whereas the
other arcs incident with W may be present as parallel
arcs in the resulting instance M1. We consider the flow
f1 on N1 = NM1 defined by

f1(sw) = f(s, W) − f(W, W′),
f1(w′t) = f(W′, t) − f(W, W′),

f1(ts) = f(ts) − f(W, W′),

and f1(a) = f(a) for the other arcs of N1 = NM1 . We
contract W likewise to obtain the subgraph network M2,
the balanced-flow network N2 = NM2 , and a respective
flow f2. Since U is nontrivial, the instance size strictly
decreases for M1 and M2.

Observe that the odd cuts in M1 and M2 correspond
to odd cuts in the original subgraph network M. Hence,
f1 is feasible for P(M1) and f2 is feasible for P(M2).
By the minimality of M, we may write

f1 =
r

∑

i=1
µigi,

r
∑

i=1
µi = 1, µi > 0,

f2 =
s

∑

i=1
νihi,

s
∑

i=1
νi = 1, νi > 0,

where g1, g2, . . . , gr are balanced circulations on N1 and
h1, h2, . . . , hs are balanced circulations on N2. Note that
f, f1, f2, and all of the coefficients are rational and
choose a common denominator M. We can rewrite

Mf1 =
M

∑

i=1
g̃i, Mf2 =

M
∑

i=1
h̃i,

where the g̃i’s, h̃i’s are the gi’s, hi’s with possible repe-
titions. Furthermore,

f(U, U) = lower(U, U) + 1

implies that

g̃i(U, U) = lower(U, U) + 1,

h̃i(U, U) = lower(U, U) + 1,

that is, for a given i, there is a unique arc ai with g̃i(ai) =
lower(ai) + 1 and g̃i(a) = lower(a) for the other arcs
a ∈ [U, U]. Since f1 ≡ f2 on the arcs in [U, U], we
can reorder the h̃i’s so that h̃i(ai) = lower(ai) + 1 and
h̃i(a) = lower(a) for the other arcs a ∈ [U, U]. We obtain

f(a) =

{

f1(a), if a ∈ N[U]
f2(a), if a /∈ N[U]

}

=
1
M



















M
∑

i=1
g̃i(a), a ∈ N[U]

M
∑

i=1
h̃i(a), a /∈ N[U]



















=
1
M

M
∑

i=1
f̃i(a),
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where
f̃i(a) =

{

g̃i(a), if a ∈ N[U]
h̃i(a), if a /∈ N[U]

}

.

By the reordering of the h̃i’s, the fi’s satisfy the flow-
conservation equalities and, hence, are balanced circu-
lations on the network N. By Corollary 0, the blossom
inequalities are satisfied so that f̃i ∈ P(N), the final con-
tradiction. !

This “gluing” technique is due to Schrijver [13]. We now
merely need evidence that a tight cut constraint exists.
The argument given in Schrijver [13] can be replaced by
some separation rule for pseudobasic solutions.

Corollary 32.2. The vertices of the perfect b-matching
polytope P(G, b) are integral.

Proof: Let M be an instance for the perfect b-matching
problem with graph G and degree sequence b. Suppose
that x is a nonintegral vertex of the polytope P(G, b)
and that there is no smaller instance with nonintegral
vertices. Let f be the flow on NM corresponding to x.

Then, by Theorem 32.1 and Lemma 31.6, no cut in-
equality and no blossom inequality is tight. As in the
proof of Theorem 27.1 in [8], it turns out that f is pseu-
dobasic. By Corollary 27.7 in [8], f has at least two odd
cycles which obviously do not traverse the nodes s, t.

Let Q be an arbitrary odd cycle Q. Let W ⊆ V(M) be
the set of nodes which can be reached from Q by free
arcs. Note that W does not meet an odd cycle other than
Q, since, otherwise, f would not be pseudobasic.

Denote W = V(M) \ W. Since the nodes in W′ can
also be reached from Q by free arcs, and since f(uv′) <
cap(uv′) = ∞ for all u ∈ W, v ∈ W, we have that
f(W, W

′) = 0. But, then, f(W, W′) = b(W) is odd. Since
W is met by an odd cycle other than Q, W is nontrivial
and f violates the corresponding blossom inequality, a
contradiction. !

