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ABSTRACT 

The problem of f ind ing  near optimal perfect 
matchings of an even number n of vert ices is con- 
sidered. When the distances between the vert ices 
sa t i s fy  the t r iang le  inequa l i t y  i t  is possible to 
get w i th in  a constant mu l t i p l i ca t i ve  factor  of the 

optimal matching in time O(n 2 log K) where K is the 
ra t io  of the longest to the shortest distance be- 
tween ver t ices.  Other heur is t ics  are analyzed as 
we l l ,  inc luding one that gets w i th in  a logar i thmic 

factor  of the optimal matching in time O(n 2 log n). 

Finding an optimal weighted matching requires G(n 3) 
time by the fastest  known algori thm, so these heu- 
r i s t i c s  are qui te useful .  

Department of Computer Science 
Univers i ty  of l l l i n o i s  

Urbana, l l l i n o i s  61801 
graph G whose edges sa t i s fy  the t r iang le  inequal i -  
ty .  Let n, even, be the number of vert ices in G. 
The most e f f i c i e n t  algorithm known for  the general 

weighted matching problem requires ~(n 3) time, and 
we would l i ke  to f ind  good approximation a lgor i -  
thms fo r  the special case of the t r iang le  inequal- 
i t y  and the special case of the vert ices ly ing 
in the un i t  (Euclidean) square. The former case 
was f i r s t  considered in Reingold and Tarjan [14] 
and they analyzed the behavior of a greedy heuris- 
t i c ;  the l a t t e r  case was f i r s t  considered by Papa- 
d imi t r iou  [ I 0 ]  who was concerned with the expected 
cost of a matching. 

When the n vert ices l i e  in the un i t  (Eucl i -  
dean) square, no heur is t i c  can be guaranteed to 

1 produce a matching of cost less than 7 ~ / ~  in the 

worst case. We analyze various heur is t ics  for  th is  
case, inc luding one that always produces a matching 

costing at most ~ / ~  . In addi t ion,  th is  heuris- 

t i c  also f inds a t rave l ing  salesman tour of the n 
vert ices costing at most ~'n~. A d i f f e ren t  one 
of the heur is t ics  analyzed produces asymptot ical ly 
optimal resu l ts .  I t  is also shown that  asymptoti- 
ca l l y  optimal t rave l ing salesman tours can be 
found in O(n log n) time in the un i t  square. 

INTRODUCTION 

Consider the problem of f ind ing a minimum 
cost matching in a weighted complete undirected 
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Motivat ion fo r  studying th is  approximation 
problem is threefo ld:  F i r s t ,  as described in [14], 
matching has d i rec t  appl icat ions to minimizing the 
time required to draw networks on a mechanical 

p l o t t e r ;  in such cases the ®(n 3) opt imizing algo- 
r i thm is unacceptable since n can be large. Se- 
cond, a s u f f i c i e n t l y  close approximation to an op- 
timal matching could be used to improve Christo- 
f ides '  t rave l ing  salesman problem heur i s t i c  [3 ] ,  
[4]  wi thout  rea l l y  harming the closeness of i t s  
approximation. F ina l l y ,  matching is an in te res t -  
ing combinatorial problem in i t s  own r i gh t  and as 
such i t s  approximation is also of in te res t .  

We w i l l  consider two s im i la r ,  but not 
i den t i ca l ,  versions of the matching problem, each 
of which corresponds to a physical s i t ua t i on .  
F i r s t ,  we consider the general case of matching 
when the weights sa t i s fy  the t r iang le  inequa l i t y .  
The resul ts  we obtain here are also appl icable to 
our more special ized second case, that  of n points 
in a bounded region of the Euclidean plane ( t yp i -  
ca l l y  the un i t  square). In the case of the bound- 
ed region (motivated by the p lo t te r  appl icat ion 
referred to above) we w i l l  analyze a heu r i s t i c ' s  
behavior by bounding the absolute cost of the 
matching found, i r respect ive of the cost of an op- 
timal matching. In the case of the t r iang le  in -  
equa l i ty  ( that  i s ,  an unbounded region) the cost 
of the matching can be unboundedly large for  any 
number of vert ices and so we must consider a mea- 
sure of how bad the h e u r i s t i c a l l y  found match is 
compared to the optimal match, namely the ra t i o  of 
the two costs. 

TRIANGLE INEQUALITY 
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n vert ices and weighted edges sa t i s fy ing  the t r i a ~  
gle inequa l i t y .  Let OPT(G) denote the minimum 
cost of a matching of G. Let M(G) be the cost of 
a matching produced by algorithm M. Let RM(n) be 

the worst case ra t i o  M(G)/OPT(G) as a funct ion of 
n, the number of vert ices of G. 

In [14],  Reingold and Tarjan considered the 
greedy heur is t i c  (GR) that repeatedly matches the 
two closest unmatched points. This can be imple- 

mented in worst case time O(n21ogn), a s i gn i f i can t  
improvement over the opt imizing algorithm. The 
closeness of the approximation, however, is not 
very sat is fac tory .  Reingold and Tarjan showed 
that 

3 
RGR(n) = ~n Ig2--I : ] n "585 

and that th is  bound is achievable for  a l l  n. 

Papadimitriou [12] proposed an O(n 2) heuris- 
t i c  based on spanning trees (ST): Begin with 
spanning tree on the vert ices and convert i t  in to  
a matching by replacing "f lowers" x I ,  x 2 . . . . .  x m, 

v in the tree by matching vert ices as indicated 
by the wavy l ines:  

~ Y ~ . . . . ~ - I  

Xl ~ xm 
• . . . . ~ 2  

X l ~  I / / X m - I  

 'Xm 
m even m odd 

Then a l l  vert ices matched and a l l  edges inc ident  
on them are deleted from the tree and the process 
is repeated. Papadimitriou showed that  the ra t io  
of the cost of the matching thus found to that of 

n the optimal matching can be as bad an ~ and no 

worse. We present an independently found proof 
here. 

n That the ~ ra t io  is asymptot ical ly achieva- 

ble fol lows from Papadimitriou's example 

E 

l 

E E 

In this example, the optimal match obviously con- 
F' sists of ~ - l edges of length ~ and one edge of 

l + ~ with total cost l + ~ ,  while the length 
n heuristic produces a matching with ~ edges of 

n length l for a total cost of ~ . Thus 

RsT(G) -> n/2n 
I + ~  

n which approaches ~ as ~ ÷ O. 

To prove that RST(n) ~ ~, suppose we are 
given a minimum spanning tree. We partition the 
edges of the tree into two classes 

Even = {e I removal of e results in two 
subtrees each of which contains an 
even number of vertices} 

Odd = {e I removal of e resul ts in two 
subtrees each of which contains an 
odd number of ver t ices}  

(Recall that  n, the number of ver t ices,  is even.) 
The desired resu l t  fol lows d i r ec t l y  from three 
claims. 

Claim I: ST(G) < z cost(e) 
ec0dd 

Proof: Immediate from the t r iang le  inequa- 
l i t y  since by i t s  nature the heur is t i c  chooses 
only edges of Odd or edges whose cost is bounded 
above by the sum of two edges of Odd. BED Claim 1 

Claim 2: Let t be the maximum number of 
odd edges on any path in the minimum spanning t ree 
Then, 

Z cost(e) S t.0PT(G) 
e¢Odd 

Proof: I f  an edge e of the optimal match- 
ing is not in the minimum spanning tree, then add- 
ing e to the tree causes a cycle in which each 
edge has cost at most cost(e) (see [13]). I f  the 
cycle has edges from Odd of costs c l ,  c 2, . . . .  c m 

then c i ~ cost(e) and summing th is  we get 

sc i Am.cost (e) .  Summing th is  inequa l i t y  over a l l  

edges e of the optimal matching we get on the 
r i gh t  a value that is at most t.OPT(G) where t is 
as defined above. On the l e f t  we get a value that 
is at least z cost(e) ( i . e . ,  every odd edge ap- 

eEOdd 
pears on the l e f t  at least once) because every 
vertex in each of the two sets of odd ca rd ina l i t y  
is matched in the optimal match and at least one 
must be matched to a vertex in the other set. 
The claim fol lows. QED Claim 2 

Claim 3: t ~ ,  where t is as defined in 
Claim 2. 

Proof: Define a mapping from vertices to 
edges of the tree as follows: Let the path con- 
sist of vertices v l ,  v 2 . . . . .  v k (in order). For 

i = 2, 3 . . . . .  k (in that order) map to the edge 
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(vi_ I ,  vi)  both v i and al l  vertices that are dis- 

connected from v i by the removal of the edge 

(vi_ l ,  v i )  and that have not been previously 

mapped to some vj, j < i .  This mapping maps some 

of the n vertices to the edges of the path, and i t  
follows easily by induction and the nature of an 
odd edge that each edge from Odd on the path is 
the image of at least two dif ferent vertices. 
Since there are only n vertices in the tree, i t  
follows that i f  the path has o edges from Odd then 

n 2o ~ n and o ~ ~ as desired, qED Claim 3 

Putting these claims together yields 

ST(G) ~ E cost(e) 2 t.OPT(G) ~ ~.OPT(G), 
e~Odd 

n 
so that RsT(G) ~ ~ . 

We now present two heuristics, the .~__~- 
r e d  (HG) heuristic and the factor of two (F2) 
heuristic. We show that RHG(nTT~o~3n ~d  

RF2(n) ~ 8. A refinement of the factor of two 

heurist ic, the factor of two with sorting (F2S), 
gives RF2S(n) ~ 7. To lower bound the worst case 

rat io,  we have found graphs G with a rb i t ra r i l y  
many vertices such that HG(G)/OPT(G) = 21og3n. 
As with the spanning tree heurist ic, these graphs 
are embedded in the circumference of the unit 
c ircle. Also, we have found graphs with 
a rb i t ra r i l y  many vertices demonstrating that 
RF2(n) > 4 - E and RF2S(n) > 3 - E. By s l i g h t l y  

s imp l i f y i ng  the heu r i s t i c s ,  we obta in  the h ~ -  
greedy heu r i s t i c  w i thout  bridges and the fac to r  of  
two heu r i s t i c  w i thout  br idges. These have ra t ios  

I °g3(3/2)  n '369 and at leas t  as large as about n = 
I °g2(5/4)  .322 

n : n , respec t i ve ly .  The graphs 
achieving these ra t ios  can be embedded in a l i n e ,  
as wi th  the bad examples fo r  the greedy a lgor i thm 
in [14] .  Therefore,  the use of  bridges is an es- 
sen t ia l  par t  o f  these heu r i s t i cs .  The hyper- 

greedy h e u r i s t i c  runs in time O(n21ogn). The fac-  

to r  o f  two heu r i s t i c  runs in time O(n21og K), where 
K is the r a t i o  o f  the la rges t  to the smal lest  edge 

weights in G, and is never worse than O(n3). The 
fac to r  of  two heu r i s t i c  wi th sor t ing  runs in time 

O(n2(logn + logK)) and is never worse than O(n3). 
The hyper-greedy h e u r i s t i c  wi thout  bridges runs in 

time O(n2), and the fac to r  of  two heu r i s t i c  w i th -  

out bridges runs in time O(n21og K), and is never 

worse than O(n3). I f  G is sparse, and weights os 
missing edges are taken to be the length of  the 
shor test  path between the endpoints,  then the 

hyper-greedy heu r i s t i c  runs in time O(E log2n) 
where G has E edges. The fac to r  o f  two heu r i s t i c  
runs in time O(E logn log K) in th is  case. These 
heur i s t i cs  can be modi f ied to solve the fo l l ow ing  
problem, fo r  an a r b i t r a r y  weighted graph G not 
necessar i ly  s a t i s f y i n g  the t r i a n g l e  i n e q u a l i t y :  
Find a low cost subgraph G' of  G such that  every 
node in G appears in G' and has odd degree in G'. 

