
A Weight-Scaling Algorithm for Min-Cost
Imperfect Matchings in Bipartite Graphs

Lyle Ramshaw

HP Labs, 1501 Page Mill Rd
Palo Alto, CA 94304, USA
lyle.ramshaw@hp.com

Robert E. Tarjan

Princeton University and HP Labs
ret@cs.princeton.edu and
robert.tarjan@hp.com

Abstract— Call a bipartite graph G = (X,Y ;E) balanced
when |X| = |Y |. Given a balanced bipartite graph G with
edge costs, the assignment problem asks for a perfect matching
in G of minimum total cost. The Hungarian Method can solve
assignment problems in time O(mn+n2 logn), where n :=
|X| = |Y | and m := |E|. If the edge weights are integers
bounded in magnitude by C > 1, then algorithms using weight
scaling, such as that of Gabow and Tarjan, can lower the time
to O(m

√
n log(nC)).

There are important applications in which G is unbalanced,
with |X| �= |Y |, and we require a min-cost matching of size
r := min(|X|, |Y |) or, more generally, of some specified
size s ≤ r. The Hungarian Method extends easily to find
such a matching in time O(ms + s2 log r), but weight-
scaling algorithms do not extend so easily. We introduce new
machinery to find such a matching in time O(m

√
s log(sC))

via weight scaling. Our results provide some insight into the
design space of efficient weight-scaling matching algorithms.

1. INTRODUCTION

Consider a bipartite graph G = (X,Y ;E). We refer to

the vertices in X as women and the vertices in Y as men.1

We call G balanced when |X| = |Y |, so there are the same

number of women as men; otherwise, G is unbalanced.2 We

denote the size of the larger part by n := max(|X|, |Y |),
while we introduce the symbol r := min(|X|, |Y |) to

denote the size of the smaller part.3 And we call a graph

asymptotically unbalanced when r = o(n).

Each edge (x, y) in G has a weight c(x, y), which is a real

number with no sign restriction. We interpret those weights

as costs, whose sums we try to minimize. Negating all of the

weights, defining b(x, y) := −c(x, y) for each edge (x, y),
would convert minimizing cost into maximizing benefit.

A matching is a set M of edges that don’t share any

vertices; its size is s := |M | and its cost is c(M) :=∑
(x,y)∈M c(x, y). We refer to matched vertices as married.

A matching of size n in a balanced graph is called perfect.

1To remember which of X and Y consists of women and which of men,
think of how sex chromosomes work in mammals.

2Some authors use “symmetric” and “asymmetric” for the properties that
we call balanced and unbalanced.

3As a mnemonic aid, think of n as standing for numerous, while r stands
for rare. Some authors use n2 and n1 for our n and r.

We call a matching of size r in an unbalanced graph one-
sided perfect; such a matching leaves n − r vertices in the

larger part as either maidens4 or bachelors. A matching of

size s < r is imperfect; such a matching leaves both some

maidens and some bachelors.

Denoting the maximum size of any matching in the graph

G by ν(G), we consider two variants of the assignment
problem [4]:

PerA (Perfect Assignments) Let G be a balanced bipar-

tite graph with edge weights. If ν(G) = n, com-

pute a min-cost perfect matching in G; otherwise,

return the error code “infeasible”.

ImpA (Imperfect Assignments) Let G be a bipartite graph

with edge weights, either balanced or unbalanced,

and let t ≥ 1 be a target size. Compute a min-cost

matching in G of size s := min(t, ν(G)).

For ImpA, our time bounds are functions of s, the size

of the output matching, and are hence output sensitive. For

simplicity in our time bounds, we assume that our bipartite

graphs have no isolated vertices, so r ≤ n ≤ m ≤ rn; we

also assume throughout that s ≥ 1 and, once we introduce

the bound C on the magnitudes of the costs, that C > 1.

1.1. Known algorithms for PerA
Most published assignment algorithms solve PerA. The

ones that perform the best in practice are local; their updates

change the matching status of just a few edges and the prices

just at the vertices that those edges touch. Algorithms of this

type include the push-relabel algorithms of Goldberg [11]

and the auction algorithms of Bertsekas [2]. But local

algorithms don’t get the best time bounds.

The granddaddy of algorithms for PerA is the Hungarian

Method [15], which is purely global; it builds up its min-

cost matchings by augmenting along entire augmenting

paths, from a maiden to a bachelor. The bounds on the

Hungarian Method have been improved repeatedly. Fredman

and Tarjan [9] used Fibonacci heaps to devise a version that

4English doesn’t have a single word that means simply an unmarried
woman; “maiden” and “spinster” both have irrelevant overtones, which
are politically incorrect to boot. Indeed, when faced with this challenge,
television shows have typically resorted to “bachelorette”.

2012 IEEE 53rd Annual Symposium on Foundations of Computer Science

0272-5428/12 $26.00 © 2012 IEEE

DOI 10.1109/FOCS.2012.9

581

runs in space O(m) and in time O(mn + n2 log n). This

is the current record among strongly polynomial algorithms.

For integer edge weights, Thorup [19] reduced the time to

O(mn+ n2 log log n).
Weight-scaling is another way to reduce the time; it

also requires that the edge weights be integers and fails

to be strongly polynomial. Using weight-scaling, the as-

signment problem can be solved in space O(m) and in

time O(m
√
n log(nC)), where C > 1 is a bound on the

magnitudes of the edge weights. This time bound is achieved

by algorithms due to Gabow and Tarjan [10], to Orlin and

Ahuja [16], and to Goldberg and Kennedy [12]. Of these,

Gabow-Tarjan is purely global, while the other two are

hybrids of local and global techniques.

1.2. Computing min-cost imperfect matchings

When we tackle an assignment problem in practice, our

goal is often a min-cost matching that is less than perfect,

frequently because our graph is unbalanced. One way to

solve such a problem is to reduce it to PerA, perhaps by

making two copies of our unbalanced graph G with one

copy flipped over, thus building a balanced graph G′ with

n′ = n + r. Such doubling reductions handle only those

instances of ImpA in which t ≥ ν(G), since there is no

obvious way to impose a bound t < ν(G) on the size of

the matching in G that we extract from G′. But the bigger

problem with these doubling reductions is that we gain no

speed advantage when r � n.

Instead of reducing, we can develop algorithms that

solve ImpA directly. On the practical side, Bertsekas and

Castañon [3] generalized an auction algorithm to work

directly on unbalanced graphs.5 Here, we explore that direct

approach theoretically, replacing n’s in the bounds of PerA
algorithms with r’s or s’s. Ahuja, Orlin, Stein, and Tarjan [1]

replaced lots of n’s with r’s in the bounds of bipartite

network-flow algorithms; but the corresponding challenge

for ImpA seems to be new.

The Hungarian Method is an easy success. In an accom-

panying report [18], we show that the Hungarian Method

solves ImpA in time O(ms + s2 log r). If the costs are

integers, Thorup’s technique can reduce the log r to log log r.