Next, let M be an instance of the perfect c-capacitated
b-matching problem. The perfect c-capacitated b-
matching polytope P(G, b, c) is defined by the con-
straints
(m1a) x(e) ≥ 0 for e ∈ E(M),
(m1b) x(e) ≤ c(e) for e ∈ E(M),
(m3) x(δ(v)) = b(v) for v ∈ V(M),
(m4d) x(δ(W)) + c(E1) − 2x(E1) ≥ 1 for (W, E1) ∈ Ocomb(M),

where

Ocomb(M) := {(W, E1) : W nontrivial,
E1 ⊆ δ(W), b(W) + c(E1) odd}.

Again, it is evident that the bijection from the fractional
matchings of M onto the fractional balanced circulations
on NM maps P(G, b, c) to the polytope, which is defined
by the constraints (p1a), (p1b), (p2), (p3), and (p4d).

Theorem 32.3. The vertices of the perfect c-capacitated
b-matching polytope P(G, b, c) are integral.

Proof: Construct an instance M̃ of the perfect b-matching
problem as follows: Replace every edge e = {u, v} ∈
E(M) by the three edges e1 = {v0

e , v1
e}, e2 = {v1

e , v2
e},

e3 = {v2
e , v3

e}, where v0
e := u, v3

e := v, and v1
e , v2

e are new
nodes with b(v1

e ), b(v2
e ) := c(e). A factor y of M̃ turns

into a factor x of M if we put x(e) := y(e1).
To see this, note that y(e1) = c(e)−y(e2) = y(e3) holds

for every fractional factor y of M̃. Hence, the transfor-
mation of the factors is affine and bijective and preserves
the polyhedral geometry. We merely need to translate the
odd set constraints from M̃ to M.

Let W̃ ⊆ V(M̃) so that b(W̃) is odd. Denote W :=
W̃ ∩ V(M),

E1 := {e ∈ E(M) : e2 ∈ δ(W̃), e1, e3 /∈ δ(W̃)},

and E2 := δ(W) \ E1. Let e ∈ E(M). Note that e ∈ δ(W)
if and only if one of

(a) e2, e1, e3 ∈ δ(W̃), (b) e2 ∈ δ(W̃), e1, e3 /∈ δ(W̃),
(c) e3 ∈ δ(W̃), e1, e2 /∈ δ(W̃), (d) e1 ∈ δ(W̃), e2, e3 /∈ δ(W̃)

is true, and e /∈ δ(W) if and only if one of
(e) e2, e1, e3 /∈ δ(W̃), (f) e2 /∈ δ(W̃), e1, e3 ∈ δ(W̃),
(g) e3 /∈ δ(W̃), e1, e2 ∈ δ(W̃), (h) e1 /∈ δ(W̃), e2, e3 ∈ δ(W̃)

is true. If (a), (g), or (h) is true, then x̃(δ(W̃)) ≥ c(e) ≥
1 holds for any fractional b-matching of M̃. If (d) is
true, we put W̃ := W̃ ⊕ {v1

e , v2
e} to obtain an equivalent

constraint which satisfies (c). If (f) is true, then W̃ := W̃⊕
{v1

e , v2
e} decreases x̃(δ(W̃)). In all these cases, W̃ would be

redundant. Hence, we can assume (b), (c), or (e) for every
arc e ∈ δ(W). Then, (m4b) is equivalent with

1 ≤ x̃(δ(W̃)) =
∑

e∈E1

x̃(e2) +
∑

e∈E2

x̃(e3) = x(E2) + c(E1) − x(E1)

and
b(W̃) = b(W) + 2c(E2) + c(E1) ≡ b(W) + c(E1)
mod 2. !

33. PROBLEM EQUIVALENCE

So far, we utilized the reduction of matching problems to
balanced network-flow problems. We point out a reduc-
tion mechanism which works in the opposite direction
and which is similar to the reduction of bidirected flows
([2, 1]):

If N is nonbipartite, we must specify a partition
V(N) = Inner(N) + Outer(N) so that Outer(N)′ =
Inner(N). In that case, the shown reduction is not unique!

For every node v ∈ Inner(N), we put

cap+(v) :=
∑

a+=v

cap(a),

cap−(v) :=
∑

a−=v
cap(a),

lower+(v) :=
∑

a+=v

lower(a),
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lower−(v) :=
∑

a−=v
lower(a),

cap(v) := cap+(v) + cap−(v).