The heur i s t i cs  have the same asymptotic running 
time and performance bounds fo r  th is  problem as 
fo r  the weighted matching problem. 

The basic idea of  the heur i s t i cs  is to 
co l lapse subsets of  the nodes of  G in to  "super- 
nodes" to obta in  a graph G I .  The heu r i s t i c  is 

then appl ied recurs ive ly  to G 1 to obta in  a sub- 

graph G' o f  G I .  Also, a spanning t ree is con- 

s t ructed w i th in  each supernode of  G I ,  and the f l o -  

wer heu r i s t i c  (see above) is appl ied to obta in  
a matching of  a subset of  th is  spanning t ree.  
This is done so tha t  these matchings, when com- 
bined wi th G', y i e l d  a subgraph of  G in which 
every node has odd degree. This subgraph is then 
converted to a matching by repeatedly apply ing the 
t r i a n g l e  i n e q u a l i t y .  

I t  is necessary to d i s t i ngu i sh  "odd 
ve r t i ces"  of  G and "even ve r t i ces"  o f  G fo r  th is  
to work. Supernodes o f  G 1 are constructed e n t i r e -  

l y  from odd ver t i ces  of  G. A supernode havi'ng'an 
odd number o f  elements is ca l l ed  an odd supernode, 
and one having an even number o f  elements is c a l l -  
ed an even supernode. Also, even ver t i ces  o f  G 
are considered even supernodes of G I .  The graph 

G' is constructed so tha t  odd supernodes have odd 
degree and even supernodes have even degree. The 
matchings w i t h i n  supernodes are constructed to 
match nodes of  even degree in G'. Note tha t  each 
supernode w i l l  have an even number of  such ver- 
t i ces .  The f i n a l  r esu l t  is a subgraph o f  G in 
which odd ver t i ces  have odd degree and even ver- 
t ices have even degree. To s t a r t  the heu r i s t i c s ,  
a l l  ver t i ces  are considered odd ver t i ces .  

The Hyper-greedy Method 

The hyper-greedy method works in the fo l -  
lowing way: Suppose G = (V, E) is the given 
undirected graph satisfying the tr iangle inequa- 
l i t y .  We construct a sequence G O , G l ,  G 2 . . . . .  G k 

of  graphs as fo l lows :  G O is G. Let G i be ( ~ , E  i )  

in general (thus V i are the ver t i ces  of  G i and E i 

are the edges). Also, V i = Odd i u Eveni, Odd i n 

Even i = ~, where Odd i are the "odd ve r t i ces"  of  G i 

and Even i are the "even ve r t i ces"  o f  G i .  We have 

Odd 0 = V and Even 0 = ~. Let Pi be a set of paths 

in G i connecting odd ver t i ces  wi th odd ver t i ces  

o f  G i .  We choose Pi so tha t  the sum of  the 

weights of  the paths in Pi is as small as possible, 

subject to the cond i t ion  that  each odd ver tex of  
G i is connected to one o f  i t s  nearest odd neigh- 

bors by a path in Pi" A "nearest  odd neighbor" 

o f  v is an odd node w which can be reached from 
v by a path in G i of  minimal length.  I t  w i l l  

turn out that  G i need not s a t i s f y  the t r i a n g l e  

i n e q u a l i t y  fo r  i > I ,  so a path from v to w may 
have length smaller than the length di(v,  w) of 

the edge between v and w in G i .  We w i l l  show be- 

low how Pi may be e f f i c ien t ly  computed using a 
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"generalized Voronoi diagram". 

G' , ' E' Let i be the graph (V i Ei) where i is 

the set {{v, w}: there is a path in Pi having v 
i 

and w as endpoints}. I t  wi l l  turn out that G i con- 

sists of a disjoint collection of trees, plus 
isolated vertices (the vertices in Eveni). A 

connected component of G i having an odd number of 

vertices, at least 3 vertices, is called an odd 
f 

component of G i .  A connected component having an 

even number of vertices is called an even 

component of G i .  A connected component having a 

single vertex is an element of Eveni and is consi- 

dered to be an even component of G i- 
i 

Note that every odd component of G i wi l l  

have at least 3 vertices. Hence lOddi+li ~ p d d i i .  

The sequence G O , G l . . . . .  G k stops when Odd k = 0. 

Since lOddiI is even for al l  i ,  k ! log3(3n/2). 

An edge between Vl and V2 in G i corresponds 

to an edge between vl and v2 in Gi_ l , for some 

vl E Vl and v2 ~ V2 such that di_l(Vl, v2) is 

minimal. Similarly, an edge in Gi_ l corresponds 

to an edge in Gi_ 2. Continuing in this way, an 

edge in G i corresponds to an edge in G. Also, 
t 

every edge in G i corresponds to a path in G i ,  and 

therefore to a set of edges in Gi, hence a set of 

edges in G. We keep track of these correspond- 
f 

ences between edges of G i ,  edges of G i , and edges 

of G to construct a matching of G. 

We obtain a matching by examining the 
graphs G k, Gk_ l . . . . .  G O in order. We first,use 

the "flower heuristic" on al l  the trees of Gk_ l 

to obtain matching of the odd vertices of Gk_ I. 

(Recall that Odd k = @ so G k has no odd vertices.) 
J 

Each tree edge in Gk_ l corresponds to a path in 

Pk-l' hence to a path in Gk_ I. The flower heuris- 

t ic matches vertices in a tree by edges or pairs 
of edges from the tree. By applying the flower 
heuristic, we obtain a set of paths in Gk_ l match- 

ing the odd vertices of Gk_ I. The actual edges in 

G are obtained from these edges in Gk_ l as indi- 

cated above. We then use the flower heuristic on 
Gk_ 2, passing over the nodes which are endpoints 

of the paths in Gk_ I. By the way paths are con- 

structed, an even number of vertices wi l l  already 
be matched in each even tree and an odd number of 
vertices wi l l  be matched in each odd tree. Hence 

i 

each tree in Gk_ 2 wi l l  have an even number of ver- 

tices remaining to be matched. Thus the flower 
G' heuristic yields a match on k-2' and we interpret 

each edge of this matching as a set of edges of G 
as before. We then proceed to Gk_ 3, using the 

flower heuristic but passing over vertices which 
i i 

have been matched in Gk_ l or Gk_ 2, and so on. 

To analyze the worst case rat io, let  T i be 

the total length of the trees at level i .  Let H i 

be the total length of the match edges produced by 
this heuristic at level i .  Let M i be the total 

length of the optimal edges at level i .  (We assign 
levels to optimal edges by grouping them into 
"paths" between vertices of G i for various i . )  We 

have T i ~ 2M i by a simple argument except that 

vertices of T i may have been matched at levels 

higher than i .  Therefore we have T i ~ 2M i + 

2Mi+ l + . . .  + 2M k for al l  i .  Summing over i ,  

noting that H i ~ T i for a l l  i ,  we get that 

k~IH. < 2kk~IMi . (Note tha t  H k = M k : 0. )  Since 
i=O 1 - i=O 
k ~ log3(l.5n) , we have a ratio bounded by 

21og3(l.5n). 

The Factor of 2 Method 

The factor of 2 method is similar to the 
hyper-greedy method except that paths of Pi are 

included in a different manner. Let c be the 
length of the shortest path between odd vertices 
of Gi; then Pi includes al l  paths between odd ver- 

tices of G i whose length is in the interval 

(~, 2~). However, paths occurr ing in  cycles are 
deleted u n t i l  Pi consists of  a set of d i s j o i n t  

t rees. Other than t h i s ,  the fac to r  o f  2 method is 
i den t i ca l  to the hyper-greedy method. Note tha t  
we cannot guarantee k ~ log 3 ( l . 5n )  in  th i s  case. 

Instead, k ~ log2K. 

The analys is  is s i m i l a r  to tha t  o f  the 
hyper-greedy method, except tha t  T i ! 4 M  i ignor ing 

ver t i ces  matched at  a h igher l eve l .  Inc lud ing  
these, and not ing tha t  edges at  h igher  leve ls  get 
longer and longer,  we have tha t  T i ! 4 M  i + 2Mi+ 1 + 

Mi+ 2 + . . . .  Summing over i ,  we obta in  tha t  

zT i ~ 8~M i so the r a t i o  is at  most 8. 
i 1 

The fac to r  o f  2 h e u r i s t i c  w i th  so r t ing  d i f -  
fers in tha t  paths w i th  length in the range (£, 2~) 
are included in order of  s ize ,  skipping over paths 
tha t  would form cycles w i th  paths already included 
in Pi" Thus we const ruct  a set of  "minimum span- 

i 

ning t rees" o f  the components of  G i .  We now have 

T i ~ 3M i except fo r  ver t i ces  matched at a h igher  

l eve l .  Inc lud ing  these, we get T i ~ 3M i + 2Mi+ 1 + 

Mi+ 2 + 12~i+3 + ... so ~T i < 7~M., giving a rat io 
i - i I 

of at most 7. 

The heuristics without bridges are the same 
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except Pi only includes paths of length 1 ( that  is, 

s ingle edges). In other words, we consider the 
distance between odd vert ices to be the length of 
the edge connecting them. 

Implementations 

We construct the graphs G i for  the three 

bridge heur is t ics  using generalized Voronoi dia- 
grams~ as follows: 

Given a graph G and a subset S of the ver- 
tices of G, the generalized Voronoi diagram for G 
relative to S is defined as a part i t ion of the ver- 
tices of G according to which element of S they 
are closest to. Associated with each vertex v of 
S we have a Voronoi region consisting of al l  ver- 
tices of G that are closer to v than to any other 
element of S. (Ties may be broken a rb i t ra r i l y . )  
Also, with each vertex of G we keep the distance 
to the closest element of S. Since G may fa i l  to 
satisfy the triangle inequality, this distance 
is the length of the shortest path to an element 
of S. I t  is not d i f f i cu l t  to see that the general- 

ized Voronoi diagram can be constructed in O(n 2) 
time i f  G has n vertices. I f  G is sparse, the 
Voronoi diagram can be constructed in O(E log n) 
time. 

We obtain Gi+ l from G i for the hyper-greedy 

method using the generalized Voronoi diagram as 
follows: Let VG i be the generalized Voronoi dia- 

gram of G i relative to Odd i .  I t  turns out that i f  

v E Odd i and w is the closest odd vertex of G i to 

v then the Voronoi regions of v and w wi l l  be ad- 
jacent. That is, there w i l l  be an edge in G i con- 

necting a vertex in the Voronoi region of v with 
a vertex in the Voronoi region of w. Therefore, 
by examining a l l  edges in G i whose endpoints l ie  

in different Voronoi regions, we can find the sets 
i 

Pi and E i. This requires time proportional to the 

number of edges of G i .  Finally, constructing 
i i 

Gi+ l = Gi/E i given G i and E i requires time propor- 

tional to the number of edges in G i .  Therefore 
i 

--~ -w --~ G i 
each step G i VG i E i i/Ei takes O(n 2) time 

and the work per level is O(n 2) for a total of 

O(n21og3n). For sparse graphs, O(E(logn) 2) 
suf f ices.  

The generalized Voronoi diagram also suf- 
f ices for  the factor  of 2 methods with and wi thout  
sor t ing,  fo r  the fo l lowing reason: I f  v and w are 
odd vert ices of G i then the Voronoi regions of v 
and w in VG i w i l l  be adjacent unless there is an 

odd vertex x of G i such that di(v, x) S di(v, w) 

and di(w, x) _< di(v, w). To see this, consider 

a shortest path between v and w in G i .  I f  some 

vertex on this path is not in the Voronoi region 
of v or w, then this vertex must be in the Voronoi 
region of some vertex x as above. Therefore, i f  
v and w may be connected by a path of length 2~ 

or less, then v and x may be connected by such a 
path, and x and w may be connected by such a path. 
Hence v and w w i l l  s t i l l  end up in the same com- 

i 

ponent of G i i f  the Voronoi diagram is used to con- 
s t ruc t  the components. 