But weight-scaling algorithms are harder to generalize.

Goldberg-Kennedy [12] can compute imperfect matchings

that are min-cost; but it isn’t clear whether the n’s in their

time bound can be replaced with r’s or s’s. Worse yet, a

straightforward attempt to compute an imperfect matching

with either Gabow-Tarjan [10] or Orlin-Ahuja [16] may

result in a matching that fails to be min-cost. In Section 3,

5The auction algorithm that Bertsekas and Castañon [3] suggest for un-
balanced graphs computes one-sided-perfect matchings that leave bachelors.
These matchings are nevertheless min-cost because Bertsekas and Castañon
introduce an auction step that preserves the bachelor bound of Section 3.
Their auction step maintains a profitability threshold λ, where λ can be
thought of as a candidate for the price pd(�).

we derive the maiden and bachelor bounds, inequalities

that help to prove that an imperfect matching is min-cost.

The Hungarian Method preserves these bounds naturally,

as does Goldberg-Kennedy; but neither Gabow-Tarjan nor

Orlin-Ahuja does so.

Our central result is FlowAssign, a purely global, weight-

scaling algorithm that solves ImpA in space O(m) and

time O(m
√
s log(sC)). Roughly speaking, FlowAssign is

Gabow-Tarjan with dummy edges to a new source and sink

added, to enforce the maiden and bachelor bounds. FlowAs-
sign also simplifies Gabow-Tarjan in two respects. First,

Gabow-Tarjan adjusts some prices as part of augmenting

along an augmenting path. Those price adjustments turn out

to be unnecessary, and we don’t do them in FlowAssign
(though we could, as we discuss in Section 8). Second,

we sometimes want prices that, through complementary

slackness, prove that our output matching is indeed min-

cost. Gabow and Tarjan compute such prices in a O(m)
postprocessing step. In FlowAssign, we compute such prices

simply by rounding, to integers, the prices that we have

already computed, that rounding taking time O(n).

1.3. Related work and open problems

Given a balanced bipartite graph G without edge weights,

the algorithm of Hopcroft and Karp [13] computes a

matching in G of maximum size in time O(m
√
n). If the

graph G is sufficiently dense, then Feder and Motwani [8]

show how to improve on Hopcroft-Karp by a factor of

as much as log n: They compute a max-size matching in

time O(m
√
n log(n2/m)/ log n). If m is nearly n2, then the

log factor in the numerator is small and we are essentially

dividing by log n. But the improvement drops to a constant

as soon as m is O(n2−ε), for any positive ε. It would

be interesting to generalize the Feder-Motwani technique

to unbalanced graphs. By using a doubling reduction, their

algorithm can handle an unbalanced graph in the time bound

given above. But perhaps that time could be improved by

tackling the unbalanced case directly — perhaps improved

to O(m
√
r log(rn/m)/ log n).

Given a balanced bipartite graph G with edge weights,

we might want to compute a matching in G that has the

maximum possible benefit, among all matchings of any size

whatever. Duan and Su [7] recently found a weight-scaling

algorithm for this max-weight matching problem that runs

in time O(m
√
n logC). Thus, they reduced the logarithmic

factor from log(nC) to logC. They pose the intriguing open

question of whether that same reduction can be achieved

for the assignment problem, where the optimization is over

matchings of some fixed size. Duan and Su did not consider

the asymptotically unbalanced case, however, so they made

no attempt to replace n’s with r’s. Their algorithm might

generalize to unbalanced graphs straightforwardly, in time

O(m
√
r logC); we leave that as an open question. Given

an unbalanced graph G, we can reduce the max-weight

582

matching problem for G to the assignment problem for a

graph G′ that is even more unbalanced than G. We construct

G′ by adding r new vertices to the larger part of G and

connecting each of the r vertices in the smaller part of G
to one of these new vertices with a zero-weight edge. By

using FlowAssign to find a one-sided-perfect matching of

maximum weight in G′, we can find a max-weight matching

in G in time O(m
√
r log(rC)). Thus, we can reduce the

√
n

factor to
√
r, but only at the price of bumping the logarithmic

factor back up from logC to log(rC).

Recall that Feder and Motwani showed how to speed up

Hopcroft-Karp a bit, for quite dense graphs. Suppose we

have a fairly dense, balanced bipartite graph G with positive

edge weights, but most of those weights are quite small; and

we want to compute a max-weight matching in G. If all of

the weights were precisely 1, then a max-weight matching

would be the same as a max-size matching, so we could use

Feder-Motwani. Kao, Lam, Sung, and Ting [14] showed that

a similar improvement is possible as long as most of the edge

weights are quite small. Assuming that the edge weights are

positive integers and letting W denote the total weight of

all of the edges in G, they compute a max-weight matching

in time O(
√
nW log(n2C/W)/ log n). When C = O(1)

and hence W = Θ(m), their bound matches that of Feder

and Motwani. But they continue to achieve improved perfor-

mance until W gets up around m log(nC), at which point we

are better off reducing to an assignment problem. If someone

generalizes Feder-Motwani to the asymptotically unbalanced

case, it might then be worth generalizing the Kao-Lam-

Sung-Ting result. The main issue would be replacing their

initial
√
n with

√
r.

Finally, a more practical note: FlowAssign, like Gabow-

Tarjan [10], is a purely global algorithm, so it might not

perform all that well in practice. To find an algorithm for

ImpA that performs well in both theory and practice, one

might do better by aiming for a hybrid of local and global

techniques, perhaps by starting with Goldberg-Kennedy [12]

or with Orlin-Ahuja [16].

2. FROM MATCHINGS TO FLOWS

We begin by constructing a flow network NG from the

graph G, thereby converting min-cost matchings in G into

min-cost integral flows on NG. This conversion is quite

standard; but we renounce a popular skew-symmetry.

Each vertex in G becomes a node in NG, and each edge

(x, y) in G becomes an arc x → y, directed from x to

y; we refer to these arcs as bipartite. The network NG also

includes a source node � and a sink node �. For each woman

x in X , we add a left-dummy arc � → x and, for each man

y, a right-dummy arc y → �. Each arc has a per-unit-of-flow

cost, that cost being c(x, y) for the bipartite arc x→ y and

zero for all dummy arcs. And all arcs in the flow network

NG have unit capacity.

Let’s define a flux on the network NG to be a function f
that assigns a flow f(v, w) ∈ R to each arc v → w in NG,

with no restrictions whatsoever. We define the cost of a flux

f by c(f) :=
∑

v→w f(v, w)c(v, w). A pseudoflow is a flux

in which the flow along each arc satisfies 0 ≤ f(v, w) ≤ 1.

A flow is a pseudoflow in which, at all nodes v except for

the source and the sink, the total flow into v equals the total

flow out of v, so flow is conserved at v. The value of a flow

f , denoted |f |, is the total flow out of the source (and hence

also into the sink).

