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Several linear-time approximation algorithms for the minimum-weight perfect match- 
ing in a plane are proposed, and their worst- and average-case behaviors are analyzed 
theoretically as well as experimentally. A linear-time approximation algorithm, named 
the “spiral-rack algorithm (with preprocess and with tour),” is recommended for prac- 
tical purposes. This algorithm is successfully applied to the drawing of road maps such 
as that of the Tokyo city area. 

I. INTRODUCTION 

Consider n (an even number) points in a plane. The problem of finding the minimum- 
weight perfect matching, i.e., determining how to match the n points in pairs so as to 
minimize the sum of the distances between the matched points, as well as Euler’s 
problem of unicursal traversing on a graph, is of fundamental importance for optimiz- 
ing the sequence of drawing lines by a mechanical plotter ([2-5, 81; details are dis- 
cussed in Sec. V). 

The algorithm which exactly solves this problem in 0(n3) time [6] seems to be too 
complicated from the practical point of view. Even approximation algorithms of O(n2) 
or O(n log n) [lo] would not be satisfactory or need some improvement for the appli- 
cation to real-world problems of a size, say, n greater than lo4. In contrast with the 
matching problem, an Eulerian path can be found in linear time in the’number of 
edges. 

In this paper, linear-time* approximation algorithms are proposed for the matching 
problem in a unit square; their worst-case performances are analyzed theoretically; 
their average-case performances are investigated both theoretically and experimentally 
for the case where n points are uniformly distributed on the unit square; and an appli- 
cation to the drawing of a road map is shown. The quality of an approximate solu- 
tion is measured by the absolute cost of the matching, i.e., the sum of the distances 

*We adopt the RAM model of computation which executes an arithmetic operation 
such as addition, multiplication, or integer division (hence, the “floor” operation) in a 
unit time [ 11. 
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between the paired points, and not by the ratio of the cost to that of the exact opti- 
mal solution. For the distance, not only the L2 distance (Euclidean distance) but also 
the L ,  distance (maximum norm) is considered, the latter being more appropriate 
when the running time of a mechanical plotter is in question. 

II. ALGORITHMS 

A. Straightforward Algorithms 

We partition the unit square into kZ square cells by dividing each side into k equal 
parts. Each point belongs to one of the k2 cells. We determine the cell to which a 
point belongs by multiplying the coordinates (abscissa and ordinate) of the point by k 
and then truncating off the fractional parts. The cells are ordered in a prescribed order 
(see below). We number the n points to  form a sequence which is consistent with the 
order of the cells they belong to; i.e., points in one and the same cell may arbitrarily 
be ordered among themselves, but points in different cells must be ordered consistently 
with the order of the cells. For the approximate solution we adopt the matching con- 
sisting of pairs of the (2 i  - 1)st point and the ( 2 9 t h  (i= 1 , 2 ,  . . . , in). Two types of 
cell orders are considered here-serpentine and spiral rack (see Fig. 1). The straight- 
forward algorithm with the serpentine order will be called the serpentine algorithm, 
and that with the spiral rack order, the spiral-rack algorithm.. 

The following variants of the algorithms are also considered: 

(i) Preprocess. First arbitrarily match as many pairs of points as possible within 
each cell separately, and then apply one of the above algorithms to the remaining 

(ii) Tour. Make the matching {(2i, 2i t 1)li = 1 , 2 ,  . . . , i n ,  ( n  t 1 =_ 1)) in addi- 
tion to the matching ( (2 i  - 1, 2 i ) } ,  and adopt the one with less cost for the solution.* 

points. 

1 2 3  k 1 2 3  k 

k k 

3 3 

2 2 

1 1 

( i )  s e r p e n t i n e  c e l l  o r d e r  ( i i )  s n i r a l  rdck c e l l  Grder ( k :  o d d )  

FIG. 1. Typical cell orders. 

*The idea of constructing a tour and taking the shorter is found in [ 101. The basic 
idea of straightforward algorithms with tour is proposed in [ 21. 
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Provided k is taken as large in order as n"', it is evident that the complexity of these 
algorithms is O(n) both in time and in space. 

In the following, the ce21 distance of two cells with respect to a prescribed cell order 
will mean the difference of the cell numbers in that ordering; e.g., two consecutive 
cells are at cell distance 1. 

B. Bottom-Up Four-Square Algorithm 

As above, we divide the unit square into kZ cells of size Ilk, where k is taken to be a 
power of 2, say, k = 2*. After determining which point belongs to which cell, we 
match the points in pairs as far as possible within the cells. Then, we aggregate the 
neighboring four cells into a cell of size 2/k, to have )k2 larger square cells. Within 
each of these larger cells, we match the remaining points as far as possible. We repeat 
a similar process m times. This algorithm, with k = O(n'/'), can be implemented to 
run in O(n) time by the use of carefully designed data structure. {The four-square 
algorithm has been proposed in [lo]. The simple-minded top-down recursion for it 
would seem to require O(n log n) time.} 

C. Strip-with-Bucket Algorithm 

We apply the serpentine algorithm (with tour and without preprocess) once to the 
original pattern and then to the pattern shifted by 1/2k horizontally. We adopt the 
matching with less cost for the solution. This algorithm may be viewed as a linear- 
time variant of the strip algorithm in [ 101 in which the sorting, whose time complex- 
ity is O(n log n), is approximated by the distribution into buckets. 