The number of levels for  the factor  of two 
heur i s t i c  is bounded by Flg K] since the edge 

length doubles each time. However, the number of 
levels may be much less than th i s ,  and w i l l  never 
be larger than n. Hence the to ta l  work fo r  the 

factor  of two heur i s t i c  is O(n21og K) and is never 

more than O(n3). Possibly th is  heur i s t i c  can be 
implemented more e f f i c i e n t l y  than th i s .  For 
sparse graphs, O(E logn logK) time suf f ices.  

The factor  of two heur i s t i c  wi th sor t ing 
requires the sort ing of edges and paths. Although 
there may be many leve ls ,  whenever two edges or 
paths must be compared i t  means that there w i l l  be 
fewer odd vert ices and paths in l a t e r  leve ls .  The 

to ta l  sor t ing time is therefore O(n21ogn). The 
construct ion of minimum spanning trees can be done 
using the UNION-FIND algori thm [13] ,  which takes 
neg l ig ib le  time. Since there may be log K leve ls ,  
the work to construct generalized Voronoi diagrams 

is O(n21og K). The to ta l  work is therefore 

O(n2(log n + log K)). For sparse graphs, 
O(E logn logK) su f f i ces .  

The hyper-greedy heur i s t i c  wi thout  bridges 

runs in time O(n 2) since the number of odd vert ices 
is a decreasing geometric series. For the fac tor  

of two heur i s t i c  wi thout  bridges, O(n21og K) work 
suf f ices since there are up to log K levels .  I t  
would be in te res t ing  to know i f  bet ter  heur is t ics  

ex i s t  that  run in O(n 2) time. Also, is there a 
heur i s t i c  wi th a constant worst-case ra t i o  that 

runs in time O(n21og n)? 

BOUNDED EUCLIDEAN REGIONS 

Here we w i l l  measure the performance of a 
heur i s t i c  by the absolute cost of the matching 
produced in the un i t  square. I f  we have n points 
in the un i t  square then no heur i s t i c  can do bet- 

ter  than 7 - ~ v ~ ' :  .537rE'in the worst case, since 

that is the cost of the optimal matching i f  n 
points on a l by l hexagonal grid. In fact, we 
wi l l  be able to come close to this bound. 

Avis [ 2] has analyzed the greedy heuristic 
on the unit square. He has shown that a matching 

2 V~ ~ 1.07v~, thus found w i l l  have cost at mos tT -  ~ 

although the worst known case has cost 
3 - ~ i - ~ . v ~ ' :  .806~/~" . This performance is poor, 

especia l ly  considering that the algorithm requires 

time proport ional to n21ogn. In the resul ts  below 
we w i l l  improve dramat ical ly on both the cost of 
the matching and the time required. 
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Par t i t i on  Algorithms 

Here we present a class of O(n log n) time 
algorithms, each of which operates by pa r t i t i on ing  
the region in to  subregions and recurs ive ly  solving 
the smaller matching problems thus obtained. I f  a 
subregion contains an odd number of points,  then 
a l l  but one are matched and the odd point  is then 
matched with an odd point in another subregion 
(there must be another since there is an even num- 
ber of points in t o t a l ) .  

The f i r s t  of these algorithms we consider 
is the~ectangle heurist ic, which works as follows. 
The unit square is imagined to be enclosed in a 
v'2"by l rectangle. I f  n > 2 then this rectangle 
is sp l i t  into two equal-s~zed subrectangles, each 
having a /~'to l ratio between the long and the 
short sides. The algorithm is performed recur- 
sively on each of the two subrectangles. In 
general, when called on a rectangle R, the algori- 
thm does the following: 

i f  R contains > 2 input points, 
then I. spTit R into two rectangles 

R l and R 2 each having a ¢2 to 

l ratio between the long and 
short sides 

2. 

3. 

4. 

perform the algorithm on R 1 

perform the algorithm on R 2 

i_f R 1 and R 2 each contain an 

odd number of input points 
then 

put the edge (PI '  P2 ) in 

the matching, where Pl is 

the input point  in R I which 

was not matched in step 2, 
and P2 is that of R 2 not 
matched in step 3. 

in the f igure below n = 4: 

7 

As an example, 

/F 

1 
3~Z 

The f i r s t  s p l i t  was on the heavy so l id  l ine .  The 
l e f t  ha l f  was then s p l i t  along the dotted l ine .  
The matching produced is in jagged l i ne .  

There is one more deta i l  of the algorithm: 
the level of  recursion is not allowed to go be- 

yond ~gn ]. More precisely, define a rectangle 

to be e i ther  the main V~by 1 rectangular 
region, or one of two rectangular subregions with 
sides having ra t io  v'~'to 1 into which a rectangle 
may be s p l i t .  Also, l e t  R(P) denote the subset 
of P contained in rectangle R. Furthermore, i f  
R is a rectangle, then l e t  

level(R) = 

I 0, i f  R is the main v'~'by 1 
rectangle 

leve l (R ' )  + I ,  otherwise, 
where R' is a rectangle 
which sp l i t s  in to  R and 
some other rectangle . 

The algorithm now is :  

i.f_ level(R) ~ Flgnl 

then do as described above 

else a rb i t ra r i l y  match up the input 
points in R unt i l  0 or l is l e f t  

The reason for  th is  r es t r i c t i on  on the depth of  
recursion is that  i t  enables the algorithm to run 
in time O(nlogn). The time is dominated by the 
pa r t i t i on ing  of the points. Now for  each rectangle 
R, for  each input point  p ~ R(P), we can decide 
with a s ingle comparison which ha l f  of R p l ies  in.  
Also, for  each input point  p, we make at most 1 of 
these comparisons on each level of recursion, and 
hence at most Flgnl such comparisons in total .  
Hence the time is O(n log n). 

In order to analyze the performance, that 
is the worst case cost of the matching produced 
by the algori thm, we f i r s t  f ind  that worst cost 
for  a rb i t ra ry  sets of points in the ,/~'by 1 rectan- 
gle. Later, we w i l l  use th is  resu l t  to upper bound 
the cost for  a set of points a l l  in a 1 by 1 square 
w i th in  the,/ '~'by 1 rectangle. 

I f  P is a set of points in the v'~'by 1 
rectangle, then l e t  rcost(P) denote the sum of the 
lengths of the edges in the matching produced by 
the rectangle algorithm on P. For a l l  n > O, l e t  
C n = sup{rcost(P): P is a set of n points} .  By 

"set of points" we mean, here and throughout th is  
sect ion, a set of points in the ,/~'by 1 rectangle. 
Note that we are not p r imar i l y  interested in C for  n 
odd n; they are defined so as to help analyze C n 
for even n. Our f i r s t  lemma shows that the res- 
t r ic t ion to Flgn] levels of recursion does not af- 
fect the C . n 

Lemma I :  Let n > O, P a set of n points. 
Then (V set of points Q~[IQI = n and rcost(Q) > 
rcost(P) and no level Flgn! + 1 rectangle contains 
L 2 points of Q]. 

Proof: First ,  we introduce some notation 
used throu~out the analysis. I f  P' is a set of 
points, and R a rectangle, then let  R(P') denote 
the set of points of P' within R. 

Now i f  (V level Flgn] + l rectangle R) 
[JR(P) I ~ 1], then we have nothing to prove. So 
let  R 1 be a level Flgn] + 1 rectangle such that 

IRi(P) I ~ 2. Then R2(P) is empty for some level 
Flgn] rectangle R2, for otherwise IPI ~ 2Flgn] + l 
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> n (since there are 2 Flgn] level Flgn] rectan- 
gles). Our strategy now is to show that the 
points of P can be rearranged to produce a set Q 
of n points such that rcost(Q) > rcost(P) and 
IRi(Q) I = IRI(P) I - 2 and ]R2(QT 1 = 2, but other- 

wise Q is jus t  l ike P, Let PI '  P2 c Ri(P) such 
that Pl is matched to P2 by the algorithm. Define 

Q to be jus t  l ike p except that PI' P2 ~ Q and Q 
has points PI' and P2' in opposite corners of R 2. 
Thus: 

Ri(P): 

(there 
may be 
other 
points 
also) 

l ° p  I 

R2(P): 

Ri(Q): 
(there 
may be 
other 
points, 
but not 
Pl '  P2 ) 

R2(Q): 
°i P2' 

Pl' 

Now i t  is easily proved by induction on 
i that the dimensions of a level i rectangle are 

/E 1 
(/~)i by (v~)i • . ' .  the length of a long 

diagonal in a level i rectangle is (vT) i 

. ' .  d(Pl, P2 ) < ~ "  < 
- (/E) rl gnl-~l (v~) Flgnl 

= d(Pl' , p2') . 

This "moving" of the two points into R 2 does not 

affect the algorithm's matching of the other 
points. . . .  rcost(Q) > rcost(P). In this manner 

we continue to rearrange P until no level Fignl + l 
rectangle has >_ 2 points in i t .  ~ Lemma I. 

From here on, we analyze the algorithm 
as i f  there were no restrict ion on the depth of 
recursion. Lemma l implies that this assumption 
does not affect the worst case costs, that is, the 
C . n 

Our strategy is to define a class of 
input sets and then show that these sets are the 
worst case for the algorithm. Specifically, we 
say that a set of points P is balanced i f  for a l l  
rectangle R such that IR(P)I ~ 2, R sp l i ts  into 
rectangles R I ,  R 2 such that 

( i) i f  4 divides IR(P)i then IRi(P)I 

LR(P)L = LR(P)L _ 1 and IR2(P)I = + 1 2 2 ' 

( i i )  

( i i i )  

i f  4 does not divide IR(P)I then 

I f  JR(P)1 is even then the point Pl 
stranded ( i .e .  l e f t  unmatched) by the 
call on R 1 and the point P2 stranded 
by R 2 are in opposite corners of R. 

Note that we do not require iPI to be 
even; we define balanced sets of odd cardinality 
in order to help analyze those of even cardinality. 
In other words, for a balanced set, each rectangle 
R with an even non-zero number of points splits 
odd-odd, with the two subrectangles having almost 
the same number of points, and the edge produced 
at the end of the call on R is along one of R's 
diagonals. In tu i t ive ly ,  one might expect such a 
set P to be a worst case for the algorithm. This 
is indeed the case, as is proved in the next two 
lemmas. 

Lemma 2: Let n > 0 be even, and P a 
set of n points.-  Then (3 set of points Q)[IQ 1 = n 
and rcost(Q) ~ rcost(P) and (V rectangle R such 
that IR(Q)I ~ l 

[ l .  IR(Q)I even ~ R splits into R l ,  R 2 

such that IRi(Q)I, IR2(Q)I are 

odd, and R l and R 2 strand points 

of Q in opposite corners of R, 

2. IR(Q)I odd ~ R strands a point of 
Q In one of i ts  own corners, 

3. IR(Q)I > 2 ~ the two subrectangles 
of R-each contain at least l 
point of Q]]. 

(When we say a rectangle R' "strands" an input 
point p we mean that p is within R' and is not 
matched by the algorithm to another point in R'). 

Proof: We wi l l  rearrange P (in the manner of 
lemma l) so as to satisfy the desired property, 
and then wi l l  le t  Q be this new P. 

First we consider al l  rectangles R such 
that IR(P)i = I. Let R be such a rectangle, and 
le t  Pi be the point in R(P). Since n is even, 

the algorithm must match Pl to some other point 
P2 ~ P outside of R. I f  Pl is already in a corner 

of R, then define P' to be l ike P except that in- n stead of having Pl' P' has point Pl in the corner 

of R which is farthest from P2" Thus, 
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R(P): ~ ep2 R(P'): L I . p  2 

Pl' 

Hence d(p I ,  p2 ) < d(Pl '  , p2 ). Since this "moving" 
of Pl to PI' af fects no other matches made by the 

algorithm on P, we have rcost(P) < rcos t (P ' ) ,  and 
iP'~ = IPI = n. Thus, we le t  P be P' and continue 
~vith • the rearranging. 