Warning: Many authors set things up so that the functions

f and c that measure flow quantity and per-unit-of-flow

cost are skew-symmetric, with f(w, v) = −f(v, w) and

c(w, v) = −c(v, w). We instead name the arcs in our flow

network NG only in their forward direction, from the source

toward the sink.6 We explain why in Section 4.

If f is an integral pseudoflow on the network NG, then

each arc v → w is either idle, with f(v, w) = 0, or

saturated, with f(v, w) = 1. Matchings M in the graph

G correspond to integral flows f on the network NG; in

this correspondence, the edges in the matching become the

saturated bipartite arcs of the flow, and we have |M | = |f |
and c(M) = c(f). Thus, a min-cost matching of some size s
corresponds to a min-cost integral flow of value s. Without

the constraint of integrality, minimizing the cost of a flow

of value s is a linear program, a fact that we next exploit.

For each node in NG, we invent a dual variable whose

value is the per-unit price of our commodity at that node.

Rather than working with the price pa(v) to acquire a unit

of the commodity at the node v, we instead work with the

price pd(v) to dispose of a unit of the commodity at v,

where pd(v) = −pa(v). (Our algorithms happen to work by

lowering the acquire prices at nodes, which means raising

their dispose prices — and prices in real life typically rise.)

Given prices at the nodes of NG, we adjust the cost of each

arc v → w to account for the difference in prices between v
and w by using7 cp(v, w) := c(v, w)−pd(v)+pd(w) to de-

fine the reduced cost cp(v, w). The theory of complementary

slackness then gives us:

Prop 1: Consider a flow f on the network NG and prices

p at its nodes. If every arc v → w with cp(v, w) < 0 has

f(v, w) = 1 and every arc with cp(v, w) > 0 has f(v, w) =
0, then f is min-cost among flows of its value.

Given a pseudoflow f and prices p on the network NG,

we define an idle arc to be proper when its reduced cost is

nonnegative, a saturated arc to be proper when its reduced

6Since we have only forward arcs, we don’t need to divide by 2 in the
equation c(f) :=

∑
v→w f(v, w)c(v, w) defining the cost of a flux.

7Papers about PerA often compute reduced costs via cp(x, y) :=
c(x, y) + p(x) + p(y) or cp(x, y) := c(x, y) − p(x) − p(y), with the
prices at x and at y entering with the same sign. This means that, of the
two parts X and Y of the bipartite graph G, acquire prices are used in
one, while dispose prices are used in the other. Since our flow network has
source and sink nodes, however, it seems simpler to use either acquire prices
throughout or dispose prices throughout; we use dispose prices throughout.

583

cost is nonpositive, and an arc with fractional flow to be

proper only when its reduced cost is zero. We call the pair

(f, p) proper when all of the arcs in NG are proper.

Corollary 2: Let f be a flow on the network NG. If prices

p exist that make the pair (f, p) proper, then f is min-cost

among flows of its value.

3. THE MAIDEN AND BACHELOR BOUNDS

Consider using some prices p at the nodes of the network

NG to show that some flow f on NG is min-cost, via

Corollary 2. In particular, consider the left-dummy arcs

in NG. If x is a married woman in the matching cor-

responding to f , then the left-dummy arc � → x will

be saturated. For this arc to be proper, we must have

cp(�, x) = c(�, x) − pd(�) + pd(x) ≤ 0, which, since

c(�, x) = 0, means pd(x) ≤ pd(�). On the other hand,

if x is a maiden, then the arc � → x will be idle, so we

must have pd(�) ≤ pd(x). For all left-dummy arcs to be

proper, we need

max
x married

pd(x) ≤ pd(�) ≤ min
x maiden

pd(x); (1)

so the maidens have to be the most expensive women. Sim-

ilarly, for all right-dummy arcs to be proper, the bachelors

have to be the cheapest men:

max
y bachelor

pd(y) ≤ pd(�) ≤ min
y married

pd(y); (2)

We refer to these as the maiden and bachelor bounds.

When there are no maidens, choosing pd(�) large enough

makes all left-dummy arcs proper; and, with no bachelors,

choosing pd(�) small enough makes all right-dummy arcs

proper. So we can prove that a perfect matching is min-cost

without worrying about the maiden and bachelor bounds.

We do need to worry, however, when our matching is less

than perfect. In this sense, ImpA is a little harder than PerA
(which might explain why PerA has been more studied).

The Hungarian Method generalizes easily [18] to compute

imperfect matchings that are min-cost because it preserves

the maiden and bachelor bounds.8 Each round of price

increases raises the prices at all remaining maidens by at

least as much as it raises any prices. Since all women start

out at a common price, the remaining maidens are always

the most expensive women. And the price at a man doesn’t

rise at all until after that man gets married. Since all men

8More precisely, there is a variant of the Hungarian Method that preserves
the maiden and bachelor bounds: a variant that, in each iteration, computes
a shortest-path forest with all of the remaining maidens as tree roots. A
different variant builds just a single shortest-path tree, with some chosen
maiden as its root. That variant solves PerA perfectly well, but it doesn’t
preserve the maiden bound, and hence it may compute imperfect matchings
that are not min-cost. Yet another variant adds a preprocessing step that uses
a local criterion to optimize the initial prices. Taking the vertices in turn,
the price at each woman is raised as far as possible while the price at each
man is lowered as far as possible, while keeping all bipartite arcs proper.
Both the maiden and bachelor bounds fail in that variant.

start out at a common price, the remaining bachelors are

always the cheapest men.

Gabow-Tarjan [10] is a weight-scaling algorithm, so it

carries out a sequence of scaling phases. During each phase,

the prices at the nodes are raised much as in the Hungarian

Method. But the women start each phase, not at some

common price, but at whatever prices were computed during

the previous phase. If all phases chose the same women

to be their final maidens, we’d still be okay: The prices at

those perpetual maidens would both start and end each phase

at least as high as the prices at the other women. But the

scaling phases decide independently which women will be

their final maidens. So Gabow-Tarjan does not preserve the

maiden bound, and we can’t trust it to compute imperfect

matchings that are min-cost. Gabow-Tarjan doesn’t preserve

the bachelor bound either, for similar reasons.

FlowAssign operates on the network NG, rather than on

G itself. We maintain prices at the source and sink, and we

strive to make the dummy arcs proper, as well as the bipartite

arcs, thereby ensuring the maiden and bachelor bounds.

FlowAssign also differs from Gabow-Tarjan in that each

scaling phase remembers which vertices ended up matched

versus unmatched, at the end of the preceding phase.

4. ARCS BEING ε-PROPER, ε-TIGHT, OR ε-SNUG

Weight-scaling algorithms are built on some notion of

arcs being approximately proper. Roughly speaking, for

ε > 0, an arc is “ε-proper” when its reduced cost is within

ε of making the arc proper. In FlowAssign, however, we

treat the boundary cases in a one-sided manner. In fact,

throughout FlowAssign, how we treat an arc v → w depends

upon its reduced cost cp(v, w) only through the quantity

cp(v, w)/ε�. We are following Gabow-Tarjan by quantizing

our reduced costs to multiples of ε; but we are adding a new

wrinkle by adopting this ceiling quantization.