111. WORST-CASE ANALYSIS 

For a fixed algorithm with kZ cells, let kn(k) be the supremum of the costs of solu- 
tions over all possible configurations of n points in the unit square, and put 

The following analysis shows that the spiral-rack algorithm with tour is the best 
among the linear-time algorithms considered here so long as the worst-case behavior is 
concerned. 

A. Straightforward Algorithms 

An upper bound for fin@) of a straightforward algorithm can be obtained by means 
of linear programming.* The primal variable ni denotes the number of edges in a 
matching (or in a tour in the analysis of the algorithms with tour) connecting points in 
two cells at cell distance j - 1 ; in particular, nl is the number of pairs within the same 
cells. 

*A referee kindly informed the authors that the idea of using the duality of linear 
programs was also thought of by Papadimitriou (unpublished) to analyze the minimum- 
spanning-tree heuristics described in [ 101. 
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We shall first illustrate the idea of using linear programs for the analysis of the ser- 
pentine algorithm without preprocess and without tour for the L ,  distance. Let us 
consider the 

Primal program: 

maximize 

subject to 

where ci = j / k  is an upper bound for the L ,  distance between two points contained in 
two cells at cell distance j - 1. The fnst constraint comes from the fact that the total 
number of pairs in a perfect matching is one-half of the number of points, and the sec- 
ond from the fact that the cell distance between the “first” point and the “last,” i.e., 
the left-hand side, dozs not exceed the cell distance between the first cell and the last. 
Obviously, the value f of the objeGive function for the optimal solution of the primal 
program gives an upper bound for M,(k). 

The dual program is then 

Dual program: 

minimize 

subject to x + ( j -  l )y>cj  ( j = 1 , 2 ,  ...), 

g ze i n  x t (kz - l ) y ,  

y>o.  

As is well known, the value g of the d,”al objective function for any feasible solution of 
the dual program is not smaller than f, i.e., 

lij ,(k) Q 7 G g, 
A 

so that g can be used as an upper bound for M,(k). In particular, the minimum value 
ĝ  of the dual program gives a good upper bound, which often, as.in this case, turns out 
to be asymptotically tight. 

The optimal solution of the dual program is easily shown to be (x^,y^) = (Ilk, l/k), 
for which x^ t ( j -  I ) ? =  ci for a l l j= 1,2,  . . . , andg=n/2k  t k -  l /k.  Hence we have 

&(k) Q n/2k t k - l / k .  (1)  

The optimal solution of the primal program is degenerate; for example, we have 

A n ,  = t n - k - 1, 

f;i = 0 for the other j ,  

Sk = k + 1 ,  
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which gives 

fh=n/2k+  k -  l / k = g .  

Since the variables nj represent the number of points so that they are to be integers, 
there is not in general a distribution of n points in the square such that the serpentine 
algorithm (without preprocess and without tour) will yield a matching with the cost 
equal to (2). However, it is readily seen that there is a distribution (Fig. 2) for which 
the algorithm will yield a matching with cost asymptotically equal to (2). Therefore, 
the upper bound (2) is asymptotically attainable; i.e., we have 

;(a) = 1/2a + a, 

The worst-case costs of the other straightforward algorithms and their variants can 
be analyzed by slightly modifying the constraints and/or the expressions for cl, as is 
sketched below, where, for the sake of simplicity, we shall consider asymptotic proper- 
ties only, e.g., we shall replace the right-hand side k2 - 1 of the constraint of the 
primal program by k2. It is interesting to note that, in the worst-case analysis, a 
straightforward algorithm with tour and without preprocess has the same linear pro- 
gram as the corresponding algorithm with tour and with preprocess. The results are 
summarized in Table I. 

1. Serpentine Algorithm 

For the serpentine cell order, we have 

L2 distance: cj = ( 1  +j2)'I2/k ( j  = 1,2,. . .), 
L, distance: cj = j / k  ( j  = 1,2, .  . .). 

k 

3 

2 1 1 

FIG. 2. Worst configuration for the serpentine algorithm without tour. 



TA
B

LE
 I.

 
A

sy
m

pt
ot

ic
 s

up
re

m
um

 2, 
an

d 
ex

pe
ct

at
io

n 
po

 o
f 

th
e 

co
st

/n
'1

2 
fo

r t
he

 o
pt

im
al

 v
al

ue
 g

o a
nd

 
of

 t
he

 p
ar

am
et

er
 a

=
 k/

n'
lz

 

A
lg

or
ith

m
 

L
2

 D
is

ta
nc

e 
L

, 
D

is
ta

nc
e 

N
um

be
r 

N
am

e 
C

om
pl

ex
ity

 
20

 
&J

 
cco 

Ob
 

2
0

 
&
I
 

PO
 

%
 

1 2 3 4 5 6 7 8 9 10
 

11
 

12
 

Se
rp

en
tin

e 
Se

rp
en

tin
e 

(p
re

pr
oc

es
s)

 
Se

rp
en

tin
e 

(t
ou

r)
 

Se
rp

en
tin

e 
(p

re
pr

oc
es

s,
 

to
ur

) 
Sp

ira
l-r

ac
k 

Sp
ira

l-r
ac

k 
(p

re
pr

oc
es

s)
 

Sp
ira

l-r
ac

k 
(t

ou
r)

 
Sp

ira
l-r

ac
k 

(p
re

pr
oc

es
s,

 
to

ur
) 

B
ot

to
m

-u
p 

fo
ur

-s
qu

 ar
e 

S t
 ri

p-
w

ith
- 

bu
ck

et
 

Ex
ac

t 
St

ri
p 

[l
o

] 

1.
68

2 
1.

