
Digital Object Identifier (DOI) 10.1007/s10107-004-0505-z

Math. Program., Ser. A 100: 537–568 (2004)

Andrew V. Goldberg · Alexander V. Karzanov

Maximum skew-symmetric flows and matchings

Received: May 14, 1999 / Accepted: January 4, 2004
Published online: March 10, 2004 – © Springer-Verlag 2004

Abstract. The maximum integer skew-symmetric flow problem (MSFP) generalizes both the maximum flow
and maximum matching problems. It was introduced by Tutte [28] in terms of self-conjugate flows in antisym-
metrical digraphs. He showed that for these objects there are natural analogs of classical theoretical results on
usual network flows, such as the flow decomposition, augmenting path, and max-flow min-cut theorems. We
give unified and shorter proofs for those theoretical results.

We then extend to MSFP the shortest augmenting path method of Edmonds and Karp [7] and the blocking
flow method of Dinits [4], obtaining algorithms with similar time bounds in general case. Moreover, in the
cases of unit arc capacities and unit “node capacities” our blocking skew-symmetric flow algorithm has time
bounds similar to those established in [8, 21] for Dinits’ algorithm. In particular, this implies an algorithm
for finding a maximum matching in a nonbipartite graph in O(

√
nm) time, which matches the time bound

for the algorithm of Micali and Vazirani [25]. Finally, extending a clique compression technique of Feder and
Motwani [9] to particular skew-symmetric graphs, we speed up the implied maximum matching algorithm to
run in O(

√
nm log(n2/m)/ log n) time, improving the best known bound for dense nonbipartite graphs.

Also other theoretical and algorithmic results on skew-symmetric flows and their applications are
presented.

Key words. skew-symmetric graph – network flow - matching – b-matching

1. Introduction

By a skew-symmetric flow we mean a flow in a skew-symmetric directed graph which
takes equal values on any pair of “skew-symmetric” arcs. This is a synonym of Tutte’s
self-conjugate flow in an antisymmetrical digraph [28]. This paper is devoted to the max-
imum integer skew-symmetric flow problem, or, briefly, the maximum IS-flow problem.
We study combinatorial properties of this problem and develop fast algorithms for it.

A well-known fact [10] is that the bipartite matching problem can be viewed as a
special case of the maximum flow problem. The combinatorial structure of nonbipartite
matchings revealed by Edmonds [5] involves blossoms and is more complicated than
the structure of flows. This phenomenon explains, to some extent, why general match-
ing algorithms are typically more intricate relative to flow algorithms. The maximum
IS-flow problem is a generalization of both the maximum flow and maximum matching
(or b-matching) problems. Moreover, this generalization appears to be well-grounded
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for two reasons. First, the basic combinatorial and linear programming theorems for
usual flows have natural counterparts for IS-flows. Second, when solving problems on
IS-flows, one can use intuition, ideas and technical tools well-understood for usual flows,
so that the implied algorithms for matchings become more comprehensible.

As the maximum flow problem is related to certain path problems, the maximum IS-
flow problem is related to certain problems on so-called regular paths in skew-symmetric
graphs. We use some theoretical and algorithmic results on the regular reachability and
shortest regular path problems from [16].

Tutte [28] originated a mini-theory of IS-flows (in our terms) to bridge theoreti-
cal results on matchings and their generalizations (b-factors, b-matchings, degree-con-
strained subgraphs, Gallai’s track packings, and etc.) and results on usual flows. This
theory parallels Ford and Fulkerson’s flow theory [10] and includes as basic results the
decomposition, augmenting path, and max-flow min-cut theorems. Subsequently, some
of those results were re-examined in different, but equivalent, terms by other authors,
e.g., in [3, 15, 22].

Recall that the flow decomposition theorem says that a flow can be decomposed into
a collection of source-to-sink paths and cycles. The augmenting path theorem says that
a flow is maximum if and only if it admits no augmenting path. The max-flow min-cut
theorem says that the maximum flow value is equal to the minimum cut capacity. Their
skew-symmetric analogs are, respectively, that an IS-flow can be decomposed into a
collection of pairs of symmetric source-to-sink paths and pairs of symmetric cycles, that
an IS-flow is maximum if and only if it admits no regular augmenting path, and that the
maximum IS-flow value is equal to the minimum odd-barrier capacity. We give unified
and shorter proofs for these skew-symmetric flow theorems.

There is a relationship between skew-symmetric flows and bidirected flows intro-
duced by Edmonds and Johnson [6] in their combinatorial study of a natural class of
integer linear programs generalizing usual flow and matching problems. In particular,
they established a linear programming description for integer bidirected flows. We fin-
ish the theoretical part by showing how to obtain a linear programming description for
maximum IS-flows directly, using the max-IS-flow min-barrier theorem.

The second, larger, part of this paper is devoted to efficient methods to solve the
maximum IS-flow problem (briefly, MSFP) in general and special cases, based on the
theoretical ground given in the first part. First of all we explain how to adapt the idea of
Anstee’s elegant methods [1, 2] for b-matchings in which standard flow algorithms are
used to construct an optimal half-integer solution and then, after rounding, the “good
pre-solution” is transformed into an optimal b-matching by solving O(n) certain path
problems. We devise an O(M(n, m) + nm)-time algorithm for MSFP in a similar fash-
ion, using a regular reachability algorithm with linear complexity to improve a good
pre-solution. Hereinafter n and m denote the numbers of nodes and arcs of the input
graph, respectively, and M(n, m) is the time needed to find an integer maximum flow
in a usual network with n nodes and m arcs. Without loss of generality, we assume
n = O(m).

The next approach is the core of this paper. The purpose is to extend to MSFP the
well-known shortest augmenting path algorithm of Edmonds and Karp [7] with com-
plexity O(nm2), and its improved version, the blocking flow algorithm of Dinits [4] with
complexity O(n2m), so as to preserve the complexity bounds. Recall that the blocking
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flow algorithm consists of O(n) phases, each finding a blocking flow in a layered network
representing the union of currently shortest augmenting paths. We introduce concepts
of shortest blocking and totally blocking IS-flows and show that an optimal solution
to MSFP is also constructed in O(n) phases, each finding a shortest blocking IS-flow
in the residual skew-symmetric network. In its turn a phase is reduced to finding a
totally blocking IS-flow in an acyclic (though not necessarily layered) skew-symmetric
network.

The crucial point is to perform the latter task in time comparable with the phase
time in Dinits’ algorithm (which is O(nm) in general case). We reduce it to a certain
auxiliary problem in a usual acyclic digraph. A fast algorithm for this problem provides
the desired time bound for a phase.

The complexity of our blocking IS-flow algorithm remains comparable with that of
Dinits’ algorithm in important special cases where both the number of phases and the
phase time significantly decrease. More precisely, Dinits’ algorithm applied to the max-
imum matching problem in a bipartite graph runs in O(

√
nm) time [18, 20]. Extending

that result, it was shown in [8, 21] that for arbitrary nonnegative integer capacities, Din-
its’ algorithm has O(min{n,

√
!}) phases and each phase runs in O(min{nm, m +!})

time, where! is the sum of transit capacities of inner nodes. Here the transit capacity of
a node (briefly, the node capacity) is the maximum flow value that can be pushed through
this node. We show that both bounds remain valid for the blocking IS-flow algorithm.

When the network has unit arc capacities (resp. unit inner node capacities), the num-
ber of phases turns into O(

√
m) (resp. O(

√
n)); in both cases the phase time turns into

O(m). The crucial auxiliary problem (that we are able to solve in linear time for unit arc
capacities) becomes the following maximal balanced path-set problem:

MBP: Given an acyclic digraph in which one sink and an even set of sources partitioned
into pairs are distinguished, find an (inclusion-wise) maximal set of pairwise
arc-disjoint paths from sources to the sink such that for each pair {z, z′} of
sources in the partition, the number of paths from z is equal to that from z′.

As a consequence, the implied algorithm solves the maximum matching problem in a
general graph in the same time, O(

√
nm), as the algorithm of Micali andVazirani [25, 29]

(cf. [3, 14]) and solves the b-factor or maximum degree-constrained subgraph problem
in O(m3/2) time, similarly to Gabow [12]. The logical structure of our algorithm differs
from that of [25] and sophisticated data structures (incremental trees for set union [13])
are used only in the regular reachability and shortest regular path algorithms of linear
complexity from [16] (applied as black-box subroutines) and once in the algorithm for
MBP.

Finally, we show that a clique compression technique of Feder and Motwani [9]
can be extended to certain skew-symmetric graphs. As a result, our maximum matching
algorithm in a general graph is speeded up to run in O(

√
nm log(n2/m)/ log n) time.

This matches the best bound for bipartite matching [9].
Fremuth-Paeger and Jungnickel [11] developed an algorithm for MSFP (stated

in terms of “balanced flows”) which combines Dinits’ approach with ideas and tools
from [25, 29]; it runs in O(nm2) time for general capacities and in time slightly slower
than O(

√
nm) in the nonbipartite matching case.
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This paper is organized as follows. Basic definitions and facts are given in Section 2.
Sections 3 and 4 contain theoretical results on combinatorial and linear programming
aspects of IS-flows, respectively. Section 5 describes Anstee’s type algorithm for MSFP.
The shortest regular augmenting path algorithm and a high level description of the block-
ing IS-flow method are developed in Section 6. Section 7 gives a short review on facts
and algorithms in [16] for regular path problems. Using it, Section 8 explains the idea of
implementation of a phase in the blocking IS-flow method. It also bounds the number
of phases for special skew-symmetric networks. Section 9 completes the description of
the blocking IS-flow algorithm by reducing the problem of finding a totally blocking
IS-flow in an acyclic skew-symmetric network to the above-mentioned auxiliary prob-
lem in a usual acyclic digraph and devising a fast procedure to solve the latter. The
concluding Section 10 discusses implications for matchings and their generalizations,
and explains how to speed up the implied maximum matching algorithm by use of the
clique compression.

This paper is self-contained up to several quotations from [16]. Main results presented
in this paper were announced in extended abstract [15]. (In particular, the bound
O(
√

nm log(n2/m)/ log n) for nonbipartite matching was claimed there.) Subsequently,
the authors found a flaw in the original fast implementation of a phase in the blocking
IS-flow method. It was corrected in a revised version of this paper (circulated in 2001)
where problem MBP and its weighted analog were introduced and efficiently solved,
whereas the original version (identical to preprint [17]) embraced only the content of
Sections 3–8.

2. Preliminaries

By a skew-symmetric graph we mean a digraph G = (V , E) with a mapping (involution)
σ of V ∪ E onto itself such that: (i) for each x ∈ V ∪ E, σ (x) %= x and σ (σ (x)) = x;
(ii) for each v ∈ V , σ (v) ∈ V ; and (iii) for each a = (v, w) ∈ E, σ (a) = (σ (w), σ (v)).
Although parallel arcs are allowed in G, an arc leaving a node x and entering a node
y is denoted by (x, y) when it is not confusing. We assume that σ is fixed (when there
are several such mappings) and explicitly included in the description of G. The node
(arc) σ (x) is called symmetric to a node (arc) x (using, for brevity, the term symmetric
rather than skew-symmetric). Symmetric objects are also called mates, and we usually
use notation with primes for mates: x′ denotes the mate σ (x) of an element x. Note that
G can contain an arc a from a node v to its mate v′; then a′ is also an arc from v to v′.