Given an integral pseudoflow f and prices p, we define

an idle arc v → w to be ε-proper when cp(v, w) > −ε and

a saturated arc v → w to be ε-proper when cp(v, w) ≤ ε.

Note that we allow equality in the bound for the saturated

case, but not in the bound for the idle case, as dictated by

our ceiling quantization.

Prop 3: Let v → w be an idle arc whose reduced cost is

known to be a multiple of ε. If the arc v → w is ε-proper,

then it is automatically proper.

Proof: We must have cp(v, w) > −ε, so we actually

have cp(v, w) ≥ 0.

We don’t get the analogous automatic properness for

saturated arcs. But idle arcs are typically in the majority;

that’s why we quantize with ceilings, rather than floors.

And about skew-symmetry: We avoid backward arcs in

our network NG since, if we allowed them, we would have

to use floor quantization on their reduced costs.

An arc with reduced cost precisely zero is often called

tight. So we say that an idle arc v → w is ε-tight when

584

FlowAssign(G, t)
(M, s) := HopcroftKarp(G, t);
convert M into a flow f on NG with |f | = s;

for all nodes v in NG, set pd(v) := 0;

ε := ε; while ε > ε do
ε := ε/q;

Refine(f, p, ε);
od;

round prices to integers that make all arcs proper;

Figure 1. The high-level structure of FlowAssign

−ε < cp(v, w) ≤ 0, while a saturated arc v → w is

ε-tight when 0 < cp(v, w) ≤ ε.9 Note that ε-tight arcs are

ε-proper, but just barely so, in the sense of “just barely” that

our ceiling quantization allows. For saturated arcs, we also

define a weaker notion: A saturated arc v → w is ε-snug
when −ε < cp(v, w) ≤ ε.

5. STARTING AND STOPPING FlowAssign

Figure 1 shows FlowAssign. Given a bipartite graph

G with integral costs and a target size t for the output

matching, FlowAssign computes a matching in G of size

s := min(t, ν(G)) and also computes integral prices that

demonstrate that its output matching is min-cost. FlowAssign
runs in space O(m) and in time O(m

√
s log(sC)). The

parameter q > 1 is an integer constant; q = 8 or q = 16
might be good choices.

We begin by ignoring the costs and invoking the max-size

matching algorithm of Hopcroft and Karp [13] to compute

both s := min(t, ν(G)) and some matching M in G of size

s. As published, Hopcroft-Karp computes a matching of size

ν(G) in time O(m
√

ν(G)), which we couldn’t afford. But

our goal is a matching of size only s, and Hopcroft-Karp

can compute a matching of that size in time O(m
√
s) [18].

The primary state of FlowAssign consists of the flux f ,

the prices p, and the real number ε. Here are four invariant

properties of that state:

I1 The flux f on NG is a flow of value |f | = s.

I2 For all nodes v, the price pd(v) is a multiple of ε.

I3 Every arc, whether idle or saturated, is ε-proper.

I4 Every saturated bipartite arc is ε-snug.

We reduce ε by a factor of q at the start of each scaling

phase. This reduction makes it easier to satisfy I2, but harder

to satisfy I3 and I4. The routine Refine begins with special

actions that reestablish I3 and I4, given the new, smaller ε.

In each call to Refine, we have ε = qe for some integer

e. The initial value ε = qe is the smallest power of q that

strictly exceeds C; so we set e := 1+
⌊
logq C

⌋
. The final ε =

qe is the largest power of q that is strictly less than 1/(s+2);
so we set e := −(

1 +
⌊
logq(s+ 2)

⌋)
. The number of calls

to Refine is e− e = O(log(sC)). The early scaling phases

9Gabow and Tarjan [10] call “eligible” the arcs that we call ε-tight.

are those with e ≥ 0, so that ε is a positive integer; the late
phases are those with e < 0, so that ε is the reciprocal of

an integer.

FlowAssign has to do arithmetic on prices, costs, and

reduced costs. But the integer 1/ε = q−e is a common

denominator for every price that ever arises. For simplicity,

FlowAssign represents its prices, costs, and reduced costs as

rational numbers with this common denominator, that is, as

integer multiples of ε. We show, in Corollary 14, that the

prices remain O(sC). Since 1/ε = O(s), the numerators

that we manipulate are O(s2C), so triple precision suffices.

Returning to Figure 1, we claim that our invariants hold

at entry to the main loop, with ε = ε. The magnitude of any

cost is at most C, all prices are then zero, and ε > C, so we

have −ε < cp(v, w) < ε, for every arc v → w in NG. Both

I3 and I4 follow from this, and I1 and I2 are clear. So the

scaling phases can commence, as we discuss in Section 6.

As for the final rounding:

Prop 4: The final call to Refine has ε = ε < 1/(s + 2).
After that call, suppose that we round our prices to integers

by computing p̃d(v) := �pd(v) + kε
 for some integer k
in the range [0 . . 1/ε), the same k for all nodes v. We

will always be able to find a k in this range for which the

resulting rounded prices make all arcs proper.

Proof: This rounding operation is monotonic and com-

mutes with integer shifts, so an arc that is proper before we

round will remain proper afterward. For example, an idle arc

v → w that is proper before we round has c(v, w)+pd(w) ≥
pd(v); this implies c(v, w)+ p̃d(w) ≥ p̃d(v), so the arc will

be proper afterward as well.

We claim next that all of the idle arcs are proper before

we round. Since all costs are integers and ε is the reciprocal

of an integer, all costs are multiples of ε. All prices are

multiples of ε as well, by I2, so all reduced costs are

multiples of ε. All idle arcs, which are ε-proper by I3, are

then automatically proper, by Prop 3.

So all of the arcs that start out improper must be saturated,

and our goal is to find a k that will convert all such arcs

into being proper. Any such arc v → w is ε-proper, and its

reduced cost is a multiple of ε; so we must have cp(v, w) =
ε, which means that pd(w) ≡ pd(v) + ε (mod 1). Of the

1/ε possible values for k, one will make pd(w) round up

while making pd(v) round down, thus sending the rounded

reduced cost cp̃(v, w) all the way up from ε to 1; but all

others will cause pd(w) and pd(v) to round in the same

direction, resulting in cp̃(v, w) = 0 and the arc v → w
becoming proper. We avoid the one bad value.