Having so rearranged, i f  necessary, a l l  
rectangles containing exact ly 1 point of P, we now 
consider those containing 2 points. Let R be such 
a rectangle, R(P) = {PI '  P2 }" Since IR(P)I is 
even, the arrangement of the points of P within R 
does not a f fec t  the matching of any points outside 
of R. Therefore i f  PI '  P2 are not in opposite 
corners of R, then "move" them there by le t t i ng  P' 
be l ike P except that instead of having Pl and P2' 

P' has PI' and P2' in opposite corners of R, thus 

R(P): eP 2 

eP 1 

R(P'): L 
PI' 

Since d(Pl, p2 ) < d (P l ' ,  p2 ' ) ,  we have rcost(P) 
< rcost (P ' ) ,  IP'I = IPI', which is what we want; 
so le t  P = P'. 

Now assume we have rearranged al l  rec- 
tangles R such that IR(P)r S k for  some integer 
k ~ 2. We w i l l  now rearrange each rectangle R 
such that IR(P)J = k+l. Let R be such a rectangle. 

Case l: k + 1 is odd. Then R splits into rec- 
tangles R I, R 2 such that IRi(P) I is odd and 
IR2(P) I is even. 

Case I . I :  IR2(P) I : O. Then IR i (P) IL3 .  . ' .  R 1 

sp l i t s  into some rectangles Sl, S 2 such that 

rSi(P) I ~ 2. Let PI'  P2 be two points in S 1 
matched to each other by the algorithm (such 
points must ex is t  since S 1 strands at most one 

point and i f  S 1 strands one point then ISi(P) I 

3). Now define P' to be exactly l ike P except 
that P' has points PI' and P2' in opposite corners 
of R 2, and no point at Pl or P2" Thus, 

R l R 2 R l R 2 

R(P): S2 R(P' ): S2 P2 

Pl Pl ' 

Moving Pl and P2 out of S 1 does not a f fec t  the 
matching of the other points in R I. Also, 

d(P I ,  P2 ) < d (p ] ' ,  p2') .  . ' .  rcost(P) < rcost(P') 

and IPI = ~P'I~h~ ~ le t  P = P' and continue to 
is ,  rearrange IRi(P)I is now < k+l. 

o'. rearrange Ri, and then rearrange R, using 
case 1.2 below. (This procedure terminates since 
IRi(P)I < IR(P)I). 

Case 1.2: IR2(P) J > O. Then IRi(P) I , IR2(P) I < 

k+l and hence both R l and R 2 have already been 

rearranged. In particular, R l strands a point Pl 

in a corner of R I. The algorithm matches Pl to 

some point P2 outside of R. I f  Pl is already in 

a corner of R, then we have nothing to rearrange. 
So assume Pl is not in a corner of R. Thus, e.g. 

R l R 2 

R(P): Pl [ eP2 

Now let P' be like P except that the points in R l 

has been rotated and perhaps swapped with those 
in R 2 so that Pl is now in an extreme corner from 

P2" Thus 
R l R 2 

R(P' ) : I eP2 

i 

PI' 

This rotat ing and swapping has no e f fec t  on the 
cost of the matching of the points in R(P) other 
than PI" . . rcost(P) < rcost (P ' ) ,  and since 

IP'I = I Pr, let P = P' and continue with the 
rearrangl ng. 

Case 2: k + 1 is even. Let R I, R 2 be the sub- 

rectangles of R, and assume, without loss of 
generality, that IRl(P) i L IR2(P)I. 

Case 2.l: IR2(P) I = 0. Then proceed exactly as 
in Case l . l .  

Case 2.2: IR2(P) I > O. Then IRl(P) I, JR2(P) I < 

k+l. . ' .  R l and R 2 have already been rearranged. 
Since IR(P) I = IRl(P) J + JR2(P) I is even, we have 
two cases: 

Case 2.2.1: IRi(P) I, IR2(P) I are both even. This 
is the most interesting of all the cases, since i t  
is the only one which depends on the shape of our 
rectangles. Since Rl, R 2 already satisfy the de- 
sired properties, we have the following situation: 
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R 1 R 2 

Pl P3 

That i s ,  R is a rectangle of  s ize a/~ 'by a, fo r  
some a > O. R I ,  a subrectangle o f  R, matches 

points Pl and P2 in opposi te corners o f  R I .  R 2 

s i m i l a r l y  matches P3 and P4 in i t s  opposi te cor- 

ners. S 2 is the even subrectangle of the subrec- 

tangle o f  R 1 which strands P2" S 1 is the odd 

subrectangle of  the subrectangle o f  R 2 which 

strands P3" (We say a rectangle R' is even i f  

IR'(P)I  is even, otherwise i t  is od.__d). 

Now l e t  P' be l i k e  P except that  the 
points in S 1 have been swapped wi th those in $2: 

R(P'): 

Hence, rcost(P) 

some c ~ O, and 

+ c. Now d(p I ,  

J(~_)2 + a2 

~a 2 + (a/~ 2 

. ' .  rcost(P) = 

= a/3"+ ~ - +  c = r cos t (P ' ) .  

Hence, since IP' I  = IPI ,  we have what we want, so 
l e t  P = P' and continue to rearrange. 

R 1 R 2 

a 

Pl 

= d(p l ,  p2) + d(p 3, p4) + c fo r  

r c o s t ( P ' )  = d(p 1, p4) + d(p 2, p 3 ' )  

P2) = d(P3'  P4) = 

= a/3" Also, d(Pl p4 ) = 2 

= a/ciT and d(p 2, p3')  = 

aV~- 

2 

2(a ~ )  + c = a/~-+ c < a ~ +  c 

Case 2.2.2:  IRi(P)I, IR2(P) I are both odd. Since 

IR i (P) I ,  IR2(P) I < k+l ,  we already have that  R 1 

strands a po in t  Pl in one o f  i t s  corners, and R 2 

strands a po in t  P2 in one o f  i t s  corners. I f  Pl 

and P2 are not in  opposi te corners o f  R, then the 

appropr ia te  ro ta t i ons  of  Ri(P) and R2(P) w i l l  pro- 

duce a set  P' of  cost greater  than that  o f  P. 

Thus, we cont inue to rearrange P, un t i l  we have 
rearranged the main, leve l  O, rectangle .  Then l e t  
Q be th is  f i n a l  arrangement. Q s a t i s f i e s  the 
proper t ies  stated in the lemma. QED Lemma 2 

The set Q constructed from P in Lemma 1 has 
some of  the proper t ies  of a balanced set ,  but not 
a l l .  The next lemma rearranges th is  Q so as to be 
balanced, w i thou t  changing rcost(Q).  This com- 
pletes the claim that  balanced sets cons t i t u te  a 
worst case fo r  the a lgor i thm.  

Lemma 3: Let n > 0 be even, P a set o f  
n po ints .  Then (3 set of  po in ts  Q i ) [ IQ i  I = n and 

rcost (Ql)  ~ rcost(P) and Q1 is balanced].  

Proof: Let Q be a set s a t i s f y i n g  the 
proper t ies  stated in Lemma 2. We w i l l  rearrange 
Q to a new set Q1 such tha t  (V rectangle R) [ i f  R I ,  

R 2 are the 2 subrectangles of  R then I IR i (Q i )  I - 

IR2(Qi) I I  ! 2]. Furthermore, Q1 w i l l  s t i l l  have 

the property of  Lemma 2 tha t  even, non-empty rec- 
tangles s p l i t  odd-odd stranding points in opposi te 
corners. Together, these proper t ies  imply that  Q1 

is balanced. 

F i r s t ,  note tha t  a l l  rectangles R such 
that  IR(Q)I = l or  2 are already balanced, and 
hence need no rearranging.  

Assume we have balanced a l l  rectangles R 
such that  IR(Q)I S k fo r  some in teger  k. Let R be 
a rectangle such tha t  IR(Q) I = k+l .  Let R I ,  R 2 be 

the subrectangles o f  R, and S I ,  T 1 the subrectan- 

gles o f  R i ,  and S 2, T 2 the subrectangles o f  R 2. 

Say that  a rectangle R' is even i f  IR'(Q)I is even, 
otherwise R' is odd. 

Case I: 

choice about Q. 

thus 

R is even. Then Rl, R 2 are odd, by our 

Assume WLOG that T l ,  S 2 are odd, 

R(Q): 

R l R 2 

I "1 . _ S  l _ _ $2 

• Tl T 2 

Then swap Si(Q) with T2(Q), to get, in the notation 
of Lemma 2, 

R(Q'): 

R 1 R 2 

! "t T 2 S 2 
- -  m 

• Tl S l 

Since IRi(Q) I, IR2(Q) I ~ k, we have that R l ,  R 2 
were balanced before this swap. Therefore, lett ing 
s 1 = IS i (Q) I ,  s 2 : IS2(Q) I, t l = ITi(Q) I, 

t 2 = IT2(Q) I ,  we have tha t  ISl - t l l  = 1 and 

Js 2 - t21 = 1. 

. ' .  IIRi(Q')I- IR2(Q')I I : 
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I ( t l  + t 2) - (s I + s2) I ~ 2, which is what 
we want. Now th is  swapping o f  Si(Q) wi th  T2(Q) 

may have made R l or  R 2 (or both) unbalanced. 

. ' .  we now rearrange R l and R 2 ( th is  procedure 

terminates since IRI (Q' ) I  , IR2(Q,)I < IR(Q,) I ) .  

Thus R is now balanced, so we l e t  Q = Q' and con- 
t inue to rearrange other rectangles.  

Case 2: R is odd. Assume, WLOG, R l is even and 

R 2 is odd. Define s l ,  s2, t l ,  t 2 as in Case I .  

By the choice of  Q, IRi(Q) j > 0 and hence IRI(Q) j ,  

IR2(Q) I ~ k. . ' .  s l ,  t I are odd. Assume WLOG, 

s 2 is odd and s I ~ t l ,  thus 

R 1 R 2 

Case 2.1: s 2 ~ t 2. 

have s 2 = t 2 + I .  

get Q', thus 

Then since R 2 is balanced, we 

Then swap Si(Q) wi th S2(Q) to 

R 1 R 2 

I I S 2 T 2 
R(Q'): 

T1 • S1 

Note that  we also may need to ro ta te  S2(Q) so that  

i t s  stranded po in t  is opposi te that  o f  T I .  Since 

0 ~ s I - t I ~ 2, we have IJRi(Q') I - IR2(Q') I I  

= J(s 2 + t I )  - (s I + t2) I = I(s2 - t2) + ( t  I - Sl) I 
= { 1 + ( t  I - S l ) l  S I ,  which is what we want. 

Case 2.2: s 2 < t 2. Then s 2 = t 2 - I .  Swap Ti(Q) 

with S2(Q) to get Q', thus ( a f t e r  possib ly  r o t a t -  

R 1 R 2 

I" t R(Q' ): Sl T2 

S2 • Tl 

ing) 

Now I IR i (Q ' ) I  - JR2(Q')II = I(Sl + s 2) - ( t  I + t2) I 

= l(s2 - t 2) + (s I t l )  I = I - I  + (s I - t l )  I ! I ,  
as desired. 

