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Abstract
We give an N logO(1) N -time randomized O(1)-
approximation algorithm for computing the cost of min-
imum bichromatic matching between two planar point-
sets of size N .

1 Introduction
Consider two multisets A, B of points in R2, |A| = |B| =
N . We define EMD(A, B) to be the minimum cost of
a perfect matching with edges between A and B, i.e.,
EMD(A, B) = minπ:A→B

∑
a∈A ‖a − π(a)‖1,1 where π

ranges over all one-to-one mappings. We are interested
in efficient algorithms for computing EMD(A, B).

The problem is of significant importance in applied
areas, e.g., in computer vision [RTG00, IT03]. For
general (i.e., non-planar) distances, it can be solved in
time O(N3), using the “Hungarian” method [Law76].
That algorithm works even for multisets, i.e., when
points have weights2. The results for the Euclidean
version of the problem are given in the following table.3

Paper Approx. Time
[Vai89] 1 N5/2 logO(1) N
[AES95] 1 N2+δ, δ > 0
[AV99] 1 + ε N3/2(log N + 1/ε)O(1)

[Cha02, IT03] log n N log n

[AV04] log(1/δ) N1+δ logO(1) N, δ > 0

This paper O(1) N logO(1) N

The main result of this paper is a constant-
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1Note that for planar pointsets, the ‖·‖1 and ‖·‖2 norms differ
only by a factor of

√
2.

2The weight of a point can be thought of as the number of
times the point appears in the multiset.

3Note that some of the algorithms require that the pointsets
A, B are discrete, that is, they are subsets of [n]2 for an integer
n. As we see in Preliminaries, we can make this assumption to
hold (essentially) without loss of generality, for n close to N .

factor approximation algorithm with running time
N logO(1) N . As a consequence, we also obtain a
constant-factor approximation algorithm for the prob-
lem of finding a translation T ∈ R2 which mini-
mizes EMD(T (A), B). This is because, as shown
in [KV05, CGKR05], simply aligning the centroids of
A and B produces a “good enough” translation.

1.1 Techniques The algorithm is obtained in two
steps. Firstly, we show that the matching between
the whole sets A and B can be “decomposed” into
several matchings between subsets of those sets. The
decomposition is done is such a way that the cost of the
total matching is well-approximated by the sum of the
costs of (sub)-matchings computed for the subsets. The
sum can be then, in principle, approximated via random
sampling. However, the costs of the submatchings
can vary; in particular, it is possible that the cost
of one submatching dominates the whole sum. Thus,
the sampling of the submatchings needs to be done
by using random distribution where the probability
of choosing a submatching is roughly proportional to
its cost. To compute the distribution, we compute a
rough (logarithmic) approximation of the cost of each
submatching; this can be done very quickly. Then,
a small random sample of submatchings suffices to
estimate the total cost.

It should be noted that the algorithm does not
produce an approximately optimal matching, but only
estimates its cost. This drawback seems to be inherent
to the random sampling-based approach. Also, unlike
the algorithms of [Cha02, IT03, NS06], our algorithm
cannot be transformed into an embedding of the EMD
metric into l1. In fact, a recent result of [NS06]
shows that any such embedding must have distortion
at least

√
log n, while our algorithm provides constant

approximation factor.

2 Preliminaries
In the following, all set operations (union, selection, etc)
are performed on multisets.



2.1 Setup Let ε > 0 be some small constant. In the
following we apply simple (and standard) transforma-
tions to the input to make it more manageable. The
transformations will change the cost of the objective
function by at most a factor of 1± ε.

We start by producing an estimate T > 0 such
that T ≤ EMD(A, B) ≤ λT , for some λ > 0. One
way of doing it is to use the algorithm of [AV04] (as in
the table) with δ = 1/ logN ; this gives λ = log log N .
Alternatively, we can use a simpler algorithm of [Cha02,
IT03]; however, its running time and approximation
factor depend logarithmically on the aspect ratio n.