Unless mentioned otherwise, when talking about paths (cycles), we mean directed
paths (cycles). The symmetry σ is extended in a natural way to paths, subgraphs, and
other objects in G; e.g., two paths (cycles) are symmetric if the elements of one of them
are symmetric to those of the other and go in the reverse order. Note that G cannot
contain self-symmetric paths or cycles. Indeed, if P = (x0, a1, x1, . . . , ak, xk) is such
a path (cycle), choose arcs ai and aj such that i ≤ j , aj = σ (ai) and j − i is mini-
mum. Then j > i + 1 (as j = i would imply σ (ai) = ai and j = i + 1 would imply
σ (xi) = xj−1 = xi). Now σ (ai+1) = aj−1 contradicts the minimality of j − i.

We call a function h on E symmetric if h(a) = h(a′) for all a ∈ E.
A skew-symmetric network is a quadruple N = (G, σ, u, s) consisting of a skew-

symmetric graph G = (V , E) with symmetryσ , a nonnegative integer-valued symmetric
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function u (of arc capacities) on E, and a source s ∈ V . The mate s′ of s is the sink of
N . A flow in N is a function f : E → R+ satisfying the capacity constraints

f (a) ≤ u(a) for all a ∈ E

and the conservation constraints

divf (x) :=
∑

(x,y)∈E

f (x, y)−
∑

(y,x)∈E

f (y, x) = 0 for all x ∈ V − {s, s′}.

The value divf (s) is called the value of f and denoted by |f |; we usually assume that
|f | ≥ 0. Now IS-flow abbreviates integer symmetric flow, the main object that we study
in this paper. The maximum IS-flow problem (MSFP) is to find an IS-flow of maximum
value in N .

The integrality requirement is important: if we do not require f to be integral, then
for any integer flow f in N , the flow f ′, defined by f ′(a) := (f (a) + f (a′))/2 for
a ∈ E, is a flow of the same value as f , which is symmetric but not necessarily integral.
Therefore, the fractional skew-symmetric flow problem is equivalent to the ordinary
flow problem.

Note that, given a digraph D = (V (D), A(D)) with two specified nodes p and q and
nonnegative integer capacities of the arcs, we can construct a skew-symmetric graph G

by taking a disjoint copy D′ of D with all arcs reversed, adding two extra nodes s and s′,
and adding four arcs (s, p), (s, q ′), (q, s′), (p′, s′) of infinite capacity, where p′, q ′ are
the copies of p, q in D′, respectively. Then there is a natural one-to-one correspondence
between integer flows from p to q in D and the IS-flows from s to s′ in G. This shows
that MSFP generalizes the classical (integer) max-flow problem.

Remark. Sometimes it is useful to consider a sharper version of MSFP in which double-
sided capacity constraints #(a) ≤ f (a) ≤ u(a), a ∈ E, are imposed, where #, u : E →
Z+ and # ≤ u (problem DMSFP). Similarly to the max-flow problem with upper and
lower capacities [10], DMSFP is reduced to MSFP in the skew-symmetric network N ′

obtained from N by subdividing each arc a = (x, y) into three arcs (x, v), (v, w), (w, y)

with (upper) capacities u(a), u(a)−#(a), u(a), respectively, and adding extra arcs (s, w)

and (v, s′) with capacity #(a) each. It is not difficult to show (e.g., using Theorem 3.5)
that DMSFP has a solution if and only if all extra arcs are saturated by a maximum
IS-flow f ′ for N ′, and in this case f ′ induces a maximum IS-flow for N in a natural
way. For details, see [11].

In our study of IS-flows we rely on results for regular paths in skew-symmetric
graphs. A regular path, or an r-path, is a path in G that does not contain a pair of sym-
metric arcs. Similarly, an r-cycle is a cycle that does not contain a pair of symmetric arcs.
The r-reachability problem (RP) is to find an r-path from s to s′ or a proof that there is
none. Given a symmetric function of arc lengths, the shortest r-path problem (SRP) is
to find a minimum length r-path from s to s′ or a proof that there is none.

A criterion for the existence of a regular s to s′ path is less trivial than that for the
usual path reachability; it involves so-called barriers. We say that

B = (A; X1, . . . , Xk)

is an s-barrier if the following conditions hold.
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Fig. 1. A barrier

(B1) A, X1, . . . , Xk are pairwise disjoint subsets of V , and s ∈ A.
(B2) For A′ = σ (A), A ∩ A′ = ∅.
(B3) For i = 1, . . . , k, Xi is self-symmetric, i.e., σ (Xi) = Xi .
(B4) For i = 1, . . . , k, there is a unique arc, ei , from A to Xi .
(B5) For i, j = 1, . . . , k and i %= j , no arc connects Xi and Xj .
(B6) For M := V − (A ∪ A′ ∪ X1 ∪ . . . ∪ Xk) and i = 1, . . . , k, no arc connects Xi

and M .
(B7) No arc goes from A to A′ ∪M .

(Note that arcs from A′ to A, from Xi to A, and from M to A are possible.) Figure 1
illustrates the definition. Tutte proved the following (see also [3, 16]).

Theorem 2.1. [28] There is an r-path from s to s′ if and only if there is no s-barrier.

This criterion will be used in Section 3 to obtain an analog of the max-flow min-cut
theorem for IS-flows. RP is efficiently solvable.

Theorem 2.2. [3, 16] The r-reachability problem in G can be solved in O(m) time.

The methods for the maximum IS-flow problem that we develop apply, as a sub-
routine, the r-reachability algorithm of linear complexity from [16], which finds either
a regular s to s′ path or an s-barrier. Another ingredient used in our methods is the
shortest r-path algorithm for the case of nonnegative symmetric lengths, which runs in
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O(m log n) time in general, and in O(m) time for all-unit lengths [16]. The necessary
results on RP and SRP are outlined in Section 7.

In the rest of this paper, σ and s will denote the symmetry map and the source,
respectively, regardless of the network in question, which will allow us to use the shorter
notation (G, u) for a network (G, σ, u, s). Given a simple path P , the number of arcs
on P is denoted by |P | and the incidence vector of its arc set in RE is denoted by χP ,
i.e., χP (a) = 1 if a is an arc of P , and 0 otherwise.

2.1. Relationships to matchings

Given an undirected graph G′ = (V ′, E′), a matching is a subset M ⊆ E′ such that no
two edges of M have a common endnode. The maximum matching problem is to find a
matching M whose cardinality |M| is as large as possible.

There are well-known generalizations of matchings; for a survey see [23, 24, 26].
Let u0, u : E′ → Z+ ∪ {∞} and b0, b : V ′ → Z+ be functions such that b0 ≤ b and
u0 ≤ u. A (u0, u)-capacitated (b0, b)-matching is a function h : E′ → Z+ satisfying
the capacity constraints

u0(e) ≤ h(e) ≤ u(e) for all e ∈ E′,

and the supply constraints

b0(v) ≤
∑

e={v,w}∈E′
h(e) ≤ b(v) for all v ∈ V ′.

The value of h is defined to be h(E′). Hereinafter, for a numerical function g on a set
S and a subset S′ ⊆ S, g(S′) denotes

∑
e∈S′ g(e). Popular special cases are: a u-capac-

itated b-matching (when b0 = 0); a degree-constrained subgraph (when u ≡ 1); a
perfect b-matching (when u ≡ ∞ and b0 = b); a b-factor (when u ≡ 1 and b0 = b).
In these cases one assigns u0 = 0. Typically, in unweighted versions, one is asked for
maximizing the value of h (in the former two cases) or for finding a feasible h (in the
latter two cases).

The general maximum (u0, u)-capacitated (b0, b)-matching problem is reduced to
the maximum IS-flow problem (MSFP or DMSFP, depending on whether both u0, b0 are
zero functions or not) without increasing the problem size by more than a constant factor.
The construction of the corresponding capacitated skew-symmetric graph G = (V , E)

is straightforward (and close to that in [28]):

(i) for each v ∈ V ′, V contains two symmetric nodes v1 and v2;
(ii) also V contains two additional symmetric nodes s and s′ (the source and the sink);

(iii) for each e = {v, w} ∈ E′, E contains two symmetric arcs (v1, w2) and (w1, v2)

with lower capacity u0(e) and upper capacity u(e);
(iv) for each v ∈ V ′, E contains two symmetric arcs (s, v1) and (v2, s

′) with lower
capacity b0(v) and upper capacity b(v).

There is a natural one-to-one correspondence between the (u0, u)-capacitated (b0, b)-
matchings h in G′ and the IS-flows f from s to s′ in G, and the value of f is twice the
value of h. Figure 2 illustrates the correspondence for matchings.
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Fig. 2. Reduction example for maximum cardinality matching

In case of the b-factor or degree-constrained subgraph problem, one may assume
that b does not exceed the node degree function of G. Therefore, one can make a further
reduction to MSFP in a network with O(|E′|) nodes, O(|E′|) arcs, and unit arc capac-
ities (by getting rid of lower capacities as in the Remark above and then splitting each
arc a with capacity q(a) > 1 into q(a) parallel arcs of capacity one). In Section 10 we
compare the time bounds of our methods for MSFP applied to the matching problem
and its generalizations above with known bounds for these problems.

Edmonds and Johnson [6] studied the class of integer linear programs in which the
constraint matrix entries are integers between –2 and +2 and the sum of absolute values
of entries in each column (without including entries from the box constraints) does not
exceed two. Such a problem is often stated in terms of bidirected graphs (for a survey,
see [26, Chapter 36]). Recall that a bidirected graph H = (X, B) may contain, besides
usual directed edges going from one node to another, edges directed from both of its
endnodes, and to both of them. A particular problem on such an object is the maximum
bidirected flow problem: given a capacity function c : B → Z+ and a terminal p ∈ X,
find a function (biflow) g : B → Z+ maximizing the value divg(p). (Reasonable ver-
sions with more terminals are reduced to this one.) Here g ≤ c and divg(x) = 0 for all
x ∈ X − {p}, where divg(x) is the total biflow on the edges directed from x minus the
total biflow on the edges directed to x (a loop e at x contributes 0, 2g(e) or −2g(e)).

The maximum IS-flow problem admits a linear time and space reduction to the max-
imum biflow problem (in fact, both are equivalent). More precisely, given an instance
N = (G = (V , E), σ, u, s) of MSFP, take a partition (X, X′) of V such that X′ = σ (X)

and s ∈ X. For each pair {a, a′} of symmetric arcs in E and nodes x, y ∈ X, assign an
edge from x to y if a or a′ goes from x to y; an edge from both x, y if a or a′ goes from
x to σ (y); an edge to both x, y if a or a′ goes from σ (x) to y. This produces a bidirected
graph H = (X, B). We set p := s and assign the capacity c(e) of each edge e ∈ B to
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be the capacity of the arc from which e is created. There is a one-to-one correspondence
between the IS-flows in N and the biflows in (H, c, p), and the values of corresponding
flows are equal. A reverse reduction is also obvious. Using these reductions, one can try
to derive results for IS-flows from corresponding results on biflows, and vice versa. In
this paper we give direct proofs and algorithms for IS-flows.

3. Mini-Theory of Skew-Symmetric Flows

This section extends the classical flow decomposition, augmenting path, and max-flow
min-cut theorems of Ford and Fulkerson [10] to the skew-symmetric case. The support
{e ∈ S : f (e) %= 0} of a function f : S → R is denoted by supp(f ).

Let h be a nonnegative integer symmetric function on the arcs of a skew-symmetric
graph G = (V , E). A path (cycle) P in G is called h-regular if h(a) > 0 for all arcs a

of P and each arc a ∈ P such that a′ ∈ P satisfies h(a) ≥ 2. Clearly when h is all-unit
on E, the sets of regular and h-regular paths (cycles) are the same. We call an arc a of
P ordinary if a′ %∈ P and define the h-capacity δh(P ) of P to be the minimum of all
values h(a) for ordinary arcs a on P and all values /h(a)/20 for nonordinary arcs a on
P .