68
2 

1.
18

9 

1.
18

9 

Q
 1

.4
34

 
21

.3
18

 
1.

24
5 

Q
1.

01
4 

20
.9

32
 

G
1.

01
4 

20
.9

32
 

0.
84

 1 
0.

84
 1 

1.
18

9 

1.
18

9 

1.
21

11
b 

1.
13

6 

1.
7 1

2I
b 

1.
71

21
 

Q
1.

93
6 

[-7:;
:3""

 
21

.7
89

 
G

1.
18

9 
[ 1

.1
89

1b
 

21
.0

57
 

0.
70

7e
 

>0
.5

37
e 

..
. 

..
. 

0.
58

5 
0.

77
 

0.
63

7 
0.

79
 

0.
58

5'
 

0.
77

' 

0.
63

7'
 

0.
79

' 

0.
49

5 
1.

21
 

0.
48

4 
1.

12
 

0.
49

5'
 

1.
21

' 

0.
48

4'
 

1.
12

' 

0.
55

0d
 

2.
7g

d 

0.
58

5'
 

0.
77

' 

0.
47

4'
'' 

* 
* 

- 
0.

35
g 

..
. 

1.
41

4 
0.

70
7 

0.
54

5 
1.

41
4 

0.
70

7 
0.

60
3 

1 
1 

0.
54

5'
 

1 
1 

0.
60

3'
 

1.
22

5 
1.

22
5 

0.
45

0 

1 
1 

0.
44

3 

0.
86

6 
1.

73
2 

0.
45

0'
 

0.
86

6 
1.

73
2 

0.
44

3'
 

Q
1.

36
9 

[-7:;;;]'>' 
0.

49
2d

 
2

 1.
26

5 
1 

1 
0.

54
5'

 

0.
73

 
0.

75
 

0.
73

' 

0.
75

' 

1.
17

 

1.
07

 

1.
17

' 

1.
07

' 

2.
7B

d 

0.
73

' 

..
. 

..
. 

0.
43

6'
1'

 
*

.
 
. 

..
. 

..
. 

..
. 

20
.5
 

'It
 i

s 
as

su
m

ed
 th

at
 M

,/
n'

lZ
 c

on
ve

rg
es

 in
 p

ro
ba

bi
lit

y 
to

 a
 c

on
st

an
t f

or
 th

e 
se

rp
en

tin
e 

an
d 

th
e 

sp
ira

l-r
ac

k 
al

go
rit

hm
s.

 
bT

he
 va

lu
e 

co
rr

es
po

nd
in

g 
to

 a
n 

up
pe

r 
bo

un
d 

fo
r p

o
, w

hi
ch

 is
 n

ot
 a

sy
m

pt
ot

ic
al

ly
 ti

gh
t. 

'T
he

 o
pt

im
al

 v
al

ue
 o

f 
a 

sh
ou

ld
 b

e 
de

te
rm

in
ed

 in
 th

is
 ra

ng
e 

in
 s

uc
h 

a 
w

ay
 th

at
 k
 =

 a
n

'/
2 m

ay
 b

e 
a 

po
w

er
 o

f 
2.

 
d*

fB
y e

le
m

en
ta

ry
 p

ro
ba

bi
lit

y 
ca

lc
ul

at
io

n.
 

Se
e 

[4
] 

fo
r d

et
ai

l o
ff

. 
eF

ro
m

 [ 
10

1.
 

gT
hi

s 
is

 th
e 

va
lu

e 
co

nj
ec

tu
re

d 
in

 [
 71

. 
H

ow
ev

er
, a

cc
or

di
ng

 to
 o

ur
 e

xp
er

im
en

t, 
th

is
 v

al
ue

 s
ee

m
s 

to
 li

e 
be

tw
ee

n 
0.

32
 a

nd
 0

.3
3.

 



PERFECT MATCH I NGS 73 

The linear programs for the four variants of the serpentine algorithm as well as the re- 
sulting upper bounds are as follows. 

a. Without Preprocess and Without Tour* 

Primal program: 

maximize 

subject to 

C ( j -  l )ni<k2,  
j = 1  

nj 2 0. 

g = i n  x t k2y 

Dual program: 

minimize 

subject to x t ( j - 1) y 2 ci 

y 2 0 .  

( j = 1,2 ,  . . .) 

L2 distance: ;(a) = 1 / a a  t a, C0 = 23/4 1.682, 80 = = 0.841; 

L, distance: ;(a) = 1/2a t a, &, = I /& = 0.707. Go = a= 1.414, 

The upper bound in either distance is asymptotically attained by the configuration 
given in Figure 2, where we have k pairs at L2 (or L, )  distance 1 ,  i.e., nk = k and 
i n  - k pairs at L2 distance f i / k  (or L ,  distance l/k), i.e., n l  = i n  - k. 

6. With Preprocess and Without Tour 

Primal program: 

maximize 

subject to C ni = in, 
j = 1  

C ini< k2, 
j ' 2  

nj> 0. 

Dual program: 

minimize g = i n x  + k2y 

*The case for the L, distance is already explained above. 
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subject to 

Here it should be noted that, owing to preprocessing, the first point of a pair in a 
matching cannot lie in the same cell that the second point of the preceding pair lies 
in, so that we have the coefficient j ,  instead of j - 1 ,  in the inequality constraint of 
the primal program. 

L2 distance: ;(a) = 1/*a t a, 

L ,  distance: ;(a) = 1/2a+ a, 

& = 23'4 + 1.682, 

& = fi + 1.414, 

go = 2-'14 + 0.841; 

go = 1 1 4  k 0.707. 