Each saturated arc v → w that starts out improper

determines one bad value for k in this way, and we can

compute that bad value from the fractional part of either

pd(v) or pd(w). The flow f has precisely 3s saturated

arcs. Each of the s saturated bipartite arcs might rule out

a different possibility for k. Of the s saturated left-dummy

arcs, however, all of the ones that start out improper, however

585

Refine(f, p, ε)
convert the s bipartite arcs saturated in f to idle;

raise prices, as in Fig. 3, to make all arcs ε-proper;

S = {surpluses} := {the s women matched on entry};
D = {deficits} := {the s men matched on entry};
int h := s; while h > 0 do

build a shortest-path forest with current surpluses
as tree roots, until reaching a current deficit;

raise prices at the forest nodes by multiples of ε,
creating at least one length-0 augmenting path;

find a maximal set PPP of compatible
length-0 augmenting paths;

augment f along each path in PPP , shrinking S
and D so as to reduce |S| = |D| = h by |PPP|;

od;

Figure 2. The high-level structure of Refine

many of them there are, must rule out the same possibility

for k, since all left-dummy arcs leave the same node: the

source. In a similar way, of the s saturated right-dummy arcs,

all of the ones that start out improper must rule out the same

possibility for k. As a result, at most s+ 2 possibilities are

ruled out overall. Since 1/ε ≥ s + 3, we will be able to

find a k that is not bad for any arc. Rounding all prices to

integers using this value for k makes all arcs proper, thus

demonstrating that the output flow f is min-cost.

6. THE SCALING PHASE Refine

The routine Refine, sketched in Figure 2, carries out

a scaling phase, much as in Gabow-Tarjan. As in the

Hungarian Method, we do a Dijkstra-like search to build

a shortest-path forest and do a round of price increases. But

then, as in Hopcroft-Karp, we augment, not just along the

single length-0 augmenting path that our price increases have

ensured, but along a maximal set of compatible such paths.

During Refine, the flux f temporarily degenerates from a

flow into a pseudoflow. A surplus of a pseudoflow is a node

other than the sink at which more flow enters than leaves;

and a deficit of a pseudoflow is a node other than the source

at which more flow leaves than enters.

For a woman x, the left stub to x is the pseudoflow on

NG that saturates the left-dummy arc � → x, but leaves

all other arcs idle. Symmetrically, for a man y, the right
stub from y saturates only the right-dummy arc y → �. Any

pseudoflow f that arises in Refine is the sum of some flow,

some left-stubs, and some right-stubs. The flow component,

which we denote f̂ , encodes the matching that Refine has

constructed so far, during this scaling phase. The left-stubs

remember those women who were matched at the end of the

previous phase and who have not yet been either matched

or replaced in this phase. Those women are the surpluses of

f , and they constitute the set S. The right-stubs remember

the previously matched men in a similar way. Those men

are the deficits of f , and they constitute the set D.

When Refine is called, f is an integral flow of value |f | =
s. But Refine starts by altering f so as to zero the flow along

the s bipartite arcs that were saturated. The initialization of

Refine then raises prices so that every arc in NG becomes

ε-proper, for the resulting pseudoflow f and for the new,

smaller value of ε.

The rest of Refine, its main loop, finds augmenting paths

and augments along them, each such path joining a surplus

in S to a deficit in D. By augmenting along s such paths,

we return f to being a flow once again, but now with all

arcs ε-proper, rather than just (qε)-proper. Unlike in Gabow-

Tarjan, however, our augmenting paths are allowed to visit

the source and sink. For example, such a path could first

back up from a surplus x along the saturated left-dummy

arc � → x and then move forward along some idle left-

dummy arc � → x′. When we augment along that path, the

arcs reverse their idle-versus-saturated status, thus recording

the fact that x′ has replaced x in the set of women who are

going to end up married.

6.1. The residual digraph Rf

Given an integral pseudoflow f , we define the residual
digraph Rf as follows. Every node in NG becomes a node

in Rf . Every idle arc v → w in NG becomes a forward link

v ⇒ w in Rf ; and every saturated arc v → w becomes a

backward link w ⇒ v.10 We will augment along paths in

Rf . Note that, because of the source and sink, paths in Rf

need not alternate between forward and backward links.

We define the length of a forward link v ⇒ w in the

residual digraph Rf to be lp(v ⇒ w) :=
cp(v, w)/ε�, while

the length of a backward link w ⇒ v in Rf is defined by

lp(w ⇒ v) := 1−
cp(v, w)/ε�. Note that these definitions

are ceiling quantized. It follows from I3 that the lengths of

forward and backward links are nonnegative integers. We

can also verify that:

Prop 5: Raising the price pd(v) at some node v in NG

by ε lowers the length of any link in Rf leaving v by 1 and

raises the length of any link entering v by 1.

Prop 6: An arc is ε-tight just when the link that it

generates has length 0, and a saturated arc is ε-snug just

when the backward link that it generates has length 0 or 1.

An augmenting path is a simple path in Rf that starts at a

surplus and ends at a deficit; it is allowed to visit either the

source or the sink or both (in either order). An augmenting

path has length zero just when all of its links are length

zero, which, by Prop 6, happens just when all of the arcs

underlying its links are ε-tight.

10Note that we use different terms on our three different levels of graphs:
The original bipartite graph G has vertices and edges (x, y). The flow
network NG has nodes and arcs v → w; all of these arcs are oriented
from left to right, and it is these arcs that have reduced costs. The residual
digraph Rf has nodes and links v ⇒ w; some of the links go forward
while others go backward, and each link has a quantized length, which is
a nonnegative integer.

586

� +(q − 1)ε

S

+ 0

X \ S
+(q − 1)ε

D

+3(q − 1)ε

Y \D
+2(q − 1)ε

�+2(q − 1)ε

saturated

idle

idle

idle id
le

idle

saturated

idle

Figure 3. Price increases during the initialization of Refine

During Refine, we generalize the invariant I1 into I1′ (of

which I1 is the special case h = 0) and we add I5:

I1′ The flux f is a pseudoflow consisting of an integral

flow f̂ of value |f̂ | = s − h supplemented by left

stubs to each of the women in S and by right stubs

from each of the men in D, where |S| = |D| = h.

I5 The residual digraph Rf has no cycles of length zero.

Prop 7: In any residual digraph Rf that arises during

Refine, the in-degree of a woman is at most 1, while the

in-degree of a surplus is 0. Symmetrically, the out-degree of

a man is at most 1, while the out-degree of a deficit is 0.

Proof: Consider a woman x, and consider a link in

Rf that arrives at x. Such a link can arise either because

the left-dummy arc � → x is idle, leading to the forward

link � ⇒ x, or because some bipartite arc leaving x, say

x → y, is saturated, leading to the backward link y ⇒ x.

Any bipartite arc that is saturated in the pseudoflow f must

be saturated also in its flow component f̂ , since no stub

saturates any bipartite arcs. Since flow is conserved at x in

the flow f̂ , there can’t be more than one bipartite arc leaving

x that is saturated, and there can’t be even one such saturated

arc unless the left-dummy arc � → x is also saturated. So

the in-degree of x in Rf is at most 1. Furthermore, for x to

be a surplus, the left-dummy arc � → x must be saturated

and no bipartite arc leaving x can be saturated; so the in-

degree of x is then 0.