Thus l e t  Q = Q', and a f t e r  re-balancing R 1 and R 2 

i f  necessary ,  continue to rearrange other rectan- 

F i n a l l y ,  a f t e r  balancing the main, level  

O, rectangle ,  l e t  Ql be th is  new Q, and we are 

done. Note that  the rearrangement can change nei -  
ther  the cost o f  the set ,  nor the assumed proper- 
t ies  o f  Q. QED Lemma 3 

Thus the balanced sets cons t i tu te  the 
worst case fo r  the a lgor i thm;  that  i s ,  f o r  a l l  even 
n ~ O, C n = rcost (P) ,  where IPI = n and P is 

balanced. We now analyze the C . 
n 

v~ 
C O = C 1 = O, C 2 = ,/~, C 3 = ~7~ • A balanced 

set o f  4n points s p l i t s  in to  two balanced sets- 
one wi th 2n + 1 po in ts ,  and one wi th 2n - 1 
points - and matches 2 points in i t s  opposi te 
corners. 

Thus vn ~ I ,  C4n = ~ (C2n+l + C2n_l) + /~'. The 

f a c t o r ~ i s  to scale down the cost from the 

by 1 region to the 1 by ~ r e g i o n .  More precise-  

l y ,  the length o f  a longest edge on leve l  i + 1 is 

= 1 ~ r  l 
- -~+ l  - - ( V ~  ) = - -  ( the length o f  a longest 

vTZ vT 
edge on level  i ) .  

S i m i l a r l y ,  Vn > 1 

1 
C4n + 1 = 72"(C2n + 1 + C2n)' 

an6 Vn ~ O, 

1 
C4n + 2 = 7~'(C?n + 1 + C2n +I ) + ~ '  

l + ) 
C4n + 3 = ~ (C2n + 2 C2n + l 

l For no ta t iona l  convenience, l e t  m = ~ , and 

D n = ~ C  n Vn ~ 0 .  Then i t  can be shown by induc- 

t ion  on i that  fo r  a l l  i ~ l ,  Di+ l - Di_ l 

= ~Flg(¼i)l 

We were not able to solve fo r  each C n 

exact ly .  We can however, put a ra ther  t i g h t  upper 
bound on the C n. Our s t ra tegy is to def ine a spe- 

c ia l  class of  n and then solve ( to w i t h i n  an O(~n) 

term) fo r  C fo r  n in th is  c lass. Then we w i l l  n 
show that  th is  func t ion  o f  n uppers bounds C fo r  n 
a l l  n. 

Given an in teger  r ~ 0 ,  we say that  a set 
P is f u l l  to leve l  r i f  

( i )  P is balanced 
( i i )  ( V r e c t a n g l e  R) 

_ - ] ~ I R ( P )  I >0 [ I .  leve l  (R) < r 
2. leve l  (R) ~ r ~ I R(P) I ~ I ] .  

, and 

Note that  th is  d e f i n i t i o n  impl ies that  every level  
r rectangle has 0 or 1 points o f  P in i t ,  and 
every level  r - 1 rectangle has 1 or  2 points of  P 
in i t .  
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We say that an integer n is fu l l  to level 
r i f  there exists a set P such t h a t - ~ T ~  n and P 
Ts fu l l  to level r. We now show that (Vr > O) 
(3n ~0 )  [n, n + l are both fu l l  to level r-]. Now 
le t  r > 0 and assume that n and n + l are both 
fu l l  to  level r. Then 3 sets Pn' Pn+l such that 

JPnJ = n, IPn+ll = n + 1 and Pn and Pn+l are both 

fu l l  to level r. Now we construct two sets both 
fu l l  to level r + I :  

Case l :  n is even. Then le t  P2n + l be the set 

consisting of Pn in i ts  l e f t  subrectangle, and 

Pn+l in i ts  r ight  subrectangle: 

Pn Pn+l 

Also, l e t  P2n + 2 be the set consisting of Pn+l 

as i ts  l e f t  subrectangle and Pn+l as i ts r ight  

subrectangle. Then both P2n + l and P2n + 2 are 

fu l l  to level r + I .  

Case 2: n is odd. Then le t  P2n be the set with 

subrectangles consisting of Pn and Pn" Also, le t  

P2n + l be the set with subrectangles consisting 

of Pn and Pn+l" Then P2n' P2n + l are both 

fu l l  to level r + I .  

Thus O, l are fu l l  to level O, and i f  , 
+ l are fu l l  to level r then ~ even ~ 2~ + l ,  

2~ + 2 are fu l l  to level r + l ,  and c odd ~ 2c, 
2~ + l are fu l l  to level r + I .  Thus the sequence 
(O,l, 1,2, 2,3, 5,6, l O , l l ,  21,22 . . . .  ) consists 
of numbers fu l l  to some level .  In fact,  i t  is 
easily proved by induction that this sequence con- 
tains a l l  numbers fu l l  to some level .  Call the 
sequence the fu l l  numbers. Incidental ly,  i t  is 
also easy to show that i f  P is a balanced set, 
then (P is fu l l  to some level) ~=~ iV rectangle R 
such that JR(P) J > 0)[4 does not divide IR(P) I].  

Now le t  r > 0 and P a set fu l l  to level 
r, such that IP 1 = n-is even. We wish to relate 
n and r. For a l l  i > O, l e t  E i =  l{rectangle R: 

level (R) = i and IR(P) I is even and > 2} I. Sim- 
i l a r l y ,  le t  O< = I{rectangle R: leveT (R) = i and 
IR(P) I is odd~ I. Since n is even, we have that 
E 0 = l ,  00 = O. Since P is balanced, we have that 

each non-empty even rectangle spl i ts odd-odd, and 
(of course) each odd rectangle sp l i ts  odd-even. 
Thus, 

V l < i < r - l ,  0 i = Oi_ I + 2Ei_ l ,  

E i = Oi_ l ,  
Also, since P is fu l l  to level r, we have E i = 0 

V i  > r. Also note that V O < i < r - l ,  0 i + E i = 

2 i since there are a total of 2 i level i rectangles. 
2 i The solution to this recurrance is 0 i = ~(2 - ( - l )  i )  

for 0 < i < r - l ,  and 

=/-~(2i-l-('1)i'l)'~p'o for 0 < i < r- I  
E i 

L O  , for i > r .  

Now since P is balanced, we can associate with 
each even, non-empty rectangle R a pair {pl,P2 } c P 

such that Pl and P2 are in opposite corners of R 

and are matched to each other by the algorithm. 
n These ~-pairs form a par t i t ion of P. 

r-1 2 [ r  1~ ) i - l )  
. ' .  n = z 2.E i = ~ ( 2 i - I - ( - I  ] 

i =0 i =0 
2 r+ l  2 ~ , r+ l  

- 3 + ~(-l) . 

2 r+ l  2,  . . r + l  
Def ine ,  f o r  a l l  r > 0, b r = T - + ~ - I )  . 

Then, as j u s t  shown, the sequence (b0,b l , b  2 . . . .  ) = 
( 0 , 2 , 2 , 6 , 1 0 , 2 2 , 4 2  . . . .  ) cons i s t s  of  a l l  even f u l l  

numbers. Also f o r  a l l  r > 0, l e t  w : I 2r+l  I • 
- . r L 3  _I 

The sequence (Wo,Wl,W 2 . . . .  ) = ( 0 , I , 2 , 6 , I 0 , 2 1 , . . )  

arises in connection with merge insert ion {Knuth 
[ 8] ,  p. 187) and with an algorithm for f inding the 
greatest common divisor of two integers (Knuth [ 7 ] ,  
exercise 4.5.2 - 2.7). Knuth points out that i t  is 
curious that this sequence arises in such d i f ferent  
settings. We now add to this l i s t  of cur iosi t ies 
by observing that 

- -  - -~= b r, i f  r even 

Wr 12 r+l 1 
L T -  -~ b r - l ,  i f  r odd. 

Thus, w r is the smaller of the two numbers fu l l  to 

Ievel r. 
Now f i x  some r > O, and some P f u l l  to 

level r such that IPI is even ( i . e . ,  IPI = n = br). 

Ne analyze rcost(P), that is Cbr. 

r - l  
rcost(P) = ~ Ei.(length of a long diagonal of a 

i=O 

level i rectangle) 

r-1 ~2(2i-I  ) i - l )  v T  
z - ( - I  • 

i :o ( ~ i  

: 7 T ( 1  + + /~ '-  ,/~" 

~ "  1 r 
+Zf(2 - 2 ~)(- ~ZZ) . 

2r+l 
Now n = T + 32- ( - l ) r + l "  

. ' .  r = Ig(23--n) + 0(~) (Using the Tay lo r  expansion).  
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Also,  ( _ ~ ) r  : (_ ~7~ : 0 

• ". C n : rcos t (P)  : ( I  + ~ )  ~ +  V3 r -  /6-+ 0(~n). 

Thus we know (up to an 0(~n) term) C n f o r  

an i n f i n i t e  class o f  even n. Now we consider  the 
o ther  even values o f  n. Fix some t > 0. We wish 

to upper bound C2t. Recall D2t = ~ C 2 t .  Let 2m 

be the l a r g e s t  i n tege r  such tha t  2m < 2t and 
2m = b k f o r  some k > 0. Then we can-wr i te  D2t as 

D2m + i~odIDi+l - Di_ l )  • 

2m+l <i <2t- l 
Recall that this implies 

D2 t : D2 m + ~ J i g (  i ) l  
iodd 

2m+l <i <2t - I  
Now as formulas i17) and (-18) o f  Knuth [ 8 ] ,  

p. 187, imply tha t  (Vw k < i < W k + l ) [ F l g ( # i ) l  = k ] .  

. ' .  in p a r t i c u l a r ,  r l g ( ¼ i ) l  = k V odd i such 

tha t  w k < 2m < 2m+l < i < 2 t - I  < 2t  < Wk+ I .  

. ' .  z Jlg(~n)l = (t  - m)~ k. 
i odd 
2m+l <i<2t-l 

Next we express K in terms of m. Note that k is 
even ~ w k is even. ." i f  k is even then 

2 k+l 2 and hence k = Ig(3m + l ) .  w k = 2m = - T - -  
2 k+l 1 

I f  k is odd then w k = 2m-I = - T - -  3 and hence 

k = I g ( 3 m -  I ) .  Thus 

D2t = D2m + (t-m)c~ k = D2m + (t-m)(~) k 

<_ D2m + ( t - m ) ( ~  Ig(3m-l) 

l C t-m 
= ~ -  2m + ~ _ . r  

: ~ T [ i l  + ~ ) / 2 ~ +  v3"- v~'+ 0(~m)] 
t-m + ~ - I "  

: ~ + l)V~'+ l - ,~ '+  o( + 7~ - I ' "  

Lemma 4: ( / E  + I ) / ~  + l - / ~  + 0i + 

< + - 0i > 

Proof: Let d = ~vr~ '+  l ) .  Since 2m <_ 2t < bk+ l 

< 4m+l, we have that O(~m) = O(~). .'o we need 

t-m show only that d,/~" + ~ <_ d/~', i .e.  that 

t-m dye'- dv'~'+ ~ > _  O. Let 2r be the least even 

fu l l  number > 2t. ." m < t < r. Define the 

Function f :  [m, r ]  + ~ by f ( y )  = d~y - d / m -  ~ - .  

d2(3m-l)  Furthermore Then f ' ( y )  = 0 ~ y  = 4 

f " ( y )  < 0 V m ~ y  ~ r .  . . f is  minimized in the 
range [m, r ]  a t  m or  a t  r .  Now by the d e f i n i t i o n s  
of  m and r ,  t = m~=~t = r .  " ( V m ~ y  ± r)  

[ f (y)  _> f(m) = d ~ ' -  d /~ -  ~m-m = O]. ~._ED_Lemma 

4 

By Lemma 4, D2t ~ ( l  + V~')/~'+ l - ~2-+ O ( ~ .  