To state the symmetric flow decomposition theorem, consider an IS-flow f in a skew-
symmetric network N = (G = (V , E), u). An IS-flow g in N is called elementary if it
is representable as g = δχP + δχP ′ , where P is a simple cycle or a simple path from
s to s′ or a simple path from s′ to s, P ′ = σ (P ), and δ is a positive integer. Since g

is feasible, P is u-regular and δ ≤ δu(P ). We denote g by (P, P ′, δ). By a symmetric
decomposition of f we mean a set D of elementary flows such that f =

∑
(g : g ∈ D).

The following symmetric decomposition theorem (see [11, 15]) slightly generalizes a
result by Tutte [28] that there exists a symmetric set of |f | paths from s to s′ such that
any arc a is contained in at most f (a) paths.

Theorem 3.1. For an IS-flow f in G, there exists a symmetric decomposition consisting
of at most m elementary flows.

Proof. We build up an f -regular path & in G until this path contains a simple cycle P or
a simple path P connecting s and s′. This will determine a member of the desired flow
decomposition. Then we accordingly decrease f and repeat the process for the resulting
IS-flow f ′, and so on until we obtain the zero flow.

We start with & formed by a single arc a ∈ supp(f ). First we grow & forward. Let
b = (v, w) be the last arc on the current (simple) path &. Suppose that w %= s, s′. By
the conservation for f at w, supp(f ) must contain an arc q = (w, z). If q ′ is not on &
or f (q) ≥ 2, we add q to &.

Suppose q ′ is on & and f (q) = 1. Let &1 be the part of & between w′ and w. Then
&1 contains at least one arc since w %= w′. Suppose there is an arc q̃ ∈ supp(f ) leaving
w and different from q. Then we can add q̃ to & instead of q, forming a longer f -regular
path. (Note that since the path & is simple, q̃ ′ is not on &). Now suppose that such a q̃

does not exist. Then exactly one unit of the flow f leaves w. Hence, exactly one unit
of the flow f enters w, implying that b = (v, w) is the only arc entering w in supp(f ),
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and that f (b) = 1. But σ (d) also enters w, where d is the first arc on &1. The fact that
σ (d) %= b (since &1 is f -regular) leads to a contradiction.

Let (w, z) be the arc added to &. If z is not on &, then & is a simple f -regular path,
and we continue growing &. If z is on &, we discover a simple f -regular cycle P .

If & reaches s′ or s, we start growing & backward from the initial arc a in a way
similar to growing it forward. We stop when an f -regular cycle P is found or one of s,
s′ is reached. In the latter case P = & is either an f -regular path from s to s′ or from s′

to s, or an f -regular cycle (containing s or s′).
Form the elementary flow g = (P, P ′, δ) with δ = δf (P ) and reduce f to f ′ :=

f −δχP−δχP ′ . Since P is f -regular, δ > 0. Moreover, there is a pair e, e′ of symmetric
arcs of P such that either f ′(e) = f ′(e′) = 0 or f ′(e) = f ′(e′) = 1; we associate such
a pair with g. In the former case e, e′ vanish in the support of the new IS-flow f ′, while in
the latter case e, e′ can be used in further iterations of the decomposition process at most
once. Therefore, each pair of arc mates of G is associated with at most two members of
the constructed decomposition D, yielding |D| ≤ m. 12

The above proof gives a polynomial time algorithm for symmetric decomposition.
Moreover, the above decomposition process can be easily implemented in O(nm) time,
which matches the complexity of standard decomposition algorithms for usual flows.

The decomposition theorem and the fact that the network has no self-symmetric
cycles imply the following useful property noticed by Tutte as well.

Corollary 3.2. [28] For any self-symmetric set S ⊆ V and any IS-flow in G, the total
flow on the arcs entering S, as well as the total flow on the arcs leaving S, is even.

Remark. Another consequence of Theorem 3.1 is that one may assume that G has no arc
entering s. Indeed, consider a maximum IS-flow f in G and a symmetric decomposition
D of f . Putting together the elementary flows from s to s′ in D, we obtain an IS-flow f ′

in G with |f ′| ≥| f |, so f ′ is a maximum flow. Since f ′ uses no arc entering s or leaving
s′, deletion of all such arcs from G produces an equivalent problem in a skew-symmetric
graph.

Next we state a skew-symmetric version of the augmenting path theorem. It is conve-
nient to consider the graph G+ = (V , E+) formed by adding a reverse arc (y, x) to each
arc (x, y) of G. For a ∈ E+, aR denotes the corresponding reverse arc. The symmetry
σ is extended to E+ in a natural way. Given a (nonnegative integer) symmetric capacity
function u on E and an IS-flow f on G, define the residual capacity uf (a) of an arc
a ∈ E+ to be u(a)−f (a) if a ∈ E, and f (aR) otherwise. An arc a ∈ E+ is called resid-
ual if uf (a) > 0, and saturated otherwise. Given an IS-flow g in the network (G+, uf ),
we define the function f ⊕ g on E by setting (f ⊕ g)(a) := f (a) + g(a) − g(aR).
Clearly f ⊕ g is a feasible IS-flow in (G, u) whose value is |f | + |g|.

By an r-augmenting path for f we mean a uf -regular path from s to s′ in G+. If P

is an r-augmenting path and if δ ∈ N does not exceed the uf -capacity of P , then we can
push δ units of flow through a (not necessarily directed) path in G corresponding to P

and then δ units through the path corresponding to P ′. Formally, f is transformed into
f ⊕ g, where g is the elementary flow (P, P ′, δ) in (G+, uf ). Such an augmentation
increases the value of f by 2δ.
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Theorem 3.3. [28] An IS-flow f is maximum if and only if there is no r-augmenting
path.

Proof. The direction that the existence of an r-augmenting path implies that f is not
maximum is obvious in light of the above discussion.

To see the other direction, suppose that f is not maximum, and let f ∗ be a maximum
IS-flow in G. For a ∈ E define g(a) := f ∗(a)−f (a) and g(aR) := 0 if f ∗(a) ≥ f (a),
while g(aR) := f (a) − f ∗(a) and g(a) := 0 if f ∗(a) < f (a). One can see that g is
a feasible symmetric flow in (G+, uf ). Take a symmetric decomposition D of g. Since
|g| = |f ∗|−| f | > 0, D has a member (P, P ′, δ), where P is a uf -regular path from s

to s′. Then P is an r-augmenting path for f . 12

In what follows we will use a simple construction which enables us to reduce the
task of finding an r-augmenting path to the r-reachability problem. For a skew-symmetric
network (H, h), split each arc a = (x, y) of H into two parallel arcs a1 and a2 from
x to y (the first and second split-arcs generated by a). These arcs are endowed with
the capacities [h](a1) := 5h(a)/26 and [h](a2) := /h(a)/20. Then delete all arcs with
zero capacity [h]. The resulting capacitated graph is called the split-graph for (H, h)

and denoted by S(H, h). The symmetry σ is extended to the arcs of S(H, h) in a natural
way, by defining σ (ai) := (σ (a))i for i = 1, 2.

For a path P in S(H, h), its image in H is denoted by ω(P ) (i.e., ω(P ) is obtained
by replacing each arc ai of P by the original arc a =: ω(ai)). It is easy to see that if
P is regular, then ω(P ) is h-regular. Conversely, for any h-regular path Q in H , there
is a (possibly not unique) r-path P in S(H, h) such that ω(P ) = Q. Indeed, replace
each ordinary arc a of Q by the first split-arc a1 (existing as h(a) ≥ 1) and replace
each pair a, a′ of arc mates in Q by ai, a

′
j for {i, j} = {1, 2} (taking into account that

h(a) = h(a′) ≥ 2). This gives the required r-path P . Thus, Theorem 3.3 admits the
following reformulation in terms of split-graphs.

Corollary 3.4. An IS-flow f in (G, u) is maximum if and only if there is no regular path
from s to s′ in S(G+, uf ).

Finally, the classic max-flow min-cut theorem states that the maximum flow value is
equal to the minimum cut capacity. A skew-symmetric version of this theorem involves
a more complicated object which is close to an s-barrier occurring in the solvabil-
ity criterion for the r-reachability problem given in Theorem 2.1. We say that B =
(A; X1, . . . , Xk) is an odd s-barrier for (G, u) if the following conditions hold.

(O1) A, X1, . . . , Xk are pairwise disjoint subsets of V , and s ∈ A.
(O2) For A′ = σ (A), A ∩ A′ = ∅.
(O3) For i = 1, . . . , k, Xi is self-symmetric, i.e., σ (Xi) = Xi .
(O4) For i = 1, . . . , k, the total capacity u(A, Xi) of the arcs from A to Xi is odd.
(O5) For i, j = 1, . . . , k and i %= j , no positive capacity arc connects Xi and Xj .
(O6) For M := V − (A ∪ A′ ∪X1 ∪ · · · ∪Xk) and i = 1, . . . , k, no positive capacity

arc connects Xi and M .

Compare with (B1)–(B7) in Section 2. Define the capacity u(B) of B to be u(A, V −
A)− k. Since the source is denoted by s throughout, we refer to an odd s-barrier as odd
barrier.
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The following is the maximum IS-flow minimum barrier theorem.

Theorem 3.5. [28] The maximum IS-flow value is equal to the minimum odd barrier
capacity.

Proof. To see that the capacity of an odd barrier B = (A; X1, . . . , Xk) is an upper
bound on the value of an IS-flow f , consider a symmetric decomposition D of f . For
each member g = (P, P ′, δ) of D, where P is a path from s to s′, take the last arc
a = (x, y) of the first path P such that x ∈ A. If y ∈ A′, then the symmetric arc a′

(which is in P ′) also goes from A to A′ (by (O2)), and therefore, g uses at least 2δ units
of the capacity of arcs from A to A′. Associate g with the pair a, a′. Now let y %∈ A′.
Since y %∈ A, y is either in Y := M or in Y := Xi for some i. The choice of a and
(O1),(O5),(O6) imply that P leaves Y by an arc b from Y to A′. Then the symmetric arc
b′ (which is in P ′) goes from A to Y (since Y is self-symmetric), and therefore, g uses at
least 2δ units of the capacity u(A, Y ). Associate g with the pair a, b′ (possibly a = b′).
Note that at least one unit of each capacity u(A, Xi) is not used under the canonical
way we associate the elementary s to s′ flows of D with arcs from A to V − A (since
u(A, Xi) is odd, by (O4)). By these reasonings, |f | ≤ u(B).

Next we show that the two values in the theorem are equal. Let f be a maximum
IS-flow. By Corollary 3.4, the split-graph S = S(G+, uf ) contains no s to s′ r-path, so
it must contain an s-barrier B = (A; X1, . . . , Xk), by Theorem 2.1.

Let ei be the (unique) arc from A to Xi in S (see (B4) in Section 2). By the con-
struction of S, it follows that the residual capacity uf of every arc from A to Xi in G+

is zero except for the arc ω(ei), whose residual capacity is one. Hence,

(i) if ei was formed by splitting an arc a ∈ E, then a goes from A to Xi , and
f (a) = u(a)− 1;

(ii) if ei was formed by splitting aR for a ∈ E, then a goes from Xi to A, and f (a) = 1;
(iii) all arcs from A to Xi in G, except a in case (i), are saturated by f ;
(iv) all arcs from Xi to A in G, except a in case (ii), are free of flow.

Furthermore, comparing arcs in S and G, we observe that:

(v) property (B7) implies that the arcs from A to A′ ∪M are saturated and the arcs from
A′ ∪M to A are free of flow;

(vi) property (B5) implies (O5) and (B6) implies (O6).

Properties (i)–(iv),(O5),(O6) together with Corollary 3.2 provide (O4). So B is an
odd s-barrier in G. We have |f | = f (A, V − A)− f (V − A, A) = u(A, V − A)− k

(in view of (i)–(v)). Hence, |f | = u(B). 12

4. Integer and linear programming formulations

Although methods of solving MSFP developed in subsequent sections will not use explic-
itly linear programming aspects exhibited in this section, such aspects help to understand
more about the structure of IS-flows.