We analyze the out-degree of a man symmetrically.

Corollary 8: On any augmenting path in Refine, the only

surplus is the surplus at which it starts and the only deficit

is the deficit at which it ends.

6.2. Before the main loop starts

During the initialization of Refine, zeroing the flow along

all bipartite arcs establishes I1′ with h = s and f̂ = 0. It also

establishes I4 trivially, since all bipartite arcs are now idle.

There are now also no links y ⇒ x in the residual digraph

that go backward from the men’s side to the women’s side;

hence, there can’t be any cycles at all in the residual digraph,

so I5 holds. As for I2, all prices are currently multiples of

ε and will remain so. We then establish I3 by raising prices

as indicated in Figure 3.

Prop 9: While initializing Refine, raising our prices as

indicated in Figure 3 makes all arcs ε-proper for the new,

smaller ε, thereby establishing I3.

Proof: Before we raise any prices, all of the saturated

left-dummy arcs � → x are (qε)-proper, so they satisfy

cp(�, x) ≤ qε. All of the idle left-dummy arcs � → x are

also (qε)-proper, all of the prices are multiples of qε, and the

costs of all dummy arcs are zero. It follows from Prop 3 that

the idle left-dummy arcs are actually proper, with cp(�, x) ≥
0. Symmetrically, the saturated right-dummy arcs y → �
satisfy cp(y,�) ≤ qε and the idle right-dummy arcs are

actually proper, with cp(y,�) ≥ 0. The bipartite arcs x→ y
come in two flavors. Some of them were idle also in the

flow that was in effect when Refine was called. Those arcs

were idle and (qε)-proper, so they satisfy cp(x, y) > −qε.

The others are idle now, but they were saturated when Refine
was called. By I4, we conclude that cp(x, y) > −qε also for

those arcs.

We now analyze Figure 3 from left to right, verifying that

the indicated price increases leave all arcs ε-proper. Let’s use

p′ to denote the prices after we have raised them.

Consider first a saturated left-dummy arc � → x. We start

with cp(�, x) = c(�, x)− pd(�) + pd(x) ≤ qε. The woman

x is now definitely a surplus, so we leave the price at x
unchanged: p′d(x) := pd(x). But we raise the price at the

source: p′d(�) := pd(�) + (q − 1)ε. So we have

cp′(�, x) = c(�, x)− p′d(�) + p′d(x) = cp(�, x)− (q − 1)ε.

So cp′(�, x) ≤ ε, and the saturated left-dummy arc � → x
is left ε-proper.

What about an idle left-dummy arc � → x? We start with

cp(�, x) ≥ 0. And we add (q − 1)ε to the prices at both �
and at x; so we end with cp′(�, x) ≥ 0, and the idle arc

� → x is also left ε-proper.

We consider the bipartite arcs x→ y next. They are now

all idle, and we have seen that cp(x, y) > −qε, whether the

arc x → y was idle or saturated at the call to Refine. The

price at x either stays the same or goes up by (q − 1)ε,

according as x does or does lie in S. So p′d(x) ≤ pd(x) +
(q − 1)ε. The price at y goes up either by 3(q − 1)ε or by

2(q − 1)ε, according as y does or does not lie in D. So

p′d(y) ≥ pd(y) + 2(q − 1)ε. We thus have

cp′(x, y) = c(x, y)− p′d(x) + p′d(y)
≥ c(x, y)− pd(x)− (q − 1)ε+ pd(y) + 2(q − 1)ε

≥ cp(x, y) + (q − 1)ε,

which implies cp′(x, y) > −ε. Thus, all bipartite arcs are

left ε-proper.

The right-dummy arcs are similar to the left-dummy arcs.

The idle ones start out proper and remain proper, since we

raise the prices at both ends by the same amount. For the

saturated ones, we raise the price at the left end by (q−1)ε
more than we raise the price at the right end. This ensures

587

for all nodes v, set �(v) :=∞;

for all surpluses σ, set �(σ) := 0 and insert(σ, 0);
do v := delete-min();

for all links v ⇒ w leaving v in Rf do
L := �(v) + lp(v ⇒ w); Lold := �(w);
if L ≤ Λ and L < Lold then

set �(w) := L;

if Lold =∞ then insert(w,L)
else decrease-key(w,L) fi;

fi;

od;

add v to the forest;

until v is a deficit od;

Figure 4. Building a shortest-path forest in Refine via Dijkstra

that the saturated right-dummy arcs are left ε-proper, so I3
is established.

6.3. Building the shortest-path forest

The main loop of Refine starts by building a shortest-path

forest with the h surpluses remaining in S as the roots of

the trees, stopping when a deficit first joins the forest. We

will prove a bound in Corollary 13 on how long a path we

might need, to first reach a deficit. For now, we just assume

that Λ is some such bound: Whenever we start building a

forest, we assume that some path in Rf from some surplus

to some deficit will be found whose length is at most Λ.

We build the forest using a Dijkstra-like search, as shown

in Figure 4. The value �(v), when finite, stores the minimum

length of any path in Rf that we’ve found so far from some

surplus to v. We use a heap to store those nodes v with

�(v) < ∞ until they join the forest. The key of a node v
in the heap is �(v). The commands insert, delete-min, and

decrease-key operate on that heap.

Because our keys are small integers and our heap usage is

monotone11, we can follow Gabow-Tarjan in using Dial [6]

to avoid any logarithmic heap overhead. We maintain an

array Q, where Q[j] points to a doubly-linked list of those

nodes in the heap that have key j, the double-linking en-

abling the deletion that is part of a decrease-key. Exploiting

our assumed bound Λ, we allocate the array Q as Q[0 . .Λ].
We ignore any paths we find whose lengths exceed Λ. We

also maintain an integer B, which stores the value �(v) for

the node v that was most recently added to the forest. We

add nodes v to the forest in nondecreasing order of �(v), so

B never decreases. To implement delete-min, we look at the

lists Q[B], Q[B+1], and so on, removing and returning the

first element of the first nonempty list we find.

11When building a shortest-path forest, our heap usage is monotone in
the sense of Cherkassky, Goldberg, and Silverstein [5]: If k is the key of a
node that was just returned by a delete-min, then the key parameter in any
future call to insert or decrease-key will be at least k. The Dial technique
depends upon this monotonicity.

By our assumption about Λ, some deficit δ with �(δ) ≤ Λ
eventually enters the forest, at which point we stop building

it. The space and time that we spend are both O(m + Λ),
where the Λ term accounts for the space taken by the array

Q and for the time taken to scan that array once while doing

delete-min operations.

6.4. Raising the prices

The next step in the main loop of Refine is to raise prices.