An argument similar to the above ibut using 
k = Ig(3m + l)  instead of Igi3m - l )  shows that 

+ 2 nT + n ' -  o i l )  : C2 t 
1 . 6 8 v ' ~ -  .717 - o (1 ) .  We s ta te  the upper bound 
as 

Theorem l :  Let n > 0 be even, and P be a set  of  n 
po in ts  in the v~ 'by 1 rec tang le .  Then rcost (P)  

il O( n) : 1707 -717 + 

O(~n). Furthermore, this bound is asymptotically 

achievable (in part icular, when n = b k for some 
k > 0) .  

So far we have considered the performance 
of the rectangle algorithm on points in the /~'by 
l rectangle. However, the fixed region matching 
problem is usually considered on the l by l square. 
Therefore we now adapt the rectangle algorithm 
to the unit square as follows. Given a set of n 
points P in the unit square ( i .e .  for al l  ix ,  y)~P, 
0 < x < l ,  O < y < l ) ,  we perform the rectangle 
algorithm treating P as a set in the rectangle 
defined by [0, v~] x [0, l ] ,  as shown below: 

II 
v~ 

. . . . .  L -  ~ I 

l 

The unit square is shown in solid l ine; the /~'by 
l rectangle is in dotted. We now upper bound 
rcostiP). 

For the analysis, choose some even integer 
k > O. Let r be the least integer such that 

- ~ l = /~k. r • ~ ~ 1. Let s = __ T -  Note that 

each level k rectangle has vertical length l ~k V~ 
and horizontal length ~k- ' since k is even (the 

proof is a simple induction on k). Therefore the 
unit square, and hence P, l ies within the leftmost 
set of r.s level k rectangles: 
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S . - ~  1 

\ 

Let d : r • 

Y 

~Z 
r . ~ -  > I  

VT v~ k . Our strategy is to upper bound 

the cost of the rectangle algor i thm on an a r b i t r a r y  
set in the d by 1 rectangle• Since d > I ,  th is  
bound w i l l  also upper bound rcost (P) .  

So l e t  Q be a set of  points in the d by 1 
k-I  

region, n = IQI- Let rcostk(Q) : rcost(Q) - 
i=O 

(sum of lengths of a l l  edges produced at  the 

i th level  of recursion by the algor i thm on Q). 

Since there are 2 i level  i rectangles,  and since 

the length of an edge produced at the i t-~ leve l  • 

is at most . ~  , we have that  rcostk(Q) ~ rcost(Q) 

k-I  2i ~/~ • = rcost(Q) - o ( ~ k ) .  
i=O /~-i 

. ' .  rcost(Q) _< rcostk(Q) + O(v~k). We now upper 

bound rcostk(Q),  which is the sum of the lengths 

of the edges produced at  leve ls  > k. There are 
rs leve l  k rectangles which compose the d by 1 
region containing Q. Call these rectangles Rj, 

1 < j < rs.  Let t = rs.  For a l l  1 < j < t ,  l e t  

nj = IRj(Q) I. By theorem I ,  for a l l  1 < j < t ,  

the sum of the lengths of the edges produced 

wi th in  Rj is - < ~ 2  Cnj - ~  [ ( I  + + 

- ~ ' +  O(n~<) ] .  (The fac tor  is to scale the 
J 

cost down to leve l  k) .  
t 

. . rcostk(Q) < ~ ~ [(I + ~)/~; + /3"- /6" 
j=l 

1 + o(-~.)] 
3 
t 

= ~ ( I  + ~  ~ n~. + O(t) 
j= l  J 

1 1 t - I  

+ O(t). 

Define the funct ion f : ~ t - I  ÷ ~ by 
t - I  ~ t - I  

= ~ x ~ -  n - ~ xj f ( x l '  x2 . . . . .  Xt - l )  j= l  j=l  

Taking part ia l  derivatives shows that f is maxi- 
t - l  n 

mized at x I = x 2 = . . .  = xt_ l = n - ~ xj = - 
j=l  t "  

. ' .  rcostk(Q) < _ ~  ( I  + ~ . ) t ~ +  O(t) 

v~ k (I + ) r ~  V~'+ O(rs) 

1 Jdv~ k v~k / ~ +  0(2 k) 

i~Z)~ o :~2-(I + + (2 k) 

• rcost(Q) < rcostk(Q) + 0 ( ~  k) = v~" ~ +  o(2k). 

By the def in i t ion  of d, we have that d ÷ l as 
k ÷ - .  Thus, for a l l  E > O, we have 

rcost(Q) <_ ( l  + E ) ~ ( l  + ~ , / ~ ' +  O(1) 

= ( l  + ~)I•436/~ + 0 ( I ) .  

For example, we can take k = I0 and hence r = 23, 

23 ~ s = 32, d = ~ 2 - ~  l .Ol6,  and therefore 

rcost(Q) ~ 2~2  ( I  + ~ ) ~ n  + 0 ( I )  

= 1.447~n + 0 ( I ) .  

In order to show the t ightness of th is  
bound, we again choose some even k > O, but th is  
time l e t  r be the greatest  in teger  such that  

r " ~2~ S I .  Then l e t  d • ~--[ ~ I ,  and s = 

as before. Construct a set Q' in the d by 1 re- 
gion, so that  each of  the rs level  k rectangles in 

that  region contains a balanced r ~ p o i n t  set.  We 

choose n = IQ'I so that  n = b~ for  some i ,  thus 

making C.n_asymptotic to (I"~ + ~ ) I r ~  • A s imi lar  

rs 
analysis to the above shows that rcost(Q') 

¢/~.(IV~'' +--~)~/~- 0(2 k). Hence (V~ > 0)(3 set Q' 

l in the un i t  square) [ rcost (Q' )  ~ (I  - ~) ~7..~, 
VL 

(I  + ~ v ~ ' -  0 ( I )  z ( I  - e) 1.436V~- 0 ( I ) ] .  

The reader may wonder why we did not simply 
choose some k such that  the 1 by 1 square can be 
exact ly  tesse l la ted  by level  k rectangles ( i . e .  
we would have d = I ) .  Unfor tunate ly ,  as is eas i l y  
shown, no such k ex i s t s .  

1 ( I  + ~ )  In summary, 1.436 : 

= i n f { x :  fo r  a l l  n-point  sets P in the un i t  square, 
rcost(P) ~ xv~ + 0 ( ~ ,  where i n f  denotes the 
greatest  Tower bound. 
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A square can be pa r t i t i oned  in to  two 45 
45 ~ 90 n t r i ang les .  Also, a 45"' - 45 ~ • 9C 
t r i a n g l e  can be pa r t i t i oned  in to  two 45 ° - 45 ° - 
90 ° subtr iangles of equal s ize.  This suggests a 
second p a r t i t i o n  a lgor i thm,  which we ca l l  the 
t r i a n g l e  a lgor i thm:  given a set P of  n points in 
the un i t  square, do exact ly  as the rectangle a lgo-  
r i thm, except that  when a region is s p l i t ,  i t  is 
s p l i t  i n to  two equal sized 45 ° - 45 ° - 90 ° t r i a n -  
gles.  An example in which n = 4 is shown below. 

Here the f i r s t  s p l i t  is along the main d iagonal ;  
the second s p l i t  is shown in dotted l i ne .  The 
matching produced is in jagged l i n e .  

In analogy to the previous sect ion,  def ine 
a t r i a l  to be e i t he r  ( i )  one of  the two main 
45 ° - 45 ° - 90 ° t r i ang les  wi th  hypoteneuse ~ ,  
in to  which the square is s p l i t ,  or ( i i )  one of  the 
two 45 ° - 45 ° - 90 ° subtr iangles in to  which a 
t r i a n g l e  may be s p l i t .  Furthermore, i f  T is a 
t r i a n g l e ,  then l e t  

leve l (T )  = I 

O, i f  T is a main t r i ang le  
(o f  hypoteneuse length v~) 

level  (T')  + I ,  otherwise, 
where T' is the t r i a n g l e  
which s p l i t s  in to  T and 
some other  t r i a n g l e .  

Note that  the level  of  a t r i a n g l e  is 1 less 
than the level  o f  recursion on which the t r i a n g l e  
l i es  ( in  contrast  to the level  o f  a rectangle in 
the previous sect ion,  which equals the level  of  
recursion on which i t  l i e s ) .  We def ine level  in 
th is  way because our s t ra tegy is to analyze the 
worst case cost of  points in a main t r i a n g l e ,  and 
then use that  r esu l t  to analyze the worst case 
cost fo r  points in the un i t  square. 

I f  P is a set of points in the un i t  square, 
then l e t  tcost(P) = the sum of  the lengths of  the 
edges in the matching produced by the t r i a n g l e  
a lgor i thm on P. For a l l  n ~ 0 ,  l e t  E n = 

sup{tcost(P) :  P is a set of n points in a main t r i -  
angle o f  the un i t  square}, and l e t  F n = 

sup{tcost(P) :  P is a set of  n points in the un i t  
square}. As mentioned above, we w i l l  f i r s t  
analyze the E n and then use that  resu l t  to analyze 

the F n . 

F i r s t  note that  we can r e s t r i c t  the leve ls  
of  recursion to at most r l gn l  and so enable the 
a lgor i thm to run in time O(n log n), as fo r  the 
rectangle a lgor i thm.  This r e s t r i c t i o n  does not 
a f f ec t  the worst case cost,  as can be proved by 
an argument jus t  l i ke  lemma I .  

Fro:~ here ~r th e end o f  the a n a l ~ i ~  o ~ the 
En, l e t  "set  of po in ts"  denote a set of points in 

a main t r i a n g l e  ( i . e .  of  hypoteneuse length V~). 
I f  T is a t r i a n g l e ,  P a set of  po in ts ,  then l e t  
T(P) denote the set of  points o f  P contained in T. 
Define the property balanced exact ly  as in rectan- 
gle a lgor i thm's  ana lys ls ,  except subs t i t u t i ng  the 
word " t r i a n g l e "  fo r  " rec tang le " ,  and understanding 
the "opposi te corners" o f  a t r i a n g l e  to mean i t s  
two 45 ° corners. In analogy to the rectangle re- 
su l t s ,  we now show the balanced sets to be the 
worst case fo r  the t r i a n g l e  a lgor i thm. 

Lemma 2 ' :  Let n > 0 be even, and P a set of  n 
points .  Then (3 Yet o f  points Q)[IQI = n and 
tcost(Q) > tcsot(P) and (V t r i a n g l e  T such that  
T(Q) > I ) -  

- [ I .  IT(Q)I even ~ T s p l i t s  i n to  T I ,  T 2 

such that  ITi(Q) I ,  IT2(Q) I are odd, and 

T 1 and T 2 each strand a po in t  of  Q in a 

45 ° corner of T, 

2. IT(Q) I odd ~ T strands a po in t  of  Q in 
one of  i t s  own 45 ° corners, 

3. IT(Q) I ~ 2 = the two subtr iangles o f  
T each contain at  least  1 po in t  o f  Q]]. 

Proof: Another rearranging argument, very s i m i l a r  
to that  of lemma 2. Say a t r i a n g l e  T is even i f  
IT(P) I is even otherwise T is odd. The rearrang- 
ing argument fo r  t r i ang les  is s l i g h t l y  more com- 
p l i ca ted  than that  f o r  rectangles,  since the 
fa r thes t  par t  of  an odd t r i a n g l e  from some po in t  
may be a 90 ° corner ra ther  than a 45 ° corner. To 
handle th is  s i t u a t i o n ,  we make use o f  the fo l l ow ing  
terms: i f  a t r i a n g l e  T s p l i t s  in to  subtr iangles 
T 1 and T 2, then we say that  T is the fa the r  of  T 1 

and T 2, and that  T 1 and T 2 are brothers.  