MSFP is stated as an integer program in a straightforward way. We use function
rather than vector notation. For functions g, h on a set S, g · h denotes the inner product
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∑
x∈S g(x)h(x). Assuming that no arc of G enters the source s (see the Remark in the

previous section), MSFP can be written as follows:

maximize |f | =
∑

(s,v)∈E
f (s, v) subject to (1)

f (a) ≥ 0 ∀a ∈ E (2)

f (a) ≤ u(a) ∀a ∈ E (3)

−
∑

(u,v)∈E
f (u, v) +

∑
(v,w)∈E

f (v, w) = 0 ∀v ∈ V − {s, s′} (4)

f (a)− f (σ (a)) = 0 ∀a ∈ E (5)

f (a) integer ∀a ∈ E (6)

A linear programming formulation for MSFP is obtained by replacing the integrality
condition (6) by linear constraints related to certain objects that we call odd fragments in
G. The correctness of the resulting linear program will be shown by use of the max-min
relation between IS-flow and odd barriers in Theorem 3.5. Alternatively, one can try to
derive it from a linear programming characterization of integer bidirected flows in [6]
(using the reduction as in Section 2).

An odd fragment is a pair ρ = (Vρ, Uρ), where Vρ is a self-symmetric set of nodes
with s %∈ Vρ , and Uρ is a subset of arcs entering Vρ such that the total capacity u(Uρ) is
odd. The characteristic function χρ of ρ is the function on E defined by

χρ(a) :=






1 if a ∈ Uρ ∪ σ (Uρ),

−1 if a ∈ δ(Vρ)− (Uρ ∪ σ (Uρ)),

0 otherwise.
(7)

Here δ(Vρ) is the set of arcs with one end in Vρ and the other in V − Vρ . We denote the
set of odd fragments by ).

Let f be a (feasible) IS-flow and ρ ∈ ). By (7) and the symmetry of u, we have
f · χρ ≤ u(Uρ) + u(σ (Uρ)) = 2u(Uρ). Moreover, f · χρ is at most 2u(Uρ) − 2; this
immediately follows from Corollary 3.2 and the fact that u(Uρ) is odd. This gives new
linear constraints for MSFP:

f · χρ ≤ 2u(Uρ)− 2 for each ρ ∈ ). (8)

Addition of these constraints enables us to drop off the symmetry constraints (5) and
the integrality constraints (6) without changing the optimum value of the linear program.
This fact is implied by the following theorem.

Theorem 4.1. Every maximum IS-flow is an optimal solution to the linear program
(1)–(4), (8).

Proof. Assign a dual variable π(v) ∈ R (a potential) to each node v ∈ V , γ (a) ∈ R+
(a length) to each arc a ∈ E, and ξ(ρ) ∈ R+ to each odd fragment ρ ∈ ). Consider the
linear program:
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minimize ψ(π, γ , ξ) :=
∑

E

u(a)γ (a) +
∑

)

(2u(Uρ)− 2)ξ(ρ) subject to (9)

γ (a) ≥ 0 ∀a ∈ E (10)

ξ(ρ) ≥ 0 ∀ρ ∈ ) (11)

π(s) = 0 (12)

π(s′) = 1 (13)

π(v)− π(w) + γ (a) +
∑

)

ξ(ρ)χρ(a) ≥ 0 ∀a = (v, w) ∈ E.

(14)

In fact, (9)–(14) is dual to linear program (1)–(4),(8). (To see this, introduce an extra
arc (s′, s), add the conservation constraints for s and s′, and replace the objective (1) by
max{f (s′, s)}. The latter generates the dual constraint π(s′)−π(s) ≥ 1. We can replace
it by the equality or impose (12)–(13).) Therefore,

max |f | = min ψ(π, γ , ξ), (15)

where the maximum and minimum range over the corresponding feasible solutions.
We assert that every maximum IS-flow f achieves the maximum in (15). To see

this, choose an odd barrier B = (A; X1, . . . , Xk) of minimum capacity u(B). For
i = 1, . . . , k, let Ui be the set of arcs from A to Xi ; then ρi = (Xi, Ui) is an odd
fragment for G, u. Define π(v) to be 0 for v ∈ A, 1 for v ∈ A′, and 1/2 otherwise.
Define γ (a) to be 1 for a ∈ (A, A′), 1/2 for a ∈ (A, M) ∪ (M, A′), and 0 otherwise,
where M = V − (A ∪ A′ ∪X1 ∪ . . . ∪Xk). Define ξ(ρi ) = 1/2 for i = 1, . . . , k, and
ξ(ρ) = 0 for the other odd fragments in (G, u).

One can check that (14) holds for all arcs a (e.g., both values π(w) − π(v) and
γ (a) +

∑
) ξ(ρ)χρ(a) are equal to 1 for a = (v, w) ∈ (A, A′), and 1/2 for a =

(v, w) ∈ (A, L) ∪ (L, A′), where L := V − (A ∪ A′)). Thus π, γ , ξ are feasible.
Using the fact that u(A, M) = u(M, A′), we observe that u · γ = u(A, A′) +

u(A, M). Also

∑

)

(2u(Uρ)− 2)ξ(ρ) =
k∑

i=1

1
2
(2u(Ui)− 2) =

(
k∑

i=1

u(A, Xk)

)

− k.

This implies ψ(π, γ , ξ) = u(B), and now the result follows from Theorem 3.5. 12

5. Algorithm using a good pre-solution

Anstee [1, 2] developed efficient methods for b-factor and b-matching problems (un-
weighted or weighted) based on the idea that a good pre-solution can easily be found
by solving a corresponding flow problem. In this section we adapt his approach to solve
the maximum IS-flow problem in a skew-symmetric network N = (G = (V , E), u).
The algorithm that we devise is relatively simple; it finds a “nearly optimal” IS-flow and
then makes O(n) augmentations to obtain a maximum IS-flow. The algorithm consists
of four stages.
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The first stage ignores the fact that N is skew-symmetric and finds an integer maxi-
mum flow g in N by use of a max-flow algorithm. Then we set h(a) := (g(a)+g(a′))/2
for all arcs a ∈ E. Since divh(s) = divg(s)/2− divg(s

′)/2 = divg(s), h is a maximum
flow as well. Also h is symmetric and half-integer. Let Z be the set of arcs on which h

is not integer. If Z = ∅, then h is already a maximum IS-flow; so assume this is not the
case.

The second stage applies simple transformations of h to reduce Z. Let H = (X, Z)

be the subgraph of G induced by Z. Obviously, for each x ∈ V , divh(x) is an inte-
ger, so x is incident to an even number of arcs in Z. Therefore, we can decompose H

into simple, not necessarily directed, cycles C1, . . . , Cr which are pairwise arc-disjoint.
Moreover, we can find, in linear time, a decomposition in which each cycle Ci is either
self-symmetric (Ci = σ (Ci)) or symmetric to another cycle Cj (Ci = σ (Cj )).

To do this, we start with some node v0 ∈ X and grow in H a simple (undirected)
path P = (v0, e1, v1, . . . , eq, vq) such that the mate v′i of each node vi is not in P . At
each step, we choose in H an arc e %= eq incident to the last node vq (e exists since H is
eulerian); let x be the other end node of e. If none of x, x′ is in P , then we add e to P .
If some of x, x′ is a node of P , vi say, then we shorten P by removing its end part from
ei+1 and delete from H the arcs ei+1, . . . , eq, e and their mates. One can see that the
arcs deleted induce a self-symmetric cycle (when x′ = vi) or two disjoint symmetric
cycles (when x = vi). We also remove the isolated nodes created by the arc deletions
and change the initial node v0 if needed. Repeating the process for the new current graph
H and path P , we eventually obtain the desired decomposition C, in O(|Z|) time.

Next we examine the cycles in C. Each pair C, C′ of symmetric cycles is canceled by
sending a half unit of flow through C and through C′, i.e., we increase (resp. decrease)
h(e) by 1/2 on each forward (resp. backward) arc e of these cycles. The resulting function
h is symmetric, and divh(x) is preserved at each node x, whence h is again a maximum
symmetric flow. Now suppose that two self-symmetric cycles C and D meet at a node x.
Then they meet at x′ as well. Concatenating the x to x′ path in C and the x′ to x path in D

and concatenating the rests of C and D, we obtain a pair of symmetric cycles and cancel
these cycles as above. These cancellations result in C consisting of pairwise node-disjoint
self-symmetric cycles, say C1, . . . , Ck . The second stage takes O(m) time.

The third stage transforms h into an IS-flow f whose value |f | is at most k units
below |h|. For each i, fix a node ti in Ci and change h on Ci by sending a half unit
of flow through the ti to t ′i path in Ci and through the reverse to the t ′i to ti path in it.
The resulting function h is integer and symmetric and the divergences preserve at all
nodes except for the nodes ti and t ′i where we have divh(ti) = −divh(t

′
i ) = 1 for each

i (assuming, without loss of generality, that all ti’s are different from s′). Therefore, h

is, in essence, a multiterminal IS-flow with sources s, t1, . . . , tk and sinks s′, t ′1, . . . , t ′k .
A genuine IS-flow f from s to s′ is extracted by reducing h on some h-regular paths.
More precisely, we add to G artificial arcs ei = (s, ti), i = 1, . . . , k and their mates,
extend h by ones to these arcs and construct a symmetric decomposition D (defined in
Section 3) for the obtained function h′ in the resulting graph G′ (clearly h′ is an IS-flow
of value |h| + k).

Let D′ be the set of elementary flows in D formed by the paths or cycles which con-
tain artificial arcs. Then δ = 1 for each (P, P ′, δ) ∈ D′. Define f ′ := h′−

∑
(χP +χP ′ :

(P, P ′, 1) ∈ D′). Then f ′ is an IS-flow in G′, and |f ′| ≥| h′|−2k ≥ |h|−k. Moreover,
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since f (ei) = 0 for i = 1, . . . , k, the restriction f of f ′ to E is an IS-flow in G,
and |f | = |f ′|. Thus, |f | ≥| h| − k, and now the facts that k ≤ n/2 (as the nodes
t1, . . . , tk, t

′
1, . . . , t ′k are different) and that h is a maximum flow in N imply that the

value of f differs from the maximum IS-flow value by O(n). The third stage takes
O(nm) time (the time needed to construct a symmetric decomposition of h′).

The final, fourth, stage transforms f into a maximum IS-flow. Each iteration applies
the r-reachability algorithm (RA) mentioned in Section 2 to the split-graph S(G+, uf )

in order to find a uf -regular s to s′ path P in G+ and then augment the current IS-flow
f by the elementary flow (P, P ′, δuf (P )) as explained in Section 3. Thus, a maximum
IS-flow in N is constructed in O(n) iterations. Since the RA runs in O(m) time (by
Theorem 2.2), the fourth stage takes O(nm) time.

Summing up the above arguments, we conclude with the following.

Theorem 5.1. The above algorithm finds a maximum IS-flow in N in O(M(n, m)+nm)

time, where M(n, m) is the running time of the max-flow procedure it applies.

6. Shortest R-augmenting paths and blocking IS-flows

Theorem 3.3 and Corollary 3.4 prompt an alternative method for finding a maximum
IS-flow in a skew-symmetric network N = (G, u), which is analogous to the method of
Ford and Fulkerson for usual flows. It starts with the zero flow, and at each iteration, the
current IS-flow f is augmented by an elementary flow in (G+, uf ) (found by applying
the r-reachability algorithm to S(G+, uf )). Since each iteration increases the value of
f by at least two, a maximum IS-flow is constructed in pseudo-polynomial time. In
general, this method is not competitive to the method of Section 5.