For each node v in the shortest-path forest, we set the new

price p′d(v) by

p′d(v) := pd(v) + (�(δ)− �(v))ε, (3)

where δ in D is the deficit whose discovery halted the growth

of the forest. Let σ be the surplus at the root of the tree that δ
joins. We have p′d(σ) = pd(σ)+�(δ)ε, but p′d(δ) = pd(δ). So

Prop 5 tells us that our price increases shorten the path from

σ to δ by �(δ) length units. If our invariants are preserved,

the price increases must leave that path of length zero; and

it’s clear that I1′ and I2 continue to hold.

Prop 10: During the main loop of Refine, using (3) to

raise prices at the nodes in the shortest-path forest preserves

invariants I3 through I5.

Proof: See the unabridged version [17].

6.5. Finding compatible augmenting paths

In Hopcroft-Karp [13], augmenting paths are compatible

when they are vertex-disjoint. But we need a more liberal

notion of compatibility in Refine, which we can define in

two different, equivalent ways: We define augmenting paths

to be link-compatible when they start at distinct surpluses,

end at distinct deficits, and don’t share any links. We define

augmenting paths to be node-compatible when they are

node-disjoint, except perhaps for the source and sink.

Prop 11: Augmenting paths in the residual digraph Rf

are link-compatible just when they are node-compatible.

Proof: It’s easy to see that node-compatible augmenting

paths must also be link-compatible. By node-compatibility,

they must start at distinct surpluses and end at distinct

deficits. And they can’t share any links, since every link

has at least one end node that isn’t the source or the sink.

Conversely, consider some augmenting paths that are link-

compatible, and let x be any woman. If x is a surplus, then,

by Corollary 8, an augmenting path can visit x only by

starting at x, which only one of our link-compatible paths

can do. If x is not a surplus, then an augmenting path can

visit x only by arriving at x over a link. By Prop 7, the

in-degree of x in Rf is at most 1, and at most one of our

link-compatible paths can travel over any single link. So x
is visited by at most one of our paths.

Similarly, if a man y is a deficit, then an augmenting path

can visit y only by ending at y, which only one of our paths

can do. If y is not a deficit, an augmenting path can visit

y only if it leaves y along a link. But there is at most one

588

link leaving y, which at most one of our paths can traverse.

So link-compatible paths are also node-compatible.

Let R 0
f denote the subgraph of Rf whose links are of

length 0. To find a maximal set PPP of compatible augmenting

paths in the subgraph R 0
f , we can search for paths that

are either link-compatible or node-compatible. To find a

maximal set of link-compatible paths, we do a depth-first

search of the subgraph R 0
f , starting at each surplus in turn

and trying for a path to a deficit. This search is allowed to

revisit a node that it already visited, resuming the processing

of that node by examining outgoing links that were not

examined earlier. Despite revisiting nodes in this way, we

won’t output any paths that aren’t simple, because I5 assures

us that the subgraph R 0
f is acyclic. Alternatively, we could

search for node-compatible paths. That search is a bit more

complicated, since the source and sink are then the only

nodes that the search is allowed to revisit [18]; but it should

run faster, since we can cut off the searching sooner.

6.6. Augmenting along those paths

Finally, we augment f along each of the paths in PPP .

These augmentations reverse the forward-versus-backward

orientation of each link along the path and the idle-versus-

saturated status of each underlying arc. This restores the

flow balance of the surplus at which the path starts and of

the deficit at which it ends, while no other flow-balances

are affected. So I1′ is preserved, but with h = |S| = |D|
reduced by |PPP|. Augmenting doesn’t change any prices, so

I2 is preserved. As for I3, the length-0 forward links along

an augmenting path become length-1 backward links, while

the length-0 backward links become length-1 forward. So

the underlying arcs are all left ε-proper, although no longer

ε-tight. The idle bipartite arcs that become saturated during

the augmentation, while not left ε-tight, are left ε-snug, by

Prop 6; so I4 is also preserved. Finally, for I5: Augmentation

reverses the directions of some links, and this may well

produce cycles in Rf . But every link that changes state

during an augmentation ends up being of length 1; so no

cycle that exploits any such link can be of length 0.

7. ANALYZING THE PERFORMANCE

To finish analyzing FlowAssign, we need three things.

First, we must choose Λ and show that the building of every

shortest-path forest finds a path from a surplus to a deficit

of length at most Λ. Second, we must show that our prices

remain O(sC). Third, to achieve the weight-scaling time

bound, we must show that the main loop of Refine executes

O(
√
s) times. The key to all three is the inflation bound,

which limits the total amount by which prices can increase

during a call to Refine. This bound applies at any clean point

in Refine’s main loop, where a clean point is just before or

just after the execution of one of the four statements of the

main loop. By the way, the analyses of Hopcroft-Karp [13]

and of Gabow-Tarjan [10] involve analogous bounds.

In the round of price increases that follows the building of

a shortest-path forest, the surpluses at the roots of the trees

in that forest have their prices increased by �(δ)ε, where δ
is the deficit whose discovery stopped the building of the

forest. Note that this is the largest increase that happens,

during that round, to the price at any node. Let’s refer to

that quantity as the max increase of that round.

Prop 12: Consider any clean point during an execution

of the main loop of Refine. Let Δ denote the sum of the

max increases of all of the rounds of price increases so far,

during this call to Refine. We then have the inflation bound:

hΔ ≤ (4q + 4)sε. (4)

This bound holds even after a round of price increases,

during which Δ increased, and before the subsequent batch

of augmentations, which will cause h to decrease.

Proof: Let f be the flow when Refine was called, while

f ′ is the current pseudoflow. Let p be the prices when Refine
entered its main loop, while p′ is the current prices. We show

that (cp′ − cp)(f
′ − f) = hΔ by considering the changes

in price at the 2h nodes where the flux f ′ − f does not

conserve flow. We then show (4) by using our bounds on

the reduced costs of individual arcs. For details, see [17].

We can hence take the bound Λ of Section 6.3 to be

Λ := (4q + 4)s/h = O(s); so each iteration of the main

loop in Refine takes space and time O(m + Λ) = O(m).
And we can show that our prices remain O(sC).

Corollary 13: The building of any shortest-path forest in

the procedure Refine is always halted by finding a deficit δ
with �(δ) ≤ (4q + 4)s/h.

Corollary 14: The prices in FlowAssign remain O(sC).

Proof: For both, see the unabridged version [17].

Prop 15: The main loop of Refine executes O(
√
s) times.

Proof: Note first that every iteration of the main loop

reduces h: The repricing ensures that at least one length-0
augmenting path exists in Rf , so we have |PPP| ≥ 1.

We claim next that every iteration of the main loop, except

perhaps the first, increases Δ by at least ε. Note that Δ
could fail to increase in some iteration only if we found a

path in Rf from some surplus to some deficit all of whose

links were already of length 0, without any need for any

price increases. If such a path A existed in any iteration

after the first, however, consider the maximal set PPP that was

computed near the end of the preceding iteration. The only

changes to the state (f, p) that happen after PPP is computed

and before A is discovered are the augmentations along the

paths in PPP . But those augmentations affect only the links

along those paths, and none of those links can appear in

A, since the augmentations leave those links with length 1.