F i r s t  we rearrange a l l  t r i ang les  T such 
that  IT(P)I = I .  Let T be such a t r i a n g l e ,  and 
Pl the po in t  in T. Let T b be the brother  o f  T, 

and Tf the fa the r  (T b and Tf must ex i s t  since n 

is even and T is odd). Let P2 be the po in t  match- 

ed to Pl by the a lgor i thm.  Let A denote the corner 

of  T which is f a r t hes t  from P2" 

Case I :  A is a 45 ° corner o f  T. Then simply 
"move" Pl to A, w i thout  decreasing the cost: 

T(P): 

A 

P2 
T(P')." , ~  

A P1 

P2 

(We w i l l  not e x p l i c i t l y  def ine P' in th is  proof  
as we did in the proof of  Ic~ma 2. I t  should be 
c lear  by now how we "move" po in ts . )  
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Case 2: A is a 90 ° corner of T. Then the far thest  
part of Tf from P2 must be some 45 ° corner B of 

Tf. 

T f ( p i ~ T  

D T b p~ T 

P2 
T b 

Thus move Pl to a 45 ° corner of T and then swap T 

with T b. This does not a f fect  any other matches 

since T b is even. 

For t r iangles T such that IT(P) I = 2, merely 
note that the arrangement 

gives the greatest cost. 

Now assume we have rearranged a l l  t r iangles 
T such that JT(P) I < K for  some K > ~ Let T be a 
t r iang le  such that TT(P) I = K + I . -  et T I ,  T 2 be 
the subtriangles of T, T b the brother of T, and 

Tf the father of T. 

Case I :  K + 1 is odd. Assume WLOG that T 1 is 

odd, T 2 even. 

Case I . I :  IT2(P)I : O. Handle th is jus t  as in the 

proof of Lemma 2; namely, move 2 points out of the 
corners of Tl 'S even subtriangle into T2's cor- 

ers. 

Case 1.2: IT2(P)I > 0. T strands some point PI' 

which is matched to some point ~ outside of T. 
Let A be the corner of T which farthest from P2" 

Since ITi(P) I ! K, Pl is already in a 45 ° corner 

of T 1 . 

Case 1.2.1: A is a 45 ° corner of T. Then i f  Pl 

is not already in A, then rotate T 1 and then swap 

T 1 with T 2 ( i f  necessary) to put Pl in A, e.g. 

T(P): 

T 2 

P2 

T(P'):  A ~ T2 °P2 

Case 1.2.2: A is a 90 ° corner of T. Then the 
far thest  part of Tf from P2 is some 45 ° corner B 

of Tf. 

Tf(P): 
P2 

B ~ p l T  

T b 
Note that B is also a 45 ° corner of T b. Therefore 

swap T b with T and rearrange T using Case 1.2.1. 

(This affects no matchings of points other than 
Pl and P2' since T b is even. We know that T b 

is even since P2 ~ Tb(P)' which we know since the 

far thest  corner from any point in T b must be a 

45 ° corner of T). 

Case 2: K + 1 is even. Assume WLOG that {Ti(P) 1 

IT2(R) I. 

Case 2.1: IT2(P) I : O. Then proceed as in Case 

1 . 1 .  

Case 2.2: IT2(P)I >0. Then both T 1 and T 2 both 

have already been rearranged. 

Case 2.2.1: ITi(P) I ,  ]T2(P)I both even. Thus, 

T(P): 

Pl k. P~ 
v 

h 

That i s ,  T is a t r iang le  of hypoteneuse length h 
for  some h > O. T 1 matches points Pl and P2 in 

i t s  opposite corners. T 2 matches points P3 and P4 

in i t s  opposite corners. S 2 is the even subtr ian- 

gle of T 1 which strands P2" S 1 is the odd sub- 

t r iang le  of the subtriangle of T 2 which strands P3" 

Now l e t  P' be l i ke  P except that the poir, ts 
in S 1 have been swapped with those in $2: 

T(P') :  

J 

Pl P3 P4 
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Hence tcost(P)  = d(P l ,  p2 ) + d(P3, p4 ) + c fo r  

some c > O, and t cos t (P ' )  = d(Pl ,  p4 ) + d(P2, p3' ) 
+ C. 

Now d(p I ,  p2) = d(P3, p4 ) = ~2' d (P l '  P4 ) = h, 
h ". tcost(P)  = hv~-+ c < ~h + c d(P 2, P3') = ~ • . 

= t c o s t ( P ' ) ,  as desired;  so l e t  P = P' ,  and 
cont inue.  

Case 2.2.2:  I T i ( P ) I , I T 2 ( P ) I  both odd. Then T 1 

strands a po in t  Pl in one of  i t s  45 ° corners,  and 

T 2 strands a po in t  P2 in one of  i t s  45 ° corners. 

I f  Pl and P2 are not both in  45 ° corners of  T, 

then ro ta te  T 1 or T 2 or both to put them there.  

F i n a l l y ,  l e t  Q be th is  rearranged version of  P. 
Q s a t i s f i e s  the proper t ies  stated in  the Lemma. 
QED Lemma 2' 

Lemma 3 ' :  Let n > 0 be even, P a set of  n po in ts .  
Then ~Tse t  of  poTnts Q)[IQI = n and tcost(Q) > 
tcost(P)  and Q is balanced]. The proof is i d e n t i -  
cal to tha t  f o r  Lemma 3, s u b s t i t u t i n g  " t r i a n g l e "  
fo r  " rec tang le" .  

Thus (V even n > O)[E n = t cos t (P ) ,  where P 

is a balanced n po in t  se t ] .  The length of  a level  

i ~-#2" 7~.(/T~ i hypoteneuse s = ) = ¢~ (length of a 

diagonal in a level i rectangle). ." for  a l l  

even n 3_0, En = ~ C n  < ~ [ ( I  + ~ ) / ~ +  /~ r -  /~" 

+ O(~n)].  Note tha t  f o r  a l l  odd n > O, E n < En_ I ,  
To see t h i s ,  l e t  P be a set of  po in ts ,  IPI = n be 
odd. Then there is some Pl ~ P such tha t  Pl is  

not matched to any other po in t  by the a lgor i thm.  
Then tcost(P)  = t c o s t ( P -  { p l } ) ,  and hence 

E n ! E n _  I .  . ' .  f o r  a l l  n > O, En < ~ ( I  + ~ ) ~ 6 "  
+ o(1).  

Now we analyze the F n, which are our pr i -  

mary interest .  Let P be a set of points in the 
uni t  square. The square is s p l i t  into two main 
t r iangles,  one with m points and one with n-m 
points, for  some 0 < m < n. . . tcost(P) < 

max {E m + + / 2 "<  1 + O<m<n En-m} om<~<Xn{ " 

( /~  + /~:~')} + 0 ( I ) .  

Treating d~'+ ~ as a real function of m and 
d i f fe ren t ia t ing  shows that v~+ ~ is maximized 

= n " tcost(P)  < ~ ( I  + ~ 2 ~ +  a t m  2 " " " 

O(1) : ~ ( l  + ~ ) V ~ ' +  O(1). Thus for  a l l  n >_0, 

F n < ~ r ( l  + ]J~),/~+ O(1) : 1.97/~'+ O(1). This 

bound is asymptotically achievable, since i f  
n = 2b r for  some r >_ O, then we can construct a 

set P such that the unit  square sp l i ts  into T~, 
T 2 such that T l(P) and T2(P ) are both balancea b r 

point sets. . . as shown in the previous section, 

C b 
since 7~ =÷  ( l  + , , ~  as r -~ ~, we have that  

r 

t c ° s t ~ ÷ ~  (I + v n  ~ )  as n ÷o~. 

Our t h i r d  p a r t i t i o n i n g  method, the 
Square-Rectanqle Alqor i thm,  works j u s t  l i k e  the 
rectangle or t r i ang le  h e u r i s t i c s ,  except tha t  
the regions are pa r t i t i oned  as fo l lows .  We s t a r t  
o f f  w i th  n points in  the un i t  square. The square 

is s p l i t  v e r t i c a l l y  in to  two 1 by rectangles.  
1 Thesel rectangles are then each s p l i t  i n to  two 

by ~ squares. (As in  the l as t  two a lgor i thms,  we 

do th i s  s p l i t t i n g  only i f  the region has > 2 

points in  i t  and is at or below the [ I g n l  tn level  
of recurs ion,  count ing the un i t  square as leve l  
0.)  In general ,  each square is s p l i t  v e r t i c a l l y  
in to  two rectangles of  r a t i o  2 to 1 between the 
ve r t i ca l  and hor izon ta l  s ides;  and each rectangle 
is s p l i t  i n to  two squares. 

We do not yet  know how to put a t i g h t  upper 
bound on the cost of  the matching produced by th i s  
a lgor i thm.  A very crude upper bound can be derived 
by assuming tha t  each region (square or rectangular) 
matches two points in  i t s  opposite corners, thus 

cost < Z 2 i v~" + Z 2 i /~  
- -  " " ~ T  O<i<lgn+l /~ l  O<i<Ign+l 

i even i odd 

< ( v ~  + ~ ) / ~ ' +  0 ( I )  = 7 . 3 0 / ~ +  O( i ) .  

Cer ta in ly  the least  upper bound is much lower than 
t h i s ;  we merel~, wanted to show the cost to be 
bounded by O(¢n}. Below we const ruct  an example 

in  which the cost is asymptotic to ~ / ~ .  

Let P be a set o f  points in the un i t  square 
such tha t  each even square s p l i t s  in to  two even 
rectangles,  and each even rectangle R s p l i t s  in to  
odd squares S I ,  S 2 such tha t  S 1 and S 2 strands 

points in opposite corners of  R. A region is even 
i f  i t  contains an even number o f  points of  P, 
otherwise i t  is odd. Assume P is f u l l  to some 
level  2r+l  in  the sense tha t  each leve l  2 ( r - l )  + 1 

rectangle has exac t l y  1 or 2 points in  i t .  We can 
so const ruct  P using the technique used to con- 
s t r uc t  f u l l  sets f o r  the rectangle a lqor i thm (see 
above). Thus i f  R is a rectangle of level  i f o r  
some 1 < i < 2 ( r - l )  + I ,  then 

leve l  i level  i+ l  leve l  i+2 evenl 
non-ze 

# of ) 
points 

e [ "P2 
0 

v d 
e d 

> n 
o e 
d v 
d e 

• n J  

Pl 
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Note that  i f  a leve l  i rectangle R is odd then R 
s p l i t s  i n to  three even and one odd leve l  i + 2 
rectangles.  I f  R is even then i t  s p l i t s  i n to  two 
even and two odd leve l  i + 2 rectangles.  For a l l  
0 < i < r - l ,  l e t  E i = the number of  even rectangles 

of  leve l  2 i+ I ,  0 i = the number of  odd rectangles 

of leve l  2 i+ I .  (Note that  a leve l  K consists of  
rectangles~=~K is odd). Then 

E 0 = 2, 00 = O. 

V1 < i < r - I ,  E i = 2Ei_ 1 + 3 0 i _  I ,  

0 i = 2Ei_ 1 + Oi_ I .  

E i + 0 i = 2.4 I .  

The so lu t i on  to these equations is E i = ~4 i + 

5~-I) i Oi :-~4 i - ~( - l )  i V 0 < i < r- I  

Let n = I PI. Then 
r-1 

n = ~ 2. E i = ~- 4 r + ~ - l )  r - l ,  and hence 
i=O 

r = Iog4(45~) +_O(1). Since the length of a level 

/g 
2i+l diagonal is ~ -  , we have 

r ~ 2 ~  n cost(P) = i=OZ E i • ~ T - >  - 0 ( I ) .  

We conjecture that the asymptotic worst case cost 

for this algorithm is very close to ~v~. 

The last partitioning method we consider, 
the Four-Sqqare Algorithm, works as follows. Each 
square S ( i n i t i a l l y  the unit square) which has > 2 
input points in i t  is sp l i t  into 4 equal sub- 
squares. The algorithm is applied recursively to 
each of these subsquares, Then the best matching 
of the < 4 stranded points is made (the best match- 
ing of 3 points is the closest pair). In analogy 
to the other partitioning algorithms, i f  a square 

S contain > 2 points and is on the ([log~nl + l)  rs---~- 
level of r~cursion, then arb i t rar i l y  mat#h up the 
points in S unti l 0 or l is le f t .  Thus this algo- 
rithm also runs in time O(n log n). 