By multiplying all coordinates by (2N/ε)/T , we
can assume T = 2N/ε. Moreover, if we round each
coordinate to its nearest integer, the EMD between the
sets changes by at most ±2N , i.e., ±εT . Thus, we
can assume that the points in A and B have integer
coordinates, and this changes the objective function by
at most (1 + ε).

Consider now a grid G with side length n = 2Tλ.
Impose this grid on the plane, shifted at random.
Since any pair of points a, b is “cut” by the grid with
probability ‖a − b‖1/n, it follows that the probability
that any edge of the minimal matching between A and
B is cut is at most

EMD(A, B)/n ≤ λT/n ≤ 1/2

Thus, with probability 1/2, the problem decomposes
into several bi-chromatic matching subproblems, which
can be solved separately. The sets in each subproblem
are subsets of [n]2.

2.2 Importance sampling Importance sampling is
a statistical variance reduction technique for sampling-
based estimation (see [MR95], p. 312 for further
description and some applications to algorithm design).
The idea is as follows. Assume we want to estimate a
sum Z =

∑s
i=1 Zi, but we do not want to compute all

Zi’s. One way of doing it is by sampling. For example,
we could choose an index i uniformly at random from
[s], and use a random variable S = sZi to estimate Z.
In particular, E[S] = Z. However, the variance of S
could be quite large, if there are few “large” elements
Zi. The idea of importance sampling is to assign higher
probability mass to such Zi’s to ensure they are more
likely to be picked.

A specific version of importance sampling that we
use is defined in the following lemma.

Lemma 2.1. Consider a probability distribution defined
by p1 . . . ps ≥ 0, and values Z1 . . . Zs ≥ 0. Let Z =∑

i Zi and qi = Zi/Z. Assume that qi ≤ λpi for
some λ ≥ 1. Consider a random variable S such that

Pr[S = Zi/pi] = pi; note that E[S] = Z. Then, the
variance of S is at most Z2λ = λE2[Z].

Proof. The variance of S is at most

E[S2] =
∑

i

pi(Zi/pi)2 = Z2
∑

i

qi · qi/pi ≤ Z2λ

The above lemma enables us to use standard
(Chebyshev) bounds to show that, for any ε > 0,
O(λ/ε2) samples suffices to estimate Z up to (1 ± ε)
with constant probability.

2.3 Probabilistic embeddings Consider a met-
ric space (X, D), and a distribution D over pairs
[(X ′, D′), f ], where (X ′, D′) is a metric and f : X → X ′.
Following [Bar96], we say that (X, D) probabilistically
embeds into D with distortion c if for every a, b ∈ X :

• For every [(X ′, D′), f ] in D, D(a, b) ≤
D′(f(a), f(b))

• ED[D′(f(a), f(b))] ≤ cD(a, b)

3 Algorithm
We start by extending EMD to sets of non-equal size.
Consider multisets A, B ⊂ [n]2, |A|, |B| ≤ N . Define

EEMDn(A, B) = min
S⊂A,S′⊂B,|S|=|S′|

[EMD(S, S′)

+ n(|A − S| + |B − S′|)]

If n is clear from the context, we skip the subscript.
Note that 2n is equal to the diameter of [n]2. As

a result, the minimum is always realized for |S| =
|S′| = min(|A|, |B|); otherwise, there is a pair of points
a ∈ A − S, b ∈ B − S′, which can be matched at a cost
at most 2n = n + n, so they can be as well included in
S and S′, respectively. As a result, if |A| ≤ |B|, we can
alternatively define EEMD(A, B) as

EEMDn(A, B) = min
S⊂B,|S|=|A|

EMD(A, S) + n|B − A|

Lemma 3.1. EEMDn(·, ·) is a metric.

Proof. Consider an (extension) set X = [n]2 ∪ [N ].
We extend the l1 metric over [n]2 to X by defining
D(a, b) = n if either a ∈ [N ] or b ∈ [N ], and
D(a, b) = ‖a − b‖1 otherwise. For each set A, we
define Ã = A ∪ [N − |A|]. It can be easily verified that
EMD(Ã, B̃) = EEMDn(A, B). Thus, EEMDn(A, B)
is a metric.