Construct an instance M(N) of the capacitated b-
matching problem as follows: A node pair v ∈ Inner(N),
v′ ∈ Outer(N) is mapped to a pair of nodes v+, v− which
are joined by an arc ev.

A complementary arc pair a = uv′, a′ = vu′ is mapped
to a single edge ea. This edge is incident with u− [v−]
if and only if u ∈ Inner(N) [v ∈ Inner(N)] and with
u+ [v+] otherwise. For certain integers K(v) ≥ cap(v),
assign

b(v+) := K(v) − lower+(v),

b(v−) := K(v) − lower−(v),

c(ev) := ∞,

c(ea) := cap(a) − lower(a).

Actually, we chose K(v) so that b(v−) becomes an even
number.

If we let Inner(N) = {u, v} in the introductory exam-
ple, Figure 2 depicts the graph for the resulting capaci-
tated matching problem. The reader is asked to compute
the c-labels and the b-labels.

A flow f on the flow network N and a matching x of
the subgraph network M(N) can be transformed by

f(a), f(a′) := x(ea) + lower(a) (6)

and

x(ea) := f(a) − lower(a), (7)

x(ev) := K(v) −
∑

a+=v

f(a), (8)

respectively.

Lemma 33.1.

(a) By Eq. (6), a ( fractional) factor of M(N) is mapped
to a (fractional) balanced circulation on N.

(b) By Eqs. (7) and (8), a ( fractional) balanced circula-
tion on N is mapped to a (fractional) factor of M(N).

(c) Both mappings are affine, bijective, and inverse to
each other.

Proof: Let x be a fractional factor of M(N), v ∈
Inner(N), and f, the fractional balanced flow obtained

FIG. 2. A reduced matching problem.

by Eq. (6). Observe that
∑

a+=v

f(a) =
∑

ea∈δ(v+)

{x(ea) + lower(a)}

= b(v+) − x(ev) + lower+(v)

= K(v) − x(ev) = b(v−) − x(ev) + lower−(v)

=
∑

ea∈δ(v−)
{x(ea) + lower(a)} =

∑

a−=v
f(a). (9)

Due to the symmetry in f, this shows the flow-
conservation property not only for the inner nodes, but
also for the outer nodes of N. This is Assertion (a).

Equation (8) also shows that f is mapped to x by (7)
and (8) again. Hence, the mapping of Assertion (a) is
injective. To see Assertion (b) and the surjectivity, one
checks that

x(ev) +
∑

ea∈δ(v+)

ea = b(v+)

and
x(ev) +

∑

ea∈δ(v−)
ea = b(v−),

which is essentially Eq. (8). !

Letting c(ev) := ∞ is not precise if we want to compare
the asymptotic complexities of the original problem and
the transformed problem. If we put c(ev) := K(v), it turns
out that the number of nodes, the number of arcs, and
the total sum of capacities increase by a constant factor;
the details are left to the reader.

Hence, from the view of computational complexity,
the problem of finding a (minimum-cost) balanced cir-
culation and the (weighted) perfect b-matching problem
are equivalant in a very strong sense.

Our main interest in this problem reduction is the
specification of a complete system of inequalities for the
(minimum-cost) balanced circulation problem:

Theorem 33.2. The polytope P(N) is the convex hull of
balanced circulations.

Proof: Let f be a fractional balanced circulation on N,
and x, the corresponding fractional factor of M(N). Let
M̃ be the instance of the perfect b-matching problem ob-
tained by the reduction principle of Theorem 32.3. [We
do not replace the edges eu, u ∈ Inner(N) which already
have c(eu) = ∞.]

Let W̃ ⊆ V(M̃) so that b(W̃) is odd. For every node
u ∈ Inner(N), we have

x(eu) = K(u) −
∑

a+=u

f(a) ≥ cap(u) − cap+(u)

= cap−(u) ≥
∑

a−=u
f(a) ≥

∑

a−=u
x(ea).