The bound in either distance is asymptotically attainable again by the configuration 
of Figure 2. 

c. WitWWithwt Preprocess and With Tour 

Primal program: 

maximize 

subject to 

9 ni f =  c 7j- 
1 - 1  

C n j = n ,  
j - 1  

C (i- mj< k2, 
j = 1  

n j >  0. 

Dual program: 

minimize g rn t k2y 

subject to x + ( j -  l)YZ+Cj ( j =  1 , 2 , .  . .), 
y z o .  

Here, nj denotes the number of edges whose vertices are at cell distance j - 1 in a tour. 
Obviously, one-half of the tour length gives an upper bound for the better matching in 
the tour. Note also that the coefficient j - 1 in the inequality constraint of the primal 
program here remains unaltered for the case with preprocess. 

L 2  distance: ;(a) = l/*a t +a, go = 2'14 + 1.189, &, = 2lI4 = 1.189; 

L, distance: ;(a) = 1/2a t +a, 2, = 1 ,  &,= 1 .  

The configuration of Figure 3 asymptotically attains the upper bound in either case. 
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1 2 3  k 

k 

3 

2 I 1 

FIG. 3. Worst configuration for the serpentine algorithm with tour. 

2. Spiral- Rack Algorithm 

Upper bounds for &(k) of the spiral-rack algorithm which are obtained from the 
three linear programs outlined above with appropriately defined values cj, are not 
asymptotically tight. Therefore we should resort to a more elaborate linear program- 
ming formulation. 

Consider, for example, tde edges connecting points in two cells at cell distance 2 
with respect to the spiral-rack cell order. Some of those edges can have bound 3/k in 
L ,  length, but the L ,  distance for the rest of them can be at most 2/k.  With this 
observation, we introduce c; ( j  = 3, 5, 7, . . .) in addition to cl. The former takes care 
of exceptions and the latter is an upper bound valid for the majority. We set 

L2 distance: c1 = */k, 

‘ (1 t [ i ( j  t 2)I2}’l2/k ( j  = 2 , 6 ,  10, . . .), 
(4 t [ i ( j  t 1)]2}1/2/k ( j  = 3,7 ,  1 1 ,  . . .), 
(4 t [i(j t 2)I2}’l2/k 

(1 t [ i ( j  t 1)]2}1/2/k 

t [i(j t 3)]2}1/2/k 

t [ $ ( j  t 3)I2}’I2/k 

( j =  4 , 8 , 1 2 , .  . .), 
( j  = 5 , 9 , 1 3 , .  . .), 
( j  = 3 , 7 , 1 1 , .  . .), 
( j  = 5 , 9 , 1 3 , .  . .), 

r cj = 

c;= {- 
L ,  distance: ci = l ; ( j  t 2)J/k 

c;= 4(j+3)/k 

( j =  1,2 ,3 ,  . . .), 
( j = 3 ,  547 , .  . .), 

where 1x1 denotes the largest integer not exceeding x. 
The modified linear programs, with variables nj ( j  = 1,2 ,3 ,  . . .) and n; ( j =  3,5,  

7 , .  . .), for the four variants of the spiral-rack algorithm, are shown below, together 
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with the resulting upper bounds for ;(a). In the following, Zo denotes summation 
over odd integers. 

a. Without Preprocess and Without Tour 

Primal program: 

subject to C n j t  xon;=y  n 
j=i j = 3  

co n; < k, 

nj Z 0, 

n;> 0. 

j= 3 

Dual program: 

minimize g = i n x  t k2y + kz 

subject to x t ( j - l ) y Z c i  ( j = 1 , 2 , 3  , . . .  ), 
x + ( j -  l ) y + z Z c j  ( j = 3 , 5 , 7 , .  . .), 

YZO, 

220. 

La distance: 

Though the upper bound for a > 1 is not tight, we have the inequality 

A sharper bound 

& Q [ ( 2 6  - l ) ( a  + 1 - 6 ) ] ' " / 2  1.434 
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may be obtained by refining the linear program in a way similar to that outlined later 
in Subsection d. We have also a lower bound 

G o > ( * -  $)1'2+1.318 

which is asymptotically realized by a configuration with 

n, = [ ( j o  - 2a2 - 1)/2(jo - 2)]n, njo = [ (2a2  - 1)/2(jo - 2)]n ,  

nj = 0 ( i f  2 ,  io), 

where j ,  is a sufficiently large integer. 

L ,  distance: 

ji(a)=min - + a ,  

The supremum $(a) in 

(;a 

tion with 

C l  = (3 - az )n ,  

2, = [ ( j o  - 2a2 

3 + ;), &, = & + 1.225, &-, = 4 i 1.225. 

the L ,  distance is asymptotically attained by a configura- 

2 j = o  ( j # 2 , j o )  for a> l@,  

where jo  is an even integer greater than 4aZ 

b. With Preprocess and Without Tour 

Primal program: 

maximize 

subject to 
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Dual program: 

minimize g E i n  x + kzy t kz 

subject to  X k C 1 ,  

x t jy 2 c, 

xtjy t z ~ c j  

Y 2 0 ,  

z 2 0 .  