More efficient methods involve the concepts of shortest r-augmenting paths and
shortest blocking IS-flows that we now introduce. Let g be an IS-flow in a skew-sym-
metric network (H = (V , W), h). We call g(W) (=

∑
e∈W g(e)) the volume of g.

Considering a symmetric decomposition D = {(Pi, P
′
i , δi ) : i = 1, . . . , k) of g, we

have

g(W) =
∑

(δi |Pi | + δi |P ′i | : i = 1, . . . , k) ≥ |g|min{|Pi | : i = 1, . . . , k}.

This implies

g(W) ≥ |g|r-distS(H,h)(s, s
′), (16)

where r-distH ′(x, y) denotes the minimum length of a regular x to y path in a skew-
symmetric graph H ′ (the regular distance from x to y). We say that an IS-flow g is

(i) shortest if (16) holds with equality, i.e., some (equivalently, any) symmetric decom-
position of g consists of shortest h-regular paths from s to s′;

(ii) totally blocking if there is no (h− g)-regular path from s to s′ in H , i.e., we cannot
augment g using only residual capacities in H itself;

(iii) shortest blocking if g is shortest (as in (i)) and

r-distS(H,h−g)(s, s
′) > r-distS(H,h)(s, s

′). (17)
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Note that a shortest blocking IS-flow is not necessarily totally blocking, and vice
versa.

Given a skew-symmetric network N = (G, u), the shortest r-augmenting path
method (SAPM), analogous to the method of Edmonds and Karp [7] for usual flows,
starts with the zero flow, and each iteration augments the current IS-flow f by a shortest
elementary flow g = (P, P ′, δuf (P )).

The shortest blocking IS-flow method (SBFM), analogous to Dinits’method [4], starts
with the zero flow, and each phase (big iteration) augments the current IS-flow f by
performing the following two steps:

(P1) Find a shortest blocking IS-flow g in (G+, uf ).
(P2) Update f := f ⊕ g.

Both methods terminate when f no longer admits r-augmenting paths (i.e., g be-
comes the zero flow). The following observation is crucial for our methods.

Lemma 6.1. Let g be a shortest IS-flow in (G+, uf ), and let f ′ := f ⊕ g. Let k and k′

be the minimum lengths of r-augmenting paths for f and f ′, respectively. Then k′ ≥ k.
Moreover, if g is a shortest blocking IS-flow, then k′ > k.

Proof. Take a shortest uf ′ -regular path P from s to s′ in G+. Then |P | = k′ and
g′ = (P, P ′, 1) is an elementary flow in (G+, uf ′).

Note that supp(g) does not contain opposed arcs a = (x, y) and b = (y, x). Oth-
erwise decreasing g by one on each of a, b, a′, b′ (which are, obviously, distinct), we
would obtain the IS-flow g̃ in (G+, uf ) such that |̃g| = |g| and g̃(E+) < g(E+), which
is impossible because g̃(E+) ≥ k|̃g| and g(E+) = k|g|. This implies that each arc a in
the set Z := {a ∈ E+ : g(aR) = 0} satisfies

uf ′(a) = uf (a)− g(a). (18)

If supp(g′) ⊆ Z, then g′ is a feasible IS-flow in (G+, uf ) (by (18)), whence k′ =
g′(E+)/|g′| ≥ k. Moreover, if, in addition, g is a shortest blocking IS-flow, then (17)
and the fact that g′ ≤ uf − g (by (18)) imply k′ > k.

Now suppose there is an arc e ∈ E+ such that g′(e) > 0 and g(eR) > 0. For each
a ∈ E+, put λ(a) := max{0, g(a) + g′(a) − g(aR) − g′(aR)}. One can check that
λ(a) ≤ uf (a) for all arcs a and that divλ(v) = 0 for all nodes v %= s, s′. Therefore, λ is
an IS-flow in (G+, uf ) with |λ| = |g|+ |g′| = |g|+2. Also λ(E+) < g(E+)+g′(E+)

since for the e above, λ(e) + λ(eR) < g′(e) + g(eR). We have

2k′ = g′(E+) > λ(E+)− g(E+) ≥ k(|g| + 2)− k|g| = 2k,

yielding k′ > k. 12

Thus, each iteration of SAPM does not decrease the minimum length of an r-aug-
menting path, and each phase of SBFM increases this length. This gives upper bounds
on the numbers of iterations.
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Corollary 6.2. SAPM terminates in at most (n− 1)m iterations.

(This follows by observing, in the proof of Lemma 6.1, that on the iterations with
the same length of shortest r-augmenting paths, the subgraph of G+ induced by the
arcs contained in such paths is monotone nonincreasing, and each iteration reduces the
capacity of some arc of this subgraph, as well as the capacity of its mate, to zero or one.)

Corollary 6.3. SBFM terminates in at most n− 1 phases.

As mentioned above, SBFM can be considered as a skew-symmetric analog of Dinits’
blocking flow algorithm. Recall that each phase of that algorithm constructs a block-
ing flow in the subnetwork H formed by the nodes and arcs of shortest augmenting
paths. Such a network is acyclic (moreover, layered), and a blocking flow in H is easily
constructed in O(nm) time.

The problem of finding a shortest blocking IS-flow ((P1) above) is more compli-
cated. Let H be the subgraph of G+ formed by the nodes and arcs contained in shortest
uf -regular s to s′ paths. Such an H need not be acyclic (a counterexample is not diffi-
cult). In Section 8 we will show that problem (P1) can be reduced to a seemingly easier
task, namely, to finding a totally blocking IS-flow in a certain acyclic network (H, h).
Such a network arises when the shortest r-path algorithm from [16] is applied to the
split-graph S(G+, uf ) with unit arc lengths. First, however, we need to tell more about
the r-reachability and shortest r-path algorithms from [16].

7. Properties of regular and shortest regular path algorithms

In this section we exhibit certain properties of the algorithms in [16], referring the reader
to that paper for details. We also establish an additional fact (Lemma 7.4), which will
be used later.

7.1. The regular reachability algorithm (RA)

Let & = (V , E) be a skew-symmetric graph with source s and sink s′ = σ (s) (as before,
σ is the symmetry map). A fragment (or an s-fragment) in & is a pair φ = (Vφ, eφ =
(v, w)), where Vφ is a self-symmetric set of nodes of & with s %∈ Vφ and eφ is an arc
entering Vφ , i.e., v %∈ Vφ 8 w (cf. the definition of odd fragments in Section 4). We
refer to eφ and e′φ as the base and anti-base arcs of φ, respectively. Let us say that the
fragment is well-reachable if

(i) for each node x ∈ Vφ , there is an r-path from w to x in the subgraph induced by
Vφ (and therefore, an r-path from x to w′ = σ (w)), and

(ii) there is an r-path from s to v disjoint from Vτ .

The trimming operation applied to φ (which is analogous to shrinking a blossom in
matching algorithms) transforms & by removing the nodes of Vφ − {w, w′} and modi-
fying the arcs as follows.

(T1) Each arc a = (x, y) ∈ E such that either x, y ∈ V − Vφ or a = eφ or a = e′φ
remains an arc from x to y.
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Fig. 3. Fragment trimming example

(T2) Each arc (x, y) ∈ E − {e′φ} that leaves Vφ is replaced by an arc from w to y, and
each arc (x, y) ∈ E − {eφ} that enters Vφ is replaced by an arc from x to w′.

(T3) Each arc with both ends in Vφ is replaced by an arc from w to w′.

(A variant of trimming deletes all arcs in (T3).) The image of an arc a in the new graph
is denoted again by a (so its end nodes can be changed, but not its name). Figure 3
illustrates fragment trimming. The new & is again skew-symmetric.

The algorithm RA relies on the following property.

Statement 7.1. [16] If φ is a well-reachable fragment, then trimming φ preserves the
existence (or non-existence) of a regular path from s to s′.

RA searches for a regular s to s′ path in &, starting with the trivial path P = s. Each
iteration either increases the current r-path P , or reveals a well-reachable fragment and
trims it, producing the new current graph & and accordingly updating P . It terminates
when either an s to s′ r-path P or an s-barrier B in the final graph & is found (cf. Theo-
rem 2.1). The postprocessing stage extends P into a regular s to s′ path P of the initial
& (cf. Statement 7.1) in the former case (the path restoration procedure) and extends B
into a barrier B of the initial & in the latter case (the barrier restoration procedure).

The fragments of current graphs revealed by RA determine fragments of the ini-
tial & in a natural way; all fragments are well-reachable. Moreover, the set 1 of these
fragments of the initial & is well-nested. This means that

(F1) for distinct φ,ψ ∈ 1, either Vφ ⊂ Vψ or Vψ ⊂ Vφ or Vφ ∩ Vψ = ∅, and
(F2) for φ,ψ ∈ 1, if Vψ ⊂ Vφ and eψ ∈ δ(Vφ) then eψ = eφ , and if Vφ ∩Vψ = ∅ and

eψ ∈ δ(Vφ) then eφ %∈ δ(Vψ ).

(Recall that for X ⊆ V , δ(X) is the set of arcs with one end in X and the other in V −X.)
Let us say that a path R in& is compatible with1 if for eachφ ∈ 1, p := |R∩δ(Vφ)| ≤ 2,
and if p = 2 then R contains exactly one of eφ, e

′
φ . The following additional properties

(relying on (T1)–(T3)) are important:
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(19) any regular s to s′ path P in the final graph & is extendable to a regular s to s′ path
P compatible with 1 in the initial &, and the path restoration procedure applied
to P constructs such a P in O(|P | + d) time, where d is the total size of maximal
fragments in 1 traversed by P ;

(20) for each φ ∈ 1 and each arc a %= e′φ leaving Vφ , there exists a compatible with 1
r-path Qφ(a) with the first arc eφ , the last arc a and all intermediate nodes in Vφ ;
such a path can be constructed by (a phase of) the path restoration procedure in
O(|Vφ |) time.

A fast implementation of RA (supported by the disjoint set union data structure
of [13]) runs in linear time, as indicated in Theorem 2.2.

7.2. The shortest regular path algorithm (SRA)

We now consider the shortest regular path problem (SRP) in a skew-symmetric graph
& = (V , E) with nonnegative symmetric lengths #(e) of the arcs e ∈ E: find a minimum
length regular path from s to s′. One may assume that s′ is r-reachable from s. The dual
problem involves above-mentioned fragments. Define the characteristic function χφ of
a fragment φ = (Vφ, eφ) by

χφ(a) :=






1 for a = eφ, e
′
φ,

−1 for a ∈ δ(Vφ)− {eφ, e′φ},
0 for the remaining arcs of &.

(21)

(Compare with (7).) For a function π : V → R (of node potentials) and a nonnegative
function ξ on a set 1 of fragments, define the reduced length of an arc e = (x, y) to be

#ξπ (e) := #(e) + π(x)− π(y) +
∑

φ∈1
ξ(φ)χφ(e).

An optimality criterion for SRP can be formulated as follows.

Theorem 7.2. [16] A regular path P from s to s′ is a shortest r-path if and only if there
exist a potential π : V → R, a set 1 of fragments, and a positive function ξ on 1 such
that

#ξπ (e) ≥ 0 for each e ∈ E; (22)

#ξπ (e) = 0 for each e ∈ P ; (23)

χP · χφ = 0 for each φ ∈ 1. (24)

The shortest r-path algorithm (SRA) from [16] implicitly maintains π,1, ξ in the
input graph & and iteratively modifies the graph by trimming certain fragments. Let &0

be the subgraph of the current & with the same set of nodes and with the arcs having zero
reduced length, called the current 0-subgraph (recall that the arcs of the current graph
are identified with the corresponding arcs of the initial one). Each iteration applies the
above r-reachability algorithm RA to search for a regular s to s′ path in &0. If such a path
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is found, the algorithm terminates and outputs this path to a postprocessing stage. If such
a path does not exist, then, using the barrier B = (A; X1, . . . , Xk) in &0 constructed
by RA, the iteration trims the fragments determined by the sets Xi and updates π,1, ξ ,
modifying&0. The reduced lengths of the arcs within the newly and previously extracted
fragments, as well as of their base and anti-base arcs, are not changed.