In the case of eu ∈ δ(W̃), putting W̃ := W̃ ⊕ {u−} can
only decrease y(δ(W̃)). Since b(u−) is even, this does not
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change the parity of b(W̃). If we ignore redundant con-
straints, we can assume that u+ ∈ W̃ if and only if
u− ∈ W̃. Let W, E1, E2 be chosen as in the proof of
Theorem 0. Denote

Ŵ := {v ∈ Outer(N) : v+ ∈ W̃},

U := Ŵ ⊕ Ŵ′,

A1 := {a ∈ A(N) : ea ∈ E1, a− ∈ U},

A2 := {a ∈ A(N) : ea ∈ E2, a− ∈ U}.

The inequality

x(E2) + c(E1) − x(E1) ≥ 1

is equivalent to

f(A2) − lower(A2) + cap(A1) − f(A1) ≥ 1.

We also have

b(W) ≡
∑

v∈Ŵ

{b(v+) − b(v−)}

=
∑

v∈Ŵ

{lower+(v) − lower−(v)}

=
∑

a+∈Ŵ

lower(a) −
∑

a−∈Ŵ

lower(a)

≡
∑

a−∈Ŵ′
lower(a) +

∑

a−∈Ŵ

lower(a)

≡ lower(U, U) mod 2

and

c(E1) = cap(A1) − lower(A1)
≡ cap(A1) + lower(A1) mod 2,

which eventually shows the identity

lower(A2) − cap(A1)
= lower(U, U) − cap(A1) − lower(A1)
≡ b(W) + c(E1) mod 2.

!

All the described mappings between fractional factors
and fractional balanced circulations are bijective and
affine. Hence, vertices are mapped to vertices and facets
are mapped to facets.

Note that all reduction mechanisms are polyno-
mial. The only superlinear step is the reduction of
the c-capacitated b-matching problem to the ordinary
b-matching problem. Hence, a polynomial algorithm
for balanced circulations essentially is a polynomial b-
matching algorithm.

We emphasize that the problem reduction to the ca-
pacitated b-matching problem works even if the capacity
bounds are (partially) negative.

34. DUALITY

Up to this point, our discussion of balanced flows was
strictly primal or, as in Part (IV), concerned combinato-
rial dual problems. To establish primal-dual algorithms
for balanced network-flow problems (which is the stan-
dard approach in matching theory), the explicit specifi-
cation of an LP-dual is crucial. We start with the primal
problem (LP) in the most natural (but somewhat redun-
dant) description:

minimize
∑

a∈A(N)

c(a)f(a)

subject to

(p1a) f(a) ≥ lower(a) ∀ a ∈ A(N)
(p1b) f(a) ≤ cap(a) ∀ a ∈ A(N)
(p2) f(a) = f(a′) ∀ a ∈ A(N)
(p3) e(v) = 0 ∀ v ∈ V(N)
(p4) f(A2) − f(A1) ≥ scap(A1, A2) + 1 ∀ (A1, A2) ∈ O(N).

The dual of this linear program formally is the following
problem (DLP):

maximize
∑

a∈A(N)
{lower(a)α(a) − cap(a)β(a)}

+
∑

(A1 ,A2)∈O(N)
{scap(A1, A2) + 1}φ(A1, A2)

subject to

(d1) α(a) − β(a) + ψ(a) − ψ(a′) + π(a+) − π(a−)
−

∑

(A1 ,A2)∈O(N) χA1 ,A2 (a) φ(A1, A2) = c(a) ∀ a ∈ A(N)

α ≥ 0, β ≥ 0, φ ≥ 0.

Here, χA1,A2 is the incidence vector of the skew cut
(A1, A2). It is defined as χA1,A2 := +1 for a ∈ A1,
χA1,A2 := −1 for a ∈ A2, and χA1,A2 := 0 for the noncut
arcs.

In terms of these two linear programming problems,
one has the following complementary slackness optimal-
ity conditions:

(cs1a) α(a){f(a) − lower(a)} = 0
(cs1b) β(a){cap(a) − f(a)} = 0
(cs2) φ(A1, A2){f(A2) − f(A1) − scap(A1, A2) − 1} = 0.