( j  = 2,3, . . .), 
( j =  3 , 5 , .  . .), 

L2 distance: 

t '). ( % / n - f i ) a !  m-2 
;(a!) = rnin (A + 

4 ' 2 a  2 

For a! < fi, the asymptotic supremum $(a!) in the L z  distance is attained by a con- 
figuration with 

For a 2 fi, the constraints for j = 4 and j = m in the dual program are active. The 
supremum ;(a!) is attained by the configuration shown in Figure 4, where the shaded 
core, consisting of 2n - 4(a - fi) nilz cells, contains G4 = i n  - (a! - f i ) n l / z  pairs 
at L z  distance @/k and the outer shell contains 6, (a! - f i ) n l l z  pairs at Lz  dis- 
tance 1 - i/k [i = 1,2,  . . . , (a! - f i ) n ' / z ] ,  the total length in the outer shell amount- 
ing to (+ - l/a)n'? 

t 
FIG. 4. Worst configuration for the spiral-rack algorithm with preprocess and without 
tour in the Lz distance. 
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L ,  distance: ;(a) = 1/20! t +a, 2 0  = 1 ,  60 = 1. 

The asymptotic supremum &a) in the L ,  distance is attained by a configuration with 

where j ,  is an even integer greater than 2a2. 

c. With/Without Preprocess and With Tour 

Primal program: 

maximize f E  +( c cjnj + x o  cjni) 
i f 1  j = 3  

c" nj < k, 
/= 3 

nj Z 0, 

ni 2 0. 

Dual program: 

minimize g E n x  t k2y + kz 
subject to x + (i - 1 ) y Z 3 cj ( j  = 1 , 2 ,  . . .), 

x + ( i -  l ) y + z z + c ;  ( j=3 ,5 ,  ...), 

YZO, 

z 2 0 .  

L2 distance: 

3 0  Q (@ - ")' I2 i 1.03 1. 
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For a Q a, the bound is tight, since it is attained by a configuration with 

2, =(1 - a')n, 3' =:'?I, G j = O  ( j # 1 , 2 )  f o r a Q 1 ;  

fiz =+(3  - a')n, fi4 =;(a'-  l )n ,  n j = O  ( j # 2 , 4 )  for 1 <&<a. A 

On the other hand, the bound is not tight for a > fi. In fact, in the optimal solu- 
tion of the primal program: 

where -= O(n'l'), the G4 edges should have Lz  length G / k ,  which is easily seen 
to  be impossible. The bound can be improved to Po < 1.014 by modifying the linear 
program (see refined analysis below). A lower bound 

&, > i ( 2 a  - 1)'l2 + 0.932 

may be obtained by considering a configuration with 

where j ,  is a sufficiently large even integer. 

L ,  distance: 

;(a) = min - + -, - + - , & = f i / 2  + 0.866, &, = fi + 1.732. (:u ; :a :) 
The asymptotic supremum ;(a) in the L ,  distance is attained, e.g., by a configuration 
with 

where j ,  is an even integer greater than 2a'. 

d. With/Without Preprocess and With Tour (Refinement) 

To get a sharper bound for ;(a) in the L z  distance, let us look into the cases of j = 4, 
6, 8 , .  . . , more closely. It is readily noted that there are two different configurations 
of j consecutive cells in the spiral-rack cell order, as illustrated in Figure 5 for j = 6 .  In 
correspondence with the two different configurations, we redefine two bounds cj and 
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FIG. 5. Two equiprobable configurations for j = 6 in the spiral-rack cell order. 

c; for j = 4 , 6 , 8 ,  . . . , as follows: 

[ 1 t ( k j ) ' ]  '/'/k 

[4 t (kj)']'/'/k 

( j  = 4 , 8 , 1 2 ,  . . .), 
( j  = 6, 10, 14,. . .); 

c j = {  . 

(4 t [ $ ( j  t 2)]'}'/'/k 

(1 t [ $ ( j  t 2)]'}'/'/k 

( j  = 4 ,8 ,12 , .  . .), 
( j  = 6,10, 14, . . .). 

c; = 

Note that the c; defined here are the cj defined at the beginning of this section. The 
modified linear program involves variables nj ( j  = 1 ,2 ,3 ,  . . .) and n; ( j  = 3 ,4 ,  5 ,  
. . .) and contains one additional constraint, where Zle denotes summation over even 
integers. 

Primal program: 

f =  c cjnj t c c;nj) 
j = 1  j = 3  

C nj t C n; = n, 

( maximize 

subject to 
j=l j = 3  

C ( j - l ) n j t  C ( j - l )n;<k ' ,  
j = l  j = 3  

co n; < k, 
j =  3 

c e j n ;  t co ( j  - 1)nj < k', 
j = 4  j =  3 

nj Z 0, 

n; 0. 

Dual program : 

minimize g= n x  t k'y t kz t k2w 



a2 IRI, MUROTA, AND MATSUI 

subject to x > +cl, 

X + ( j -  l ) y > a c j  ( j = 2 , 4 , 6 , .  . .), 

x + ( j - l ) y + ( j - l ) w > h c j  ( j = 3 , 5 , 7  ,... ), 
( j =  3, 5 7 , .  . .), x t ( j -  1)y t zz ic; 

x t ( j  - l ) ~  + jw > 4 ~ ;  ( j  = 4 ,6 ,8 ,  . . .), 
Y Z O ,  
z > o ,  

w > o .  

L 2  distance: 

i;O Q [ ; ( 2 6  - l ) ( m  + 1 - fi)]'l2 + 1.014. 

Thus the upper bound has been improved from 1.031 to 1.014, though it is still non- 
tight. (The corresponding a value is a= [ 2 ( 2 6  - l ) / ( f i  t 1 - 6)]1/2 e 1.712.) 
The optimal primal solution is 

where j ,  and j ,  are, respectively, sufficiently large even and odd integers. 