Let & and &
0

denote the final graph & and the 0-subgraph in it, respectively, and P

the regular s to s′ path in &
0

found by the algorithm. Let &0 stand for the 0-subgraph
of the initial graph & (concerning the reduced arc lengths determined by the resulting
π,1, ξ ). We call &0 and &

0
the full and trimmed 0-graphs, respectively. The postpro-

cessing stage applies the path restoration procedure of RA to extend P into a regular s

to s′ path P in &0, in time indicated in (19). It also explicitly constructs &0 (in linear
time).

Note that any s to s′ r-path or r-cycle Q in & compatible with1 satisfies χQ ·χφ = 0

for each φ ∈ 1. By (19), any s to s′ r-path P in &
0

is extendable to an s to s′ r-path P

in &0 compatible with 1. Therefore, P is shortest, by Theorem 7.2.

Theorem 7.3. [16] For nonnegative symmetric arc lengths #, SRA runs in O(m log n)

time, and in O(m
√

log L) time when # is integer-valued and L is the maximum arc length.
Furthermore, the algorithm constructs (implicitly) π,1, ξ as in Theorem 7.2, where π
is anti-symmetric (i.e., π(x) = −π(x′) for all x ∈ V ), and constructs (explicitly) the
trimmed 0-graph &

0
and the full 0-graph &0 such that:

(A1) 1 is well-nested (obeys (F1)–(F2)) and consists of well-reachable fragments in
&0; in particular, #ξπ (eφ) = 0 for each φ ∈ 1;

(A2) 1 satisfies (19) and (20) with &0,&
0

instead of &,&; in particular, any regular
s to s′ path of &

0
is (efficiently) extendable to a shortest regular s to s′ path in

(&, #).

(Note that the anti-symmetry of π and the symmetry of # and χφ for all φ ∈ 1
imply that the reduced length function #ξπ is symmetric. Therefore, the graphs &0 and
&

0
are indeed skew-symmetric.) Let 1max denote the set of maximal fragments in 1.

The sets Vφ for φ ∈ 1max are pairwise disjoint (by (F1)), and the graph &
0

can be
directly obtained from &0 by simultaneously trimming the fragments in 1max.

In the next section we will take advantage of the relationship between r-paths in &
0

and shortest r-paths in (&, #) indicated in (A2). Another important property of &
0

is as
follows.

Lemma 7.4. If the length #(C) of every cycle C in & is positive, then &
0

is acyclic. In
particular, &

0
is acyclic if all arc lengths are positive.

Proof. Suppose &
0

contains a (not necessarily regular) simple cycle C. In view of (20),
C is extendable to a cycle C of &0 compatible with1. Then χC · χφ = 0 for all φ ∈ 1.
This implies that the original length #(C) and the reduced length #ξπ (C) are the same
(since the changes in #ξπ due to π cancel out as we go around the cycle). Since all arcs
of C have zero reduced length, #(C) = #

ξ
π (C) = 0. This contradicts the hypotheses of

the lemma. 12
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8. Reduction to an acyclic network and special cases

We continue the description of the shortest blocking IS-flow method (SBFM) for solving
the maximum IS-flow problem in a network N = (G = (V , E), u) begun in Section 6.
Let f be a current IS-flow in N . We show that the task of finding a shortest blocking IS-
flow g in (G+, uf ) (step (P1) of a phase of SBFM) reduces to finding a totally blocking
IS-flow in an acyclic network.

Build the split-graph & = S(G+, uf ) and apply the above shortest regular path
algorithm to & with the all-unit length function # on the arcs. It constructs φ,1, ξ as
in Theorems 7.2 and 7.3, taking O(m) time (since L = 1). SRA also constructs the
trimmed 0-graph &

0
, the main object we will deal with. By Lemma 7.4, &

0
is acyclic.

Also the following property takes place.

Lemma 8.1. Let a ∈ E+ be an arc with uf (a) > 1, and let a1, a2 be the corresponding
split-arcs in &. Then #ξπ (a1) = #

ξ
π (a2). Moreover, none of a1, a2 can be the base or

anti-base arc of any fragment in 1.

Proof. Since a1, a2 are parallel arcs, for each φ ∈ 1, a1 enters (resp. leaves) Vφ if and
only if a2 enters (resp. leaves) Vφ . This implies that #ξπ (a1) %= #

ξ
π (a2) can happen only if

one of a1, a2 is the base or anti-base arc of some fragment in 1. Suppose a1 ∈ {eφ, e′φ}
for some φ ∈ 1 (the case a2 ∈ {eφ, e′φ} is similar). Then #ξπ (a1) = 0 (by (A1) in Theo-
rem 7.3). Using property (F2) from Section 7 (valid as1 is well-nested), one can see that
a2 is not the base or anti-base arc of any fragment in1. Therefore, χψ (a2) ≤ χψ (a1) for
all ψ ∈ 1, yielding #ξπ (a2) ≤ #ξπ (a1). Moreover, the latter inequality is strict because
χφ(a2) = −1 < 1 = χφ(a1) and ξ(φ) > 0. Now #

ξ
π (a1) = 0 implies #ξπ (a2) < 0,

contradicting (22). 12

Let E0 ⊆ E+ be the set of (images of) zero reduced length arcs of &. Lemma 8.1
implies that the base arc eφ of each fragment φ ∈ 1 in & is generated by an arc e ∈ E0

with uf (e) = 1. We can identify these e and eφ and consider φ as a fragment of G+ as

well. One can see that &
0

is precisely the split-graph for (H, h), where H = (V , E
0
)

is obtained from H = (V , E0) by trimming the maximal fragments in 1, and h is the
restriction of uf to E

0
.

Based on the property of each fragment to have unit capacity of the base arc, we
reduce step (P1) to the desired problem, namely:

(B) Find a totally blocking IS-flow in (H, h).

To explain the reduction, suppose we have found a solution g to (B). For each max-
imal fragment φ in 1 with eφ ∈ supp(g), we have g(eφ) = 1; therefore, exactly one

unit of flow goes out of the head of eφ , through an arc a ∈ E
0

say. We choose the path
Q = Qφ(a) as in (20) to connect eφ and a in (the subgraph on Vφ of) H and then push a
unit of flow through Q and a unit of flow through the symmetric path Q′. Doing so for all
maximal fragments φ, we extend g to an IS-flow g in (H, h), where h is the restriction
of uf to E0. Moreover, g is a shortest blocking IS-flow in (G+, uf ).

Indeed, the fact that the chosen paths Q have zero reduced length and are compatible
with1 implies that a symmetric decomposition of g consists of shortest uf -regular paths
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(cf. (A2) in Theorem 7.3); so g is shortest. Also G+ cannot contain a (uf − g)-regular
s to s′ path R of length g(E+)/|g|. For such an R would be a path in H compatible
with 1 (in view of Theorem 7.2); then the arcs of R occurring in H should form an
(h− g)-regular s to s′ path in it, contrary to the fact that g is totally blocking.

Since each path Qφ(a) is constructed in O(|Vφ |) time (by (20)), and the sets Vφ of
maximal fragments φ are pairwise disjoint, the reduction to (B) takes linear time.

Lemma 8.2. A totally blocking IS-flow in (H, h) can be extended to a shortest blocking
IS-flow in (G+, uf ), in O(m) time. 12

Corollary 8.3. SBFM solves the maximum IS-flow problem in O(qT (n, m)+qm) time,
where q is the number of phases (q ≤ n) and T (n, m) is the time needed to find a totally
blocking IS-flow in an acyclic network with at most n nodes and m arcs.

Clearly T (n, m) is O(m2), as a totally blocking flow can be constructed by O(m)

applications of the regular reachability algorithm; this is slower compared with the phase
time O(nm) in Dinits’ algorithm. However, we shall show in the next section that prob-
lem (B) can be solved in O(nm) time as well. Moreover, the bound will be better for
important special cases.

Next we estimate the number of phases. For the standard max-flow problem, the num-
ber of phases of Dinits’algorithm becomes significantly less than n in the cases of unit arc
capacities and unit “node capacities”. To combine these into one case, given a network
N = (G = (V , E), u) with integer capacities u, for a node x ∈ V , define the transit
capacity u(x) to be the minimum of values

∑
y:(x,y)∈E u(x, y) and

∑
y:(y,x)∈E u(y, x).

Define

! := !(N) :=
∑

(u(x) : x ∈ V − {s, s′}).

As shown in [8, 21]), the number q of phases of the blocking flow method does not
exceed 2

√
!. In particular, if u ≡ 1 then q = O(

√
m), and if the transit capacities u(x)

of all nodes x %= s, s′ (inner nodes) are ones, e.g., in the case arising from the bipartite
matching problem, then q = O(

√
n).

A similar argument works for skew-symmetric networks (see also [11] for a special
case).

Lemma 8.4. The number of phases of SBFM is at most min{n, 2
√
!}.

Proof. After performing d :=
√
! phases, the r-distance from s to s′ in the network

N ′ = (G+, uf ) for the current IS-flow f becomes greater than d, by Lemma 6.1. Let
f ∗ be a maximum IS-flow in N , and let g be defined as in the proof of Theorem 3.3.
Then g is a feasible IS-flow in N ′ and |g| = |f ∗| −| f |. We assert that |g| ≤ d, which
immediately implies that the number of remaining phases is at most d/2, thus proving
the lemma. To see this, take a symmetric decomposition D of g consisting of elementary
flows (P, P ′, δ) with δ = 1. Let D′ be the family of s to s′ paths P, P ′ in D; then
|D′| ≥| g|. It is easy to see that uf (x) = u(x) for each inner node x. Each path in D′
contains at least d inner nodes, and therefore, it uses at least d units of the total transit
capacity of inner nodes of N ′. So we have d|D′| ≤ !(N). This implies |g| ≤ d . 12
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9. Finding a totally blocking IS-flow in an acyclic network

Our aim is to show the following.

Theorem 9.1. A totally blocking IS-flow in an acyclic skew-symmetric graph with O(n)

nodes, O(m) arcs, and unit arc capacities can be found in O(n + m) time.

This together with Corollary 8.3 and Lemma 8.4 yields the following result for the
shortest blocking IS-flow method.

Corollary 9.2. In case of a network N with unit arc capacities, SBFM can be imple-
mented so that it finds a maximum IS-flow in O(m

√
!(N)) time (assuming n = O(m)).

In particular, if the indegree or outdegree of each node is at most one, then the running
time becomes O(

√
nm).

In the second half of this section we will extend Theorem 9.1 to general capacities,
in which case the phase time will turn into O(nm), similarly to Dinits’ algorithm.

For convenience we keep the original notation for the network in question. Let
G = (V , E) be a skew-symmetric acyclic graph with source s and the capacity u(e) = 1
of each arc e ∈ E. One may assume that each node belongs to a path from s to σ (s).

First of all we make a reduction to the maximal balanced path-set problem (MBP)
stated in the Introduction. Since G is acyclic, one can assign, in linear time, a potential
function π : V → Z which is antisymmetric (π(x) = −π(σ (x)) for each x ∈ V )
and increasing on the arcs (π(y) > π(x) for each (x, y) ∈ E). (Indeed, a function
q : V → Z increasing on the arcs is constructed, in linear time, by use of the standard
topological sorting. Now set π(v) := q(v)−q(σ (v)), v ∈ V .) Subdivide each arc (x, y)

with π(x) < 0 and π(y) > 0 into two arcs (x, z) and (z, y) and assign zero potential
to z. The new graph G, with O(m) nodes and O(m) arcs, is again skew-symmetric, and
the problem remains essentially the same.