So the length-0 augmenting path A must be link-compatible

with all of the paths in PPP , and is hence compatible with

them. But PPP was maximal; so no such A can exist, and Δ
increases in all iterations of the main loop after the first.

589

Consider the state after
√
(4q + 4)s iterations of the main

loop. We must have Δ ≥ √
(4q + 4)s ε, since Δ increases

in every iteration. Applying the inflation bound (4), we

deduce that h ≤ √
(4q + 4)s. Since h decreases in every

iteration, we see that the total number of iterations is at

most 2
√

(4q + 4)s = O(
√
s).

So we have finally established our main result:

Theorem 16: FlowAssign solves the problem ImpA in

space O(m) and in time O(m
√
s log(sC)).

8. THE VARIANT SUBROUTINE TightRefine

One way in which FlowAssign differs from Gabow-Tarjan

involves invariant I4, which, you recall, requires that all

saturated bipartite arcs be kept ε-snug.

Since Gabow-Tarjan works directly on the graph G, all

arcs in Gabow-Tarjan are bipartite. And Gabow-Tarjan keeps

all of its saturated arcs, not only ε-snug, but actually ε-tight.

Perhaps Gabow and Tarjan did this because they were

following the Hungarian Method, which keeps its saturated

arcs precisely tight.

Once we move from the graph G to the flow network

NG, it is hopeless to keep all saturated arcs ε-tight. We can

and do keep all saturated arcs ε-proper, which puts an upper

bound on their reduced costs. But the reduced costs of the

dummy saturated arcs may get large negative — that seems

unavoidable. For the bipartite saturated arcs, however, we

can and do impose a lower bound on their reduced costs. In

I4, we insist that they be ε-snug. Following Gabow-Tarjan,

we could go further and insist that they actually be ε-tight.

Let’s refer to that stronger invariant as I4′.
The main difficulty with I4′ crops up when augmenting

along an augmenting path. With the executable code of

Refine as it now stands, the arcs along an augmenting path

that change status from idle to saturated end up being ε-snug,

but not ε-tight. The bipartite arcs of this type would blatantly

violate I4′.
Gabow and Tarjan deal with this difficulty by changing

the code. In our language, they increase the price of every

man along an augmenting path by ε, as part of doing the

augmentation. With those price increases, the bipartite arcs

that change status to saturated end up ε-tight. The good news

is that this change to the code succeeds even in our more

complicated context of FlowAssign, where there are dummy

arcs, augmenting paths can visit the source and the sink, and

so forth. So we end up with two variants of the algorithm

FlowAssign, one using the subroutine SnugRefine that we’ve

analyzed in this paper and the other using TightRefine, a

variant in which augmenting along an augmenting path

includes raising the prices of the men on that path by ε.

TightRefine is more delicate to analyze than SnugRefine, but

both routines do the same job in the same space and time

bounds [18]. It isn’t clear which subroutine would perform

better in practice.

REFERENCES

[1] R. K. Ahuga, J. B. Orlin, C. Stein, and R. E. Tarjan,
“Improved algorithms for bipartite network flow,” SIAM J.
on Computing, vol. 23, no. 5, pp. 906–933, 1994.

[2] D. P. Bertsekas, “Auction algorithms for network flow prob-
lems: A tutorial introduction,” Computational Optimization
and Applications, vol. 1, pp. 7–66, 1992.

[3] D. P. Bertsekas and D. A. Castañon, “A forward/reverse auc-
tion algorithm for asymmetric assignment problems,” Compu-
tational Optimization and Applications, vol. 1, pp. 277–297,
1992.

[4] R. Burkard, M. Dell’Amico, and S. Martello, Assignment
Problems, Society for Industrial and Applied Mathematics
(SIAM), 2009.

[5] B. V. Cherkassky, A. V. Goldberg, and C. Silverstein, “Buck-
ets, heaps, lists, and monotone priority queues,” ACM-SIAM
Symposium on Discrete Algorithms (SODA’97), SIAM, pp.
83–92, 1997.

[6] R. B. Dial, “Algorithm 360: Shortest path forest with
topological ordering,” Commun. ACM, vol. 12, no. 11, pp.
632–633, 1969.

[7] R. Duan and H.-H. Su, “A scaling algorithm for maximum
weight matching in bipartite graphs,” ACM-SIAM Symposium
on Discrete Algorithms (SODA’12), SIAM, pp. 1413–1424,
2012.

[8] T. Feder and R. Motwani, “Clique partitions, graph compres-
sion and speeding-up algorithms,” J. of Computer and System
Sciences, vol. 51, no. 2, pp. 261–272, 1995.

[9] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their
uses in improved network optimization algorithms,” J. of the
ACM, vol. 34, no. 3, pp. 596–615, 1987.

[10] H. N. Gabow and R. E. Tarjan, “Faster scaling algorithms
for network problems,” SIAM J. on Computing, vol. 18, no.
5, pp. 1013–1036, 1989.

[11] A. V. Goldberg and R. Kennedy, “An efficient cost scaling
algorithm for the assignment problem,” Mathematical Pro-
gramming, vol. 71, pp. 153–177, 1995.

[12] ———, “Global price updates help,” SIAM J. on Discrete
Mathematics, vol. 10, no. 4, pp. 551–572, 1997.

[13] J. E. Hopcroft and R. M. Karp, “An n5/2 algorithm for max-
imum matchings in bipartite graphs,” SIAM J. on Computing,
vol. 2, no. 4, pp. 225–231, 1973.

[14] M.-Y. Kao, T.-W. Lam, W.-K. Sung, and H.-F. Ting, “A
decomposition theorem for maximum weight bipartite match-
ings,” SIAM J. on Computing, vol. 31, no. 1, pp. 18–26, 2001.

[15] H. W. Kuhn, “The Hungarian method for the assignment
problem,” Naval Research Logistics, vol. 2, pp. 83–97,
1955; republished with historical remarks in Naval Research
Logistics, vol. 52, pp. 6–21, 2005.

[16] J. B. Orlin and R. K. Ahuja, “New scaling algorithms
for the assignment and minimum mean cycle problems,”
Mathematical Programming, vol. 54, pp. 41–56, 1992.

[17] L. Ramshaw and R. E. Tarjan, “A weight-scaling al-
gorithm for min-cost imperfect matchings in bipartite
graphs,” HP Labs technical report HPL-2012-72R1,
www.hpl.hp.com/techreports/HPL-2012-72R1.html, 2012.

[18] ———, “On minimum-cost assignments in unbalanced bi-
partite graphs,” HP Labs technical report HPL-2012-40R1,
www.hpl.hp.com/techreports/HPL-2012-40R1.html, 2012.

[19] M. Thorup, “Integer priority queues with decrease key in
constant time and the single source shortest paths problem,”
J. of Computer and System Sciences, vol. 69, no. 3, pp. 330–
353, 2004.

590