B. BottomUp FourSquare Algorithm 

We shall confine our analysis to the case of the L2 distance only. The case of the 
L ,  distance is quite similar. Let nj ( j  = 1,2, . . .) be the number of points remain- 
ing unmatched at the beginning of the jth stag:. At the very beginning of the algo- 
rithm, n - n, points are matched and the sum Mp) of the distances of those pairs are 
bounded as 
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At the jthhstage where the cells are of size 2j/k, ni - n/+l points are matched into pairs. 
The sum M i j )  of the distances of those pairs satisfies 

fiy) < $ f i 2 j ( n i  - nj+l ) /k  ( j  = 1,2, . . .). 

Therefore we have 

Since each cell contains at most four points for j = 1 , 2 ,  . . . , we have the inequality 

n2i-1 t 2nz/  Q 20k2/4*j (1 = 1 , 2 , .  . .), 

which is substituted into (3) to yield 

1 n 5k 
f i k  3 fi , , (k) Q - (- t -). (4) 

The right-hand side of (4) takes the minimum when k is a power of 2 lying between 
G n ' 1 2  and d$n1I2, so that we have 

&(k) Q ;@n1l2 = 1.936n'l'. 

On the other hand, the configuration of n points shown in Figure 6, which is con- 
siructed recursively as follows, will give the asymptotic lower bound 1.789n"' for 
M,(k). Initially, we put four points in the corners of the unit square. The points in the 
diagonally opposite comers are to be matched. At a general step, we divide every cell 

FIG. 6. Configuration which gives a lower bound on p for the bottom-up four-square 
algorithm. 
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1 2  k 

k 

FIG. 7. Configuration which gives a lower bound on 2 for the strip-with-bucket 
algorithm. 

into four cells, for each of which we put four or two points according as it contains no 
point or one point: (i) if it contains no point, we put four points in the four corners 
(the points in the diagonally opposite corners are to be matched); (ii) if it contains one 
point, we put two points in the diagonally opposite empty corners. 

C. Strip-with-Bucket Algorithm 

An upper bound for the serpentine algorithm with tour and without preprozess is 
also an upper bound for the strip-with-bucket algorithm. A lower bound for M i k )  is 
obtained by considering the configuration shown in Figure 7, where two points are 
distributed in each of the left half of the strips, one in the middle and the other at an 
end, the remaining n - 2k points being laid in the left half of a cell in the corner. The 
horizontal shift has no effect on the resulting tours, which, in the asymptotic sense, 
may possibly contain 2k edges of L, or L ,  length 3 and n - 2k edges of L2 length 
&/2k (L-  length l/k). Thus we have 

f in(k)>(f i /2k) (3n-  k ) + $ k >  1.057n'~2- l / f i  

for the L,-distance, and 

for the L,-distance. 

IV.  AVERAGE-CASE ANALYSIS 

Throughout this section, we shall assume that n points are randomly distributed uni- 
formly in a unit square. Let us denote by M, the random variable representing the 
cost of a matching, by p = p(o1) the asymptotic expectation of Mn/n' l z ,  and by po = 
p(cro) = min, p(a) the optimal value of p. 
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A. Theoretical Estimates 

It is known [7, 91 that the minimum cost in the Euclidean distance of the perfect 
matchings of n points, when divided by d2, converges in probability to a constant 
which lies between 0.25 and 0.401. We shall evaluate the expected costs of the ap- 
proximate solutions obtained by means of the algorithms proposed in Sec. 11. 

Elementary probability calculation will yield the following relations. The probabil- 
ity for a cell to containj points is 

or, as n + Q) with k = an112, 

1 1  pj---exp(-l/az) ( j = O , l ,  ...). 
j !  a2i 

Thus, the expected number mp of cells containing at least one point is 

mp - k2 [ 1 - exp(- 1/a2)], 

and the expected number m, of cells containing an odd number of points is 

The expected cost of a straightforward algorithm without preprocess is asymptoti- 
C d Y  

where the Zi are the expected distances between two points contained in cells at cell 
distance j - 1 (see Appendix). The straightforward algorithms with preprocess can be 
treated quite similarly; the above expression ( 5 )  remains valid if mp is replaced by m,. 

The results of our Monte Carlo experiment suggest that the cost of an n-point match- 
ing constructed by an approximation algorithm, when divided by n1I2, will converge' 
in probability to a constant as n tends to infinity, just as the exact minimum cost does. 
If that is the case, employing a tour will lead us to no substantial improvement on the 
resulting cost when n is sufficiently large, since, for n large enough, the cost of the two 
matchings contained in a tour cannot be significantly different. The optimal values 
a. of a minimizing the expected costs are calculated on the basis of the above formula 
( 5 )  and are given in Table I. The theoretical estimates of ko and a. for the bottom-up 
foursquare and the strip-with-bucket algorithms are also given. 

The spiral-rack algorithm with preprocess (with or without tour) seems to be the 
best in average performance among the linear-time algorithms proposed in the present 
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article. Taking into account also the worst-case behavior, it may be recommended to 
use, for the actual application to the plotter problem, the spiral-rack algorithm with 
preprocess and with tour, where we may set a= 1.29 for the L2 distance problem and 
a = 1.26 for the L ,  distance problem. Then we have p = 0.490 and Q 1.05 for the 
L2 distance and p = 0.449 and 2 < 0.91 for the L ,  distance, these p and both re- 
maining within a few percent increase compared with the optimal values. The tour 
requires more computation, but, for n small, it yields a better solution. 