Now we show how to decompose EEMDn into a
sum of metrics EEMDm for m << n. The decompo-
sition induces some (constant) distortion, and is later



used in the algorithm. The ideas used here are not
terribly new - the algorithm of [AV04] used a similar
partitioning of the plane using randomly shifted grids (
[Cha02, IT03] used a simpler version of such partition-
ing as well). In those papers, as well as here, the par-
titioning enables us to reduce the original problem over
“large” grid to several subproblems over smaller grids.
However, for our purpose, we need to ensure that the
subproblems are constructed independently from each
other. This is because the final estimation is performed
by a (biased) sampling of the subproblems. Our de-
composition result can be phrased (Theorem 3.1) as a
low-distortion probabilistic embedding of EEMDn into
a weighted sum of EEMDm’s, where m is much smaller
than n.

The decomposition procedure is as follows. Con-
sider an (arbitrary shifted) grid G, with cell side length
m, imposed over [n]2. Formally, we will interpret G
as a set of cells, naturally associated with [k]2 for
k ≤ +n/m, + 1 ≤ 2n/m (assuming n,m are large
enough); this also induces the l1 metric on G. For any
a ∈ [n]2, G(a) denotes the cell containing a. For any
multiset A ⊂ [n]2, G(A) is a multiset consisting of all
points G(a), a ∈ A. For any cell c ∈ G, we define
Ac = {a ∈ A : G(a) = c}. We can think about Ac as
(multi)subsets of [m]2.

The grid naturally decomposes EEMDn. That is:

Lemma 3.2. For any A, B ⊂ [n]2, we have

EEMDn(A, B) ≤
∑

c∈G

EEMDm(Ac, Bc)

+ mEEMDk(G(A), G(B))

Proof. Assume |A| ≤ |B|. We will construct a matching
between A and a subset S ⊂ B as follows. Firstly we
construct the matching within cells. For a given cell
c, assume |Ac| ≤ |Bc|. We match points in Ac with
a subset Sc ⊂ Bc; this has cost EMD(Ac, Sc). The
remaining points Bc − Sc for all c are matched between
different cells, or not matched at all. Each of the latter
adds a cost of n, charged to the mk|G(A)−G(B)| term
of mEEMD(G(A), G(B)) (note that n ≤ mk). To
match the points between cells, observe that a point
a ∈ Ac and b ∈ Bc′ can be matched by a path that
goes from a to the center of c, then to the center of
c′, then to b. The cost of this connection is at most
m + m‖c − c′‖1 + m. We charge the first term to
the m|Ac − Bc| term of EEMD(Ac, Bc), the second
term to mEMD(G(A), G(B)), and the third term to
the m|Ac′ − Bc′ | term of EEMD(Ac′ , Bc′),

The above inequality holds for any placement of
the grid G on [n]2. The following two lemmas will

show that, if the grid G is shifted at random, then
an approximate version of the reverse inequality holds
as well (in the expectation). Specifically, we have the
following two lemmas.

Lemma 3.3. Consider a random variable Z =∑
c∈G EEMDm(Ac, Bc). We have

E[Z] ≤ 2 · EEMDm(A, B).

Proof. Assume without loss of generality that |A| ≤ |B|.
Consider any matching between A and S ⊂ B, |A| =
|S|, and consider any of its edges (a, b). The probability
that this edge is cut by a randomly shifted grid is at
most p(a, b) = ‖a−b‖1

m . If the edge is cut we add (at
most) m to Z, otherwise we add ‖a − b‖1 to Z. Thus,

E[Z] ≤ m|A − B| +
∑

(a,b)

(p(a, b)m + ‖a − b‖1)

= m|A − B| +
∑

(a,b)

(‖a − b‖1 + ‖a− b‖1)

≤ m|A − B| + 2EMD(A, S)

Lemma 3.4.

E[mEEMD(G(A), G(B))] ≤ EEMD(A, B)

Proof. Follows from similar argument to the proof of
Lemma 3.3

We will now apply the above lemmas in a recursive
manner. That is, we impose a grid G1 on [n]2, then a
grid G2 on G1, and so on. The last grid is denoted by
Gt. All grids have cell side length m. As a result Gt has
dimensions Mt ×Mt where Mt ≤ n2t/mt. For δ > 0 we
will choose the parameters t = O(1/δ) and m = O(nδ)
so that Mt ≤ m.