This description of the dual is still a little bit clumsy. But
observe that an arbitrary dual solution ∆ = (α, β, ψ, π, φ)
can be symmetrized as follows:

α̇(a) :=
1
2

{α(a) + α(a′)},

β̇(a) :=
1
2

{β(a) + β(a′)},

ψ̇(a) := 0,

π̇(v) :=
1
2

{π(v) − π(v′)},

φ̇(A1, A2) :=
1
2

{φ(A1, A2) + φ(A′
1, A′

2)}.
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It is easy to see that ∆ and ∆̇ = (α̇, β̇, ψ̇, π̇, φ̇) have
equal value and that the symmetrized solution satisfies
the nonnegativity requirements for α̇, β̇, φ̇. To see that
the constraint (d1) holds for ∆̇ and some a ∈ A(N), one
merely has to consider the sum of (d1) for the arcs a and
a′ regarding ∆.

Hence, one can add to (DLP) the constraint ψ ≡ 0
and introduce symmetry constraints to the dual program.
These modifications do not change the optimal objective
value.

Theorem 34.1. In the polyhedral description of P(N),
all the symmetry constraints (p2) are simultaneously re-
dundant.

Proof: Omit the constraints (p2) and choose a vertex ḟ
of the resulting polytope. We can choose a cost function
c so that ḟ is the unique optimum for the respective
problem (LP*).

Choose a optimum solution ∆ for the dual (DLP) of
the original problem. Symmetrize ∆ to obtain an opti-
mum ∆̇ for the dual of the modified problem (LP*). Let
f be an integral optimum of (LP) including the symmetry
constraints.

It turns out that f, ḟ, ∆, and ∆̇ have equal objective
values. This implies that f is an optimum for (LP*) and,
hence, f = ḟ. !

It is convenient to have some notion of reduced cost la-
bels. In accordance with [10], we call

c
φ
π (a) := c(a) + π(a−) − π(a+)

+
∑

(A1,A2)∈O(N) χA1,A2 (a) φ(A1, A2)

the modified cost of the arc a. Note that the modified
cost labels are the reduced cost labels known from linear
programming. The reduced cost labels known from or-
dinary network-flow problems (which coincide with the
reduced cost labels for the respective LP formulations)
are obtained from the modified cost labels by putting
φ :≡ 0.

If π and φ are symmetric, the modified-cost labels
are balanced. Even more, in optimum solutions, α and β
are also symmetric. The result is the following program
(DLP2):

maximize
∑

a∈A(N)
{lower(a)α(a) − cap(a)β(a)}

+
∑

(A1 ,A2)∈O(N)
{scap(A1, A2) + 1}φ(A1, A2)

subject to

(d1) α(a) − β(a) = c
φ
π (a) ∀ a ∈ A(N)

(d2) π(v) = −π(v′) ∀ v ∈ V(N)
(d3) φ(A1, A2) = φ(A′

1, A′
2) ∀ (A1, A2) ∈ O(N)

α ≥ 0, β ≥ 0, φ ≥ 0.

Note that this problem is not really an LP-dual of (LP),
but rather a combinatorial dual problem. By the new
symmetry constraints, the modified-cost labels are again
(fractional) balanced. Throughout the later discussion of
algorithms, we only consider dual solutions which are
fractional balanced or even half-integral balanced.

We can extend the definition of reduced and modified-
cost labels to backward arcs by putting c

φ
π (a) := −c

φ
π (a)

and then obtain the following optimality statement:

Theorem 34.2. Let f be a balanced circulation on a bal-
anced flow network N, and c, an arc cost function. Then,
the following statements are equivalent:

(a) f is optimal.
(b) N(f) does not admit a valid cycle of negative length.
(c) There are vectors π and φ ≥ 0 so that

(cs1) c
φ
π (a) ≥ 0, if rescapf(a) > 0,

(cs2) φ(A1, A2) = 0, if (A1, A2) ∈ O(N) is not tight.

Proof: The equivalence of (a) and (b) is Theorem 7.1 in
[4]. The equivalence of (a) and (c) is a mere reformulation
of the slackness conditions (cs1a), (cs1b), and (cs2). !

For algorithmic purposes, one would like more explicit
dual solutions in (c) where only a small number of φ’s
are strictly positive. In the traditional setting, one would
introduce shrinking families at this point.

An exhaustive discussion of shrinking families will
come up with a primal-dual algorithm for the minimum-
cost balanced st-flow problem. This is, in fact, the next
milestone in our investigation of balanced network flows
[9].
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