B. Experimental Results 

The algorithms have been implemented on the HITAC M-200H system at the Com- 
puter Centre of the University of Tokyo. Data are given in two real arrays of size n 
in terms of the coordinates of n points. The program (subroutine) returns the match- 
ing in an integer array of size n, thejth element of which represents the number of its 
partner point. A straightforward algorithm uses for the working area only an integer 
array of size k X k as well as several simple variables. 

In the Monte Carlo experiment with 200 samples for each n, it is observed that (i) 
the expectation of the normalized cost M,/n1'2 tends to the theoretical estimate and 
the variance of M,/n'/' diminishes as O(l/n) (Fig. 8), (ii) the algorithms with tour 
require 1.1 - 2.6 times as much computing time as the algorithms without tour do, and 
(5) the strip algorithm does not run in linear time even on the average (Fig. 9). The 
recommended algorithm seems superior in the light of the tradeoff between the 
(average- and worstcase) cost and the computing time (Figs. 10, 11). In Figure 12 
the ratio of the cost of the approximate solution by the recommended algorithm to 
that of the exact solution is shown for n = 16, 32, 64, 128, 256 (20 samples for 
each n), where it is observed that the former is about 1.5 times larger than the latter. 

V. APPLICATION TO THE DRAWING OF A ROAD MAP 
BY A MECHANICAL PLOTTER 

When drawing a connected graph by a mechanical plotter, the wasted plotter-pen 
movement is minimized by finding a minimum-weight perfect matching of the vertices 

- 
c o  ," .^ 

theore t ica l  

rneoreti  cal 
-4- -4- =O.  490 

- # -  t . 0 . 4 4 9  

1 inii t 

1 ini  t 

i. _' I w " 
32 64 126 256 512 1024 2048 

number o f  points n 

FIG. 8. Expected values and standard deviations of the costs of the matchings con- 
structed by the recommended approximation algorithm. 
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10-1' ' 1 1 1 - 
32 64 128 256 512 1024 2048 

number o f  p o i n t s  n 
FIG. 9. Computing time of the approximation algorithms (L2 distance) (cf. Table I). 

3.;i 
3.0 

h 

ie 

0 
0 10 20 30 40 50 

cmputir ig t ime  per p o i n t  (us) 

FIG. 10. Computing time and average- and worst-case costs of approximate solutions 
(L2 distance) (cf. Table I). 
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I 

3.0 . 

0 2  
. 3  
0 4  
r 5  

0- 
0 10 20 30 40 

computing time per p o i n t  ( u s )  

FIG. 1 1 .  Computing time and average- and the worst-case costs of approximate solu- 
tions (I,- distance) (cf. Table I). 

number o f  o o i n t s  rl 

FIG. 12. Ratio of the cost of the approximate solution by the recommended algo- 
rithm to the exact minimum (20 samples for each n ;  L2 distance). 
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IsCole Of the d r a l n o l  
0 5 10cm 
1 
0 5 l o b  

l sca le  Of the real lewth 

(i) Map drawn (ii) Wasted pen movement when odd-degree 
vert ices are  paired as they are  input  

( i i i )  Wasted pen movement by the  sp i ra l  
rack algori thm wi th  preprocess and 
with tour (Lm-distance) 

( i v )  Wasted pen movment by the exact  
a1 gori  thm (Lm-di stance) 

FIG. 13. Drawing the road map of the Tokyo city area. 

of odd degrees, adding them to the original graph, and traversing the Eulerian path on 
the extended graph, where the added edges are to be traversed with the pen off the 
paper [2,3,4,5,8]. We applied this technique to  drawing the road map of the Tokyo 
city area [Fig. 13(i)]. The computing time and the lengths of pen movement are 
shown in Table 11. The wasted pen movement is depicted in Figures 13(i)-13(iv) for 
some of the different plotting strategies when the L, distance is adopted as the dis- 
tance measure. In [3], unconnected graphs are also considered and an experiment on 
a graph with about 2 X lo4 vertices and as many edges is shown. 
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TABLE 11. An application: Drawing the road map of the Tokyo city area [ 51,850 
edges, 5 13 vertices (including 254 vertices of odd degree). 

CPU Time (ms) Pen Movement (cm) 

For 

Making a an Eulerian Pen pff Real 
Plotting Strategy Matching Path Total (I( 1 Edges 

For ForFinding Wasted with Drawing 

Most primitive L z  0 
way of drawing L, 0 
(drawing edges 
as they are 
input) 
Makingpairs L z  0.2 
in the order of L ,  0.2 
appearance 
Serpentine LZ 3.1 
algorithm L ,  2.3 
(tour) No. 3 
S piral-rack L2 3 .O 
algorithm L ,  1.9 
(preprocess, 
tour) No. 8 
Strip algorithm L z  12 
No. 11 L ,  9 
Exact algorithm’ L z  34 X lo3  
No. 12 L, 3 1 X 1 0 3  

0 
0 

15 
15 

15 
15 

15 
15 

15 
15 
15 
15 

0 16 14 (2.89) 
0 15 19 (2.72) 

15 5 76 (1.03) 
15 566 (1.01) 

18 238 (0.43) 
18 206 (0.37) 

18 227 (0.41) 
17 214 (0.39) 

27 183 (0.33) 
24 164 (0.30) 

34 X 1 O3 128 (0.23) 
31 X l o3  114(0.20) 

896 
817 

896 
8 17 

896 
817 

896 
817 

896 
817 
8 96 
817 

‘Coded in PASCAL; others are coded in v o ~ 2 / v o ~ 3  optimizing FORTRAN 77 

b(Total length of the wasted pen movement scaled to  a unit square)/n’l’. 
(OPT=2) on the HITAC M-2OOH. 