Let & be the subgraph of the new G induced by the nodes with nonnegative poten-
tials. Then & ∪ σ (&) = G and & ∩ σ (&) = (Z,∅), where Z is the self-symmetric set of
zero potential nodes of G. Also & contains σ (s).

Clearly every s to σ (s) path P of G meets Z at exactly one node z, which subdivides
P into an s to z path R′ in σ (&) and a z to σ (s) path Q in &. Then P is regular if and
only if σ (R′) and Q are arc-disjoint. Conversely, let Q, R be two arc-disjoint Z to σ (s)

paths in & beginning at symmetric nodes in Z. Then the concatenation σ (Q) ·R (as well
as σ (R) · Q) is a regular s to σ (s) path of G if and only if Q and R are arc-disjoint.

This shows that our particular totally blocking IS-flow problem is reduced, in linear
time, to MBP with &, σ (s), Z (in fact, the problems are equivalent). Theorem 9.1 is
implied by the following.

Theorem 9.3. MBP is solvable in linear time.

We devise an algorithm for MBP and prove Theorem 9.3. Let the input of MBP con-
sist of an acyclic graph & = (X, U), a sink t and a source set Z with a map (involution)
σ : Z → Z giving a partition of Z into pairs. We say that two arc-disjoint s′ to t paths
Q, R beginning at “symmetric” sources z, σ (z) form a good pair, and say that a collec-
tion of pairwise arc-disjoint Z to t paths in & is a balanced path-set if its members can
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be partitioned into good pairs. So the task is to find a maximal (or “blocking”) balanced
path-set.

Each iteration of the algorithm will reduce the arc set of& and, possibly, the set Z, and
we sometimes will use index i for objects in the input of i-th iteration. So&1 = (X1, U1)

is the initial graph. Without loss of generality, one may assume that initially each source
has zero indegree and

(C1) each node of & lies on a path from Z to t ,

and will maintain these properties during the algorithm.
The iteration input will include a path D from a certain node of & to t , called the

pre-path. Initially, D is trivial: D = t . The nodes of & not in Z ∪ {t} are called inner.
The current & may contain special inner nodes, called complex ones. They arise when
the algorithm shrinks certain subgraphs of &; the initial graph has no complex nodes.
The adjacency structure of & is given by double-linked lists Ix and Ox of the incoming
and outgoing arcs, respectively, for each node x. The arc set of a path P is denoted by
E(P ).

An i-th iteration begins with extending D to a Z to t path P in a natural way; this
takes O(|P |−|D|) time. Let z be the first node of P . Then we try to obtain a good pair by
constructing a path from z′ = σ (z) to t , possibly rearranging P . By standard arguments,
a good pair for z, z′ exists if and only if there exists a path A from z′ to t , with possible
backward arcs, in which the forward arcs belong to U − E(P ) and the backward arcs
belong to E(P ), called an augmenting path w.r.t. P . For certain reasons, we admit A to
be self-intersecting in nodes (but not in arcs). Once A is found, the symmetric difference
E(P ):E(A) gives a good pair Q, R (taking into account that & is acyclic).

To search for an augmenting path, we replace each arc e = (x, y) ∈ E(P ) by the
reverse arc e = (y, x); let & = (X,U) be the resulting graph, and P the t to Z path
reverse to P . Thus, we have to construct a (directed) path from z′ to t in & or establish
that it does not exist.

To achieve the desired time bound, we apply a variant of depth first search which we
call here transit depth first search (TDFS) (such a search procedure was applied in [19]).
The difference from the standard depth first search (DFS) is as follows. When scanning
a new outgoing arc (x, y) in the list Ox of a current node x, if y has already been visited,
then DFS stays at x. In contrast, TDFS moves from x to y, making y the new current
node. Both procedures maintain the stack of arcs traversed only in forward direction
and ordered by the time of their traversal. If all outgoing arcs of the current node x are
already scanned, then the last arc (w, x) of the stack is traversed in backward direction
and w becomes the new current node. We refer to the path determined by the stack, from
the initial node to the current one, as the active path. Note that in case of TDFS the active
path may be self-intersecting (while it is simple in DFS).

We impose the condition that the outgoing arc lists of & are arranged so that

(C2) for each node x %= z of P , the arc e of P leaving x is the last element of Ox .

This guarantees that TDFS would scan e after all other outgoing arcs of x (i.e., the arcs
of P are ignored as long as possible).

At an iteration, we apply TDFS to & starting from z′ as above. The search terminates
when either it reaches t or it returns to z′ having all arcs of Oz′ traversed. In the first
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case (breakthrough) the final active path A in & determines the desired augmenting path
A in &, and we create a good pair Q, R as described above. In the second case, the
non-existence of a good pair for the given z, z′ is declared. Consider both cases.

Breakthrough case. Delete from & the arcs of Q, R and then delete all the nodes
and arcs that are no longer contained in Z to t paths (thus maintaining (C1)). This is
carried out by an obvious cleaning procedure in O(q) time, where q is the number of
arcs deleted. If Q or R contains a complex node, the iteration finishes by transforming
Q, R into a good pair of paths of the initial graph; this is carried out by a path expansion
procedure which will be described later. The obtained &, Z form the input of the next
iteration, and the new pre-path D is assigned to be the trivial path t . If & vanishes, the
algorithm terminates. The following observation is crucial for estimating the time bound.

Lemma 9.4. Let q be the number of arcs deleted at an iteration with a breakthrough.
Then, excluding the path expansion procedure if applied, the iteration runs in O(q) time.

Proof. Let W be the set of arcs of & traversed by TDFS on the iteration, and W the
corresponding set in &, i.e., W = {e ∈ U : e ∈ W or e ∈ W }. The iteration runs in
O(q + |W |) time, taking into account that each arc of P not in Q ∪ R is contained
in W . Therefore, it suffices to show that no arc from W remains in the new graph &.
Suppose this is not so. Then there is a Z to t path L of the old & that meets W but not
E(Q) ∪ E(R) (as the arcs of Q ∪ R are deleted). Let e = (x, y) be the last arc of L in
W . Let b = (y, w) be the next arc of L (it exists since y = t would imply that e is in A

but not in P , whence e belongs to Q ∪R). Then b %∈ W ∪E(Q) ∪E(R), by the choice
of e. Two cases are possible.

(i) e is in P . Then e = (y, x) ∈ W . According to condition (C2), at the time TDFS
traversed e from y to x all arcs of & leaving y had already been traversed. So b is
not in &, implying b ∈ E(P )−W . Then b is in Q ∪ R; a contradiction.

(ii) e is not in P . Then e ∈ W and e does not lie on the final active path A (otherwise e is
in Q ∪R). Therefore, TDFS traversed e in both directions. To the time of traversal
of e in backward direction, from y to x, all arcs of & leaving y have been traversed
(at this point the difference between TDFS and DFS is important). So b is not in &,
whence b ∈ E(P ). Now b %∈ W implies that b is in Q ∪ R; a contradiction.

12

Non-breakthrough case. Let Y be the set of nodes visited by TDFS. Then no arc of
& leaves Y . Therefore, in view of (C1),

(25) the set of arcs of & leaving Y consists of a unique arc a = (v, w), this arc lies on
P , and the nodes of the part of P from z to v are contained in Y .

Since no arc of & enters Z, we also have

Y ∩ Z = {z, z′}. (26)

We reduce & by shrinking its subgraph &Y = (Y, UY ) induced by Y into one node;
the formed complex node vY is identified with v. We call v the root of &Y and store &Y .
The list of arcs entering vY in the new graph is produced by simply merging the lists Ix
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for x ∈ Y from which the arcs occurring in &Y are explicitly removed, using the lists
Oy for y ∈ Y . (We do not need to correct the outgoing arc lists Ox for x %∈ Y explicitly,
as we explain later.) Thus, to update & takes time linear in |UY |. By (25), a is the only
arc leaving vY in &.

From (C1) and (25) it follows that

(27) the new graph & is again acyclic, and for each x ∈ Y , there is a path PY (x) from
x to the root v in &Y .

In view of (26), the set Z is updated as Z := Z − {z, z′}. If there is at least one arc
entering vY , then the new graph & and set Z satisfy (C1) and form the input of the next
iteration. The new pre-path D is assigned to be the part of P from the formed complex
node vY to t . If no arc enters vY , we finish the current iteration by removing the nodes
and the arcs not contained in Z to t paths. This further reduces & and may reduce Z and
shorten D.

One can see that the set UY is exactly W . This and the construction of pre-paths
imply the following.

Lemma 9.5. Let q be the number of arcs deleted by an i-th iteration without a break-
through. Then the iteration runs in O(q + max{0, |Di+1|−| Di |}) time. 12

As mentioned above, we do not need to explicitly correct the outgoing arc lists Ox for
x %∈ Y (this would be expensive). Let V be the current set of all complex nodes created
from the beginning of the algorithm. We take advantage of the following facts. First, the
elements of V that are nodes of the current graph (the maximal complex nodes) lie on
the current pre-path D. Second, at an iteration with a breakthrough, all complex nodes
are removed. Third, at an iteration without a breakthrough, the subgraph &Y forming
the new complex node vY contains a subpath of P from its beginning node (by (25)),
and the cleaning procedure (if applied at the iteration) deletes a part of the updated P

from its beginning node as well. Therefore, one can store V as a tree in a natural way
and use the disjoint set union data structure from [13] to maintain V . This enables us to
efficiently access the head vY of any arc e = (x, vY ) when e is traversed by TDFS (with
O(1) amortized time per one arc).

To complete the algorithm description, it remains to explain the path expansion pro-
cedure to be applied when an iteration with a breakthrough finds paths Q, R contained
complex nodes. It proceeds in a natural way by recursively expanding complex nodes
occurring in the current Q, R into the corresponding paths PY (x) as in (27) and building
PY (x) into Q or R (this takes O(|PY (x)|) time). The arc sets of subgraphs &Y extracted
during the algorithm are pairwise disjoint, so the total time for all applications of the
procedure is O(m).

Thus, we can conclude from Lemmas 9.4 and 9.5 that the algorithm runs in O(m)

time, yielding Theorem 9.3.
In the rest of this section we extend the above approach and algorithm (Algorithm

1) to a general case of acyclic (G, u). The auxiliary graph & = (X, U) and the set Z are
constructed as above, and the capacity u(e) of each arc e ∈ U is defined in a natural way.
We call an integer Z to t flow g in (&, u) balanced if the flow values out of “symmetric”
sources are equal, i.e.,

divg(z) = divg(σ (z)) for each z ∈ Z,
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and blocking balanced if there exists no balanced flow g′ satisfying g %= g′ ≥ g (taking
into account that & is acyclic). Then the problem of finding a totally blocking IS-flow
in (G, u) is reduced to problem BBF: find a balanced blocking flow for &, u, Z, t .