Consider any i = 1 . . . t. Define Gi(A) =
Gi(Gi−1(. . . G1(A))). That is, Gi(A) is “representa-
tion” of A using the grid Gi. Define

Xi = mi
∑

c∈Gi

EEMD(Gi−1(A)c, G
i−1(B)c)

and
Y = mtEEMD(Gt(A), Gt(B))

By applying Lemma 3.4 (i−1 times) and Lemma 3.3
(once) we get E[Xi] ≤ 2 · EEMD(A, B). By applying
Lemma 3.4 (t times) we get E[Y ] ≤ EEMD(A, B).
Therefore

E[
t∑

i=1

Xi + Y ] ≤ (2t + 1)EEMD(A, B)

At the same time, by applying Lemma 3.2 in an
analogous fashion, we get EEMD(A, B) ≤

∑t
i=1 Xi+Y

Therefore, we have the following.



Theorem 3.1. For any δ > 0, EEMDn can be prob-
abilistically embedded into a weighted sum of metrics
EEMDm, m = nδ (with non-negative weights), with
distortion O(1/δ). That is, there is a distribution D
over T -tuples of mappings < f1, . . . , fT >, fi : [n]2 →
[m]2, and weights < w1, . . . , wT >, such that for any
A, B ⊂ [n]2:

• EEMDn(A, B) ≤
∑

i wiEEMDm(fi(A), fi(B))
with probability 1

• E[
∑

i wiEEMDm(fi(A), fi(B))] ≤ O(1/δ) ·
EEMDn(A, B)

Moreover, all weights and images fi(A) can be computed
in time O(|A|/δ); in particular,

∑
i |fi(A)| = O(|A|/δ).

Note: in our mapping the weights wi are fixed.
It remains to show an efficient algorithm for the

EEMD approximation. Firstly, we generate the weights
wi and mappings fi as per Theorem 3.1. Let S =∑

i wiEEMD(fi(A), fi(B)). By Markov inequality we
get that Pr[S ≥ 4 ·O(1/δ) ·EEMD(A, B)] ≤ 1/4. Also,
S ≥ EEMD(A, B). Thus, it suffices to estimate S. For
simplicity of notation, we (conceptually) replicate each
EEMD metric several times, so that we have wi = 1
for all i. Let Zi = EEMD(Ai, Bi), then S =

∑
i Zi.

Our estimation algorithm uses importance sam-
pling. As described in Preliminaries, we compute es-
timations Ei of Zi such that Ei ≤ Zi ≤ λEi. This takes
O(N logO(1) N) time.

Define E =
∑

i Ei, pi = Ei/E. We use Lemma 2.1
to estimate

∑
i Zi up to a factor of (1+ε), for some small

constant ε > 0, using probabilities pi, with probability
of correctness greater than 1 − 1/5. Since each value
Zi can be evaluated exactly in time O(m6) (using the
Hungarian algorithm), it follows that the estimation of
Zi can be done in time O(λm6). We can choose the
constant δ so that λm6 = o(N). Thus, the total running
time is N logO(1) N .

Theorem 3.2. There is an algorithm that, given
A, B ⊂ [n]2, |A| = |B| = N , in time O(N logO(1) N)
outputs an estimate C such that C ≤ EEMD(A, B) ≤
O(C) with probability at least 1 − 1/5 − 1/4 > 1/2.

4 Conclusions
In this paper we presented a constant-factor approxima-
tion for computing the cost of minimum bi-chromatic
matching in the plane. As its predecessors [IT03, AV04]
it can be easily extended to Rd for constant d.

The algorithm uses a combination of two ideas: a
decomposition of EMD metric into several metrics over
smaller domains, and calculating the total cost by sam-
pling the metrics, using probabilities which approximate

the costs of individual metrics. This combination could
be useful for other problems as well.
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