VI. CONCLUSION 

We proposed linear-time approximation algorithms for finding the minimum-weight 
perfect matching on a plane and investigated their performances theoretically and 
experimentally. The spiral-rack algorithm with preprocess and with tour is recom- 
mended for practical purposes. It was seen that a considerable improvement in the 
efficiency of drawing graphs by a mechanical plotter is realized by using the recom- 
mended algorithm in combination with a linear-time (exact) algorithm for Euler’s 
problem. 

The authors thank Professor Z. Galil of Tel-Aviv University and Professor D. Avk of 
McGill University for valuable information concerning the subject and for stimulating 
discussions. They are indebted to Dr. A. Taguchi of Yamanashi University for the 
road-map data as well as for valuable suggestions. Thanks are due also to  Mr. H. Imai 
for a program of the exact algorithm for the minimum-weight matching and for col- 
laboration in calculating the expected performance. 
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APPENDIX. CALCULATION OF EXPECTED LENGTHS Ej 

The expected length Zj of an edge connecting two points in cells at cell distance 
j - 1 in the serpentine and the spiral-rack cell order may be calculated by elementary 
methods in probability (see [ 4 ]  for details). 

To begin with, we calculate the expected distance D ( x , y )  between two points dis- 
tributed uniformly in a rectangle of sides x and y to get 

L2 distance: 

xy4 log { [ x  t (x2 + y”) ’ / ’ ] /y )  t x4y log { [ y  t (x2 t y2)”2]/x} 
t 

6x2y2 , 

L, distance: D ( x , y ) =  - t - - - 
3 6x  30x2 

In particular, we put 

D ( x ,  0 )  = lim D ( x , y )  = i x  (in either distance). 
Y + O  

Then we define for j Z 2 

d i = $ j 2 D ( l , j ) -  ( j -  l )2D( l , j -  1 ) t  $ ( j -  2)?D(l,j- 2). 

Serpentine Cell Order 

The expected length Zj in the serpentine cell order is given by 

Z1 =D(1, l)/k, Fj=dj/k ( j =  2,3, .  . .), 
which may be simplified, in the case of the L, distance, to 

Z1=7/15k, Z2=61/60k, F,=(j- l ) /k ( j = 3 , 4  ,... ). 

Spiral-Rack Cell Order 

Obviously we have 

For even j 2 4,  two types of the configuration, as shown in Figure 5 for j = 6 ,  are 
equiprobable and the desired expectation 5 is the average of the expected distances 
corresponding to the two configurations. Specifically, we have for j = 1,2,  . . . , 
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where ei is defined as 

For the L ,  distance, the above expressions are reduced to  

?I = 7 /15k ,  ?2=61/60k, ?3=377/3Ok, Z 4 =  121/80k, 

2s = 2 /k ,  E6 = 601/240k, ?i = ( j  - 1)/2k ( j  = 7 , 8 ,  . . .). 

References 

[ 1) A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Com- 
puter Algorithms. Addison-Wesley, Reading, Ma. ( 1  974). 

[ 21 M. In, K. Murota, and S. Matsui, Linear-time approximation algorithms for find- 
ing the minimum-weight perfect matching on a plane. Informution Processing 
Let t .  12 (1981) 206-209. 

[3] M. In, K. Murota, and S. Matsui, An approximate solution for the problem of 
optimizing the plotter pen movement. In Proc. 10th IFZP Conference on Sys- 
tem Modeling and Optimization Lecture Notes in Control and Information Sci- 
ences, 38, A. V. Balakrishnan and M. Thoma, Eds. Springer-Verlag, New York 

[4] M. In, K. Murota, and S. Matsui, Linear-time heuristics for the minimum-weight 
perfect matching on a plane with an application t o  the plotter algorithm. Re- 
search Memorandum RMI 8 1-07. Department of Mathematical Engineering and 
Instrumentation Physics, University of Tokyo (1 98 1). 

[S] M. I n  and A. Taguchi, The determination of the pen-movement of an XY-plotter 
and its computational complexity (in Japanese). In Proc. Spring Conference o f  
the Operations Research Society of Japan, P-8, 1980, pp. 204, 205. 

[ 61 E. L. Lawler, Com binatorid Optimization -Networks and Matroids. Holt, Rine 
hart and Winston, New York (1976). 

[7] C. H. Papaaimitriou, The probabilistic analysis of matching heuristics. In Proc. 
15th Ann. Allerton Conf. on Communication, Control and Computing, 1977, 

[8] E. M. Reingold and R. E. Tarjan, On a greedy heuristic for complete matching. 
SZAMJ. Cornput. 10 (1981) 676-681. 

[9)  J. M. Steele, Subadditive Euclidean functionals and non-linear growth in g e e  
metric probability. Ann. o f  Probability 9 (1981) 365-376. 

[ 101 K. J. Supowit, D. A. Plaisted, and E. M. Reingold, Heuristics for weighted per- 
fect matching In Proc. 12th Ann. ACM Symp.  o n  Theory of Computing, 

(1982) 572-580. 

pp. 368-378. 

1980, pp. 398-414. 

Received February 26,1981 
Accepted May 11, 1982 