Algorithm 2 will find a balanced blocking flow g in the form g = α1χ
Q1 +α1χ

R1 +
. . .+αrχ

Qr +αrχ
Rr , where each αi is a positive integer, Qi is a path from some z ∈ Z

to t , and Ri is a path from σ (z) to t . It iteratively constructs pairs Qi, Ri for current
&, u, Z, assigns the weight αi to them as large as possible, and accordingly reduces the
current capacities as u := u− αiχ

Qi − αiχ
Ri . All arc capacities in & are positive: once

the capacity of an arc becomes zero, this arc is immediately deleted from &.
Each pair Qi, Ri is constructed as in Algorithm 1 when it is applied to the cor-

responding split-graph S = S(&, u). More precisely (cf. Section 3), S is formed by
replacing each arc e = (x, y) of & by two parallel arcs (split-mates) e1, e2 from x to y

with the capacities 5u(e)/26 and /u(e)/20, respectively. When u(e) = 1, e2 vanishes in
S, and e1 is called critical. The algorithm maintains S explicitly. The desired pair Qi, Ri

in (&, u) is determined by a good pair in S in a natural way.
The main part of an iteration of Algorithm 2 is a slight modification of an iteration

of Algorithm 1. The difference is the following. While Algorithm 1 deletes all arcs of
the paths Q, R found at an iteration, Algorithm 2 deletes only a nonempty subset B

of arcs in Q ∪ R (concerning the graph S) including all critical arcs in these paths.
One may think that Algorithm 2 essentially treats with a graph S (ignoring (&, u)) in
which some disjoint pairs of parallel arcs (analogs of split-mates) are distinguished and
the other arcs are regarded as critical, and at each iteration, the corresponding subset
B ⊆ E(Q) ∪ E(R) to be deleted is given by an oracle. Emphasize that the unique arc
leaving a complex node is always critical. Therefore, each complex node in Q ∪R will
be automatically removed. Computing αi’s and other operations of the algorithm beyond
the work with the graph S do not affect the asymptotic time bound.

We now estimate the complexity of an iteration of Algorithm 2. In case without a
breakthrough, properties (25),(26),(27) and Lemma 9.5 (with S instead of &) remain
valid. Note that the arc a in (25) is critical (since it is a unique arc leaving Y ); therefore,
the arc leaving the created complex node is critical. Our analysis of the breakthrough
case involves the subset W 2 ⊂ W of arcs traversed by TDFS in both directions (where
W is the set of all traversed arcs in the corresponding auxiliary graph S). Let W2 be the
corresponding set in S.

Lemma 9.6. Suppose an iteration of Algorithm 2 results in a breakthrough. Let e =
(x, y) be an arc of S such that e ∈ W2 or e ∈ E(P ) ∩W . Then any x to t path L in S

starting with the arc e contains a critical arc in Q∪R (and therefore, e vanishes in the
new graph S).

Proof. Suppose this is not so and consider a counterexample (e, L) with |L| minimum.
Let A0 be the active path in S just before the traversal of e or e from y to x, and A0 the
corresponding (undirected) path in S. At that time, for the set Oy of arcs of S leaving y,

(28) all arcs in Oy except e (in case e ∈ E(P )) are already traversed

(in view of condition (C2)). Let b = (y, w) be the second arc of L (existing as y = t

is impossible). By (28), if b is not in P , then b ∈ W . Also b %∈ W2 and b %∈ E(P ) ∩W
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(otherwise the part of L from y to t would give a smaller counterexample). This implies
that b belongs to Q ∪ R, and therefore, b is not critical. Let b′ be the split-mate of
b. Considering the path starting with b′ and then following L from w to t (which is
smaller than L), we similarly conclude that b′ %∈ W2 and b′ %∈ E(P ) ∩W . To come to a
contradiction, we proceed as follows.

The fact that S is acyclic implies that the symmetric difference (on the arcs) of
P and A0 is decomposed into a path from Z to t and a path from Z to y; therefore,
E(P ):E(A0) contains at most one arc a leaving y. This and (28) imply that all arcs in
Oy ∩ Oy except, possibly, a have been traversed twice; so they are in W2. Hence, one
of b, b′ must be in P ; let for definiteness b ∈ E(P ) (then b′ %∈ E(P )).

Now b %∈ W implies b ∈ E(P )− E(A0), and b′ ∈ W −W2 implies b′ ∈ E(A0)−
E(P ). Thus, both arcs b, b′ leaving y are in E(P ):E(A0); a contradiction. 12

The running time of an iteration with a breakthrough is O(|P | + |W | + q), where
q is the number of arcs deleted from S. Lemma 9.6 allows us to refine this bound as
O(|Q| + |R| + q). Combining this with Lemma 9.5, we can conclude that, up to a con-
stant factor, the total time of Algorithm 2 is bounded from above by m plus the sum 3

of lengths of paths Q1, R1, . . . , Qr, Rr in the representation of the flow g constructed
by the algorithm. Since |Qi |, |Ri | ≤ n and r ≤ 2m (as each iteration decreases the arc
set of S), 3 is O(nm). Also 3 does not exceed the sum of the transit capacities u(x) of
inner nodes x of & (assuming, without loss of generality, that no arc goes from s to s′).
Thus, Theorem 9.1 is generalized as follows.

Theorem 9.7. For an acyclic capacitated skew-symmetric network N with O(n) nodes
and O(m) arcs, a totally blocking IS-flow can be found in O(min{m+!(N), nm}) time.

Together with Corollary 8.3 and Lemma 8.4, this yields the desired generalization.

Corollary 9.8. SBFM can be implemented so that it finds a maximum IS-flow in an
arbitrary skew-symmetric network N in O(min{n2m,

√
!(N)(m +!(N))}) time.

10. Applications to matchings

Apply the reduction of the maximum u-capacitated b-matching problem (CBMP) in
a graph G′ = (V ′, E′) to the maximum IS-flow problem in a network N = (G =
(V , E), σ, u, s); see Section 2. The best time bound for a general case of CBMP is
attained by applying the algorithm of Section 5. Theorem 5.1 implies the following.

Corollary 10.1. CBMP can be solved in O(M(n, m) + nm) time, where n := |V ′| and
m := |E′|.

When the input functions u, b in CBMP are small enough, the transit capacities of nodes
in N become small as well. Then the application of the shortest blocking IS-flow method
may result in a competitive or even faster algorithm for CBMP. Let the capacities of all
edges of G′ be ones. We have !(N) = O(m) in general, and !(N) = O(n) if b is all-
unit. Then Corollary 9.2 yields the same time bounds as in [12, 25] for the corresponding
cases.
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Corollary 10.2. SBFM (with the fast implementation of a phase as in Section 9) solves
the maximum degree-constrained subgraph (or b-factor) problem in O(m3/2) time and
solves the maximum matching problem in a general graph in O(

√
nm) time.

Feder and Motwani [9] elaborated a clique compression technique and used it to
improve the O(

√
nm) bound for the maximum bipartite matching problem to O(

√
nm

log(n2/m)/ log n). We explain how to apply a similar approach to a special case of
MSFP, lowering the bound for dense nonbipartite graphs. We need a brief review of the
method in [9].

Let H = (X, Y, E) be a bipartite digraph, where E ⊆ X × Y , |X| = |Y | = n and
|E| = m. A (bipartite) clique is a complete bipartite subgraph (A, B, A × B) of H ,
denoted by C(A, B). Define the size s(C) of C = C(A, B) to be |A| + |B|. A clique
partition of H is a collection C of cliques whose arc sets form a partition of E; the size
s(C) of C is the sum of sizes of its members.

Let a constant 0 < δ < 1/2 be fixed. Then a clique C(A, B) of H is called a
δ-clique if |A| = 5n1−δ6 and |B| = /δ log n/ log(2n2/m)0. It is shown in [9] that a
δ-clique exists.

The clique partition algorithm in [9] finds a δ-clique C1 in the initial graph H1 =
(X, Y, E =: E1) and deletes the arcs of C1, obtaining the next graph H2 = (X, Y, E2).
Then it finds a δ-clique C2 (concerning the number of arcs of H2) and delete the arcs of
C2 from H2, and so on while the number of arcs of the current graph is at least 2n2−δ

and the Y -part of a δ-clique is nonempty. The remaining arcs are partitioned into cliques
consisting of a single arc each. So the cliques Ci extracted during the algorithm form
a clique partition. The running time of the algorithm is estimated as the sum of bounds
τ (Ci) on the time to extract the cliques Ci plus a time bound τ ′ to maintain a certain
data structure (so-called neighborhood trees). One shows that

(29) the algorithm runs in O(
√

nmβ) time and finds a clique partition C of H such that
s(C) = O(mβ), where β := log(n2/m)/ log n.

Suppose we wish to find a maximum matching in a bipartite graph or, equivalently,
to find a maximum integer flow from s to t in a digraph G with unit arc capacities, node
set X∪Y ∪ {s, t} and arc set E∪ (s×X)∪ (Y × t), where E ⊆ X×Y . One may assume
|X| = |Y | = n. Using the above algorithm, form a clique partition C as in (29) for
(X, Y, E). Transform each clique C(A, B) in C into a star by replacing its arcs by a node
z, arcs (x, z) for all x ∈ A and arcs (z, y) for all y ∈ B. There is a natural one-to-one
correspondence between the s to t paths in G and those in the resulting graph G∗, and
the problem for G∗ is equivalent to that for G. Compared with G, the graph G∗ has |C|
additional nodes but the number m∗ of its arcs becomes 2n + s(C), or O(mβ). Given a
flow in G∗, any (simple) augmenting path of length q meets exactly (q − 1)/2 nodes in
X ∪ Y , and these nodes have unit transit capacities. This implies that Dinits’ algorithm
has O(

√
n) phases (arguing as in [8, 21]). Since each phase takes O(m∗) time, the whole

algorithm runs in O(
√

nmβ) time, as desired.
Now suppose H = (X, Y, E, σ ) is a skew-symmetric bipartite graph without parallel

arcs, where the sets X and Y are symmetric each other. We modify the above method as
follows. Note that any two symmetric cliques in H are disjoint (otherwise some x ∈ X

is adjacent to σ (x), implying the existence of two arcs from x to σ (x)). We call a clique
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partition C symmetric if C ∈ C implies σ (C) ∈ C. An iteration of the symmetric clique
partition algorithm works as in the previous algorithm, searching for a δ-clique C′ in the
current H , but then deletes the arcs of both C′ and σ (C′). Let the algorithm construct a
partition C′ consisting of cliques C′1, σ (C′1), . . . , C′r , σ (C′r ) obtained in this order.

To estimate the size of C′ and the running time, imagine we would apply the previ-
ous algorithm to our H (ignoring the fact that H is skew-symmetric). Let the resulting
partition C be formed by cliques C1, . . . , Cq (in this order). Note that for a bipartite
graph with n nodes and m arcs, both the number e(C) of arcs of a δ-clique C and its
size s(C) are computed uniquely, and these are monotone functions in m, as well as
the above-mentioned time bound τ (C) (indicated in [9]). Moreover, one can check that
m′ ≤ m and e(C′) %= 0 imply m′ − 2e(C′) ≤ m − e(C), where C′ is a δ-clique in
a graph with n nodes and m′ arcs. Using these, we can conclude that r ≤ q and that
for i = 1, . . . r , s(C′i ) ≤ s(Ci) and τ (C′i ) ≤ τ (Ci). Then s(C′) ≤ 2s(C), implying
s(C) = O(mβ), by (29). Also the time of the modified algorithm is O(

√
nmβ) (by (29)

and by the fact that the above bound τ ′ remains the same) plus the time needed to treat
the symmetric cliques σ (C′i ), which is O(m).

Finally, the graph H ∗ obtained from H by transforming the cliques C′1, σ (C′1), . . . ,

C′r , σ (C′r ) into stars has a naturally induced skew-symmetry. By the above argument, H ∗

has O(mβ) arcs, and computing H ∗ takes O(
√

nmβ) time. Apply such a transformation
to the input graph of MSFP arising from an instance of the maximum matching problem.
Arguing as in the bipartite matching case above and as in the proof of Lemma 8.4, we
conclude with the following.

Theorem 10.3. A maximum matching in a general graph with n nodes and m edges can
be found in O(

√
nm log(n2/m)/ log n) time.
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