As for the square-rectangle heuristic, we 
have no t ight upper bound for this algorithm, but 
know i t  to be (~(v~. As for a lower bound, we 

construct  an example below of  cost ~ ( I  + ~ ) ~ / ~ -  

0 ( I )  = 1.39~/~'- 0 ( I ) .  

Construct a set  P of  points in the un i t  
square such that  each even square S s p l i t s  i n to  
S l ,  S 2, S 3, S 4 such that  Si ,  S 3 odd, S 2, S 4 even, 

and S 1 and S 3 strand points in opposi te corners of 

S. Also, each odd square S s p l i t s  i n to  odd squares 
S I ,  S 2, S 3, and even square S 4 such tha t  each o f  

the 3 points stranded by S i ,  $2, S 3 is in  a d i f -  

fe ren t  corner of  S. Thus at leve l  i ,  each even 

square cont r ibutes an edge of length -~ ,  and each 
2 '  

1 odd square contr ibutes an edge of  length ~ -  . Make 

P such that  fo r  some in teger  r ,  each leve l  r - I  
square has e i t h e r  1 or 2 points of  P in i t .  For 
a l l  0 < i < r - l ,  l e t  E i = the number of  even 

leve l  i squares and 0 i = the number of  odd leve l  i 

squares. Then E 0 = I ,  00 = O, and (Vl < i < r - l )  

[E i = 2Ei_ 1 + Oi_ I ,  0 i = 2Ei. 1 + 30i_ I ,  E i + 0 i 

= 4 i ] .  The so lu t i on  is Ei = ~4i + ~, Oi = ~4 i - ~. 

Let n : IPI.  Note tha t  n = Or_ 1 + 2Er_ 1 (s ince 

each leve l  r -2 square has 5 or 6 po in ts ,  each 
leve l  r - I  square has 1 or 2 po in ts ,  and each leve l  

r+l  square has 0 or  1 po in t ) .  " n = ~4 r 2 • . - ~ ' 

r - I  
and hence r = log4(3n + 2). ." cost(P) = 

i=O 

• ~ - +  r -2 

O(~n) : 1 .394~-  0 ( I ) .  I n c i d e n t a l l y ,  th is  expres- 

sion is exac t l y  the same as that  found to upper 
bound the cost o f  the t r i a n g l e  a lgor i thm on n 
points in a main t r i a n g l e .  We have no geometric 
exp lanat ion f o r  th is  coincidence. 

Comparing these resu l ts  (see summary) 
we conclude tha t  the best ( in  terms of  worst case 
performance) p a r t i t i o n  method is e i t h e r  the rec- 
tangle or  the four-square.  I f  indeed the four -  
square is super io r ,  then the rectangle is a close 
second. 

The S t r ip  Algor i thm 

This a lgor i thm is a mod i f i ca t ion  of  one 
analyzed f o r  expected performance in Papadimit r iou 
[lO]. 

Let r = [ ~ ] .  The un i t  square is d iv ided 

in to  r v e r t i c a l  s t r i p s ,  each o f  width ~ Then a 
r "  

t r ave l i ng  salesman tour  T] is constructed by 

s ta r t i ng  at  the lowest input  po in t  in the le f tmost  
s t r i p ,  going up that  s t r i p  in the path which in -  
cludes a l l  input  points of  tha t  s t r i p ,  then down 
the next s t r i p ,  up the next ,  e t c . ,  and f i n a l l y  
re turn ing to the s t a r t i n g  po in t ,  as shown: 
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Here T 1 is shown in jagged l i ne .  For ease 

of drawina, not a l l  of the input points are pic- 
tured here (since in order to have r = 5 s t r ips  
there must be 50 ~ n ~72 input points) .  

Then, a second t rave l ing  salesman tour T 2 

is constructed in the same way, except that here 
1 1 the s t r i p  boundaries have been sh i f ted by ~ • 

to the r igh t .  The s t r i p  boundaries for  T 1 are 

shown below as so l id  l ines ,  those for  T 2 in dashed: 

I I I 
I 

I I s 
I I 

t 
I I I I 

I I I 
I i 

I | 
I I l I 
I I ~ I 

Thus there are r + 1 s t r ips  used in construct ing 
1 

T 2, each of width ~. Note that the leftmost of 

these s t r ips  contains no input points in i t s  l e f t  
ha l f .  S imi la r ly  the rightmost s t r i p  contains no 
input points in i t s  r i gh t  ha l f .  

Thus we have two t rave l ing salesman tours 
T 1 and T 2, Since n is even, each tour contains 
exact ly two matchings. The algorithm outputs the 
shortest of these four matchings. 

To upper bound the cost of the matching 
produced, consider paths P1 and P2 defined as f o l -  

lows: P1 star ts at the bottom, on the median of 

the leftmost of  the s t r ips  used in construct ing T I .  

P1 fol lows the median of the s t r i p  up to the top, 

then down the median of the next s t r i p ,  up the 
next, etc. For each s t r i p ,  for  each point in that 
s t r i p ,  the path P1 ju ts  out to that point  and then 

back to the median, moving at r i gh t  angles, as 
i l l u s t r a t e d :  (PI is in jagged) 

The path P2 is defined l i ke  PI '  except 

that P2 fol lows the medians of the s t r ips  used to 

construct T 2. 

I t  fol lows from the t r iang le  inequa l i t y  
that length (Ti) ! length (P1) and length (T2) 2 
length (P2). Our strategy is to upper bound 

length (P1) + length (P2). 

Consider some input point  q. q must l i e  
in some s t r i p  (shown below between so l id  l ines)  
used for  T 1 and PI '  and in some s t r i p  (between 

dashed l ines)  used for  T 2 and P2: 

1 
r 

I 

I 
I 
I 
! 

_ . f  . . . . . . . . . . .  

1 
r 

A segment of P1 is shown in heavy so l id  l i ne ,  and 

a segment of P2 in jagged l i ne .  I t  should be 

clear that the to ta l  amount of hor izontal  l i ne  of 
Pl or P2 which ju ts  out to q and back is 

1 1 Since q was a rb i t ra ry ,  there is a 2( • ~) = 

uni ts of hor izontal  l i ne  in P1 and P2 to ta l  of r 
together which j u t  out to points and back. Also, 
PI has r • 1 = r uni ts of ver t ica l  l i ne  ( i . e . ,  r 

s t r ips  of length I ) .  P2 has r + l s t r ips  and 
1 hence r + 1 uni ts of ve r t i ca l  l i ne .  P1 has 1 - 

uni ts of  hor izontal  l i ne  which run from the end 
of  one s t r i p  to the s ta r t  of the next. P2 has 1 

un i t  of such l ine .  F ina l l y ,  P1 and P2 each have a 

segment of length less than v~'which jo ins the end 
of the las t  s t r i p  back to the s tar t ing  posi t ion.  

Thus, in t o ta l ,  length (T I )  + length(T 2) 

< n + r+( r+ l )  + ( l -  n) +I + vT" 
- r 

n < - +  2r + 3 + 2 v~- r 

n r~/] = ~  + 2 + 3 + 2/2" 

< 2V~'~n + 5 + 2/~" 

: 2~Z~'+ 0(1). 

Thus, min{length(T I ) ,  length(T 2)} 
< ~ +  o ( I )  
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Therefore the cost of the matching produced 

is ~ ½ min{ length(Tl) ,  length(T2)} 

~ /6"+ 0( I )  = .707/~'* 0 ( I ) .  

This bound is asymptotical ly achievable, as 
shown by the fol lowing example: 

, 

I I I 1 1  i 
I I ~ I i  I , , I / , l ,  , l i t  
I I ' 1 

;j / ,  

¢ ~ 0  

T 1 is shown in jagged l ine.  T 2 is not shown, but 

looks almost l i ke  T 1 shi f ted by 2~ to the r ight .  

The points are arranged so that halfway between 
each sol id ver t ica l  l ine and e i ther  of i t s  two 
neighboring dotted ver t ica l  l ines,  there is a ver- 
t i ca l  s t r ing of 0(/~) points. I n t u i t i v e l y ,  these 
poin~are placed so that T 1 and T 2 must zigzig and 

hence look very much l i ke  P1 and P2' respect ively.  

This attains the maximum amount (neglecting lower 
order terms) of horizontal l ine  for T 1 and T 2. 
There is a point at the bottom of each s t r i p ,  so 
as to at ta in the maximum ver t ica l  length. A sim- 
ple computation shows length(Tl) ,  length(T 2) = 

/2"fn-+ 0 ( I ) ,  and also that the cost of the 

matching is ~ - ~ n  + 0 ( I ) .  

The algorithm can be implemented in time 
O(n log n) using sort ing. Note that the s t r i p  
algorithm can be used to obtain a t ravel ing sales- 
man tour ( i . e . ,  the shorter of {T I ,  T2}) in the 

uni t  square, of length at most v~'~/~+ 0 ( I ) .  These 
results generalize eas i ly  to a 1 by x region giv-  

ing a matching whose cost is at most~'~n + 0( I )  

and a t ravel ing salesman tour whose cost is at 
most v'~ /6"+ 0 ( I ) .  

Decomposi t i  on A1 gori thn ! 

This las t  matching algorithm is a hybrid 

between Edmond's O(n 3) time optimizing algorithm, 
and any of the O(n log n) time heur ist ics.  The 
resul t ing algorithm has the best properties of 
both: an O(n log n) time bound and a cost bound 
which is the same, neglecting lower order terms, 
as that for  the optimizing. In the fol lowing pre- 
sentation of the algorithm, we happen to choose 
the s t r i p  heur is t ic  as our O(n log n) heur is t ic :  

F/~q 
1 c I 

2 2. Par t i t ion the unit  square into c 
subsquares of equal size. 

3. For each of these subsquares, perform 
the optimizing algorithm i t e r a t i v e l y  
on sets of K input points chosen arbi -  
t r a r i l y  from that subsquare, where K 
is the largest even integer 

~min {4 " [ c ~ 7 ,  number of input points 
s t i l l  unmatched in the 
subsquare}, 

unt i l  the subsquare is l e f t  with 0 or 
1 point in i t .  

4. Perform the s t r i p  heur is t ic  on the re- 
maining < c 2 points. 

5. Output the union of the matchings found 
in steps 3 and 4, and hal t .  

In order to analyze the algori thm's perfor- 
mance, l e t  

= i n f  {x: x ~6"+ o(v~) upper bounds the 
worst case cost of the optimizing 
algori thm}. 

1 
We know that ~ exists and that .537 z 7 " ~  ~ 

£ ~ .707, since - 7 - ~ / 6 " +  O(1) is the cost of 

the optimal matching of n points on a 1 by 1 hexa- 

gonal gr id ,  and s ince~_~6-+ 0( I )  is the upper 

bound for  the s t r i p  algorithm. (We suspect that 
1 is close to - ~ ,  but have been unable to prove 

i t ) .  We w i l l  show that the decomposition a/.gori- 
thm produces a matching of cost ~ s/n + o(/n).  
Thus, in an asymptotic sense, the decomposition 
algori thm's performance is as good as possible. 

Let b = ~ c ~ l .  Number the subsquares from 

1 to c 2. For a l l  1 < i < c 2, l e t  B i denote the 

set of input points o r i g i na l l y  in the it--~-sub - 
square and l e t  b i = IB i l  mod 4b. Thus 

B 

I Bi l  - b i 
+ 1 > the number of ca l ls  to the opt i -  4b 

mizing algorithm on the i th  subsquare. F ina l l y ,  
: c 2 

l e t  t i ~  ~ IBil - bi . Thus t + c 2 ~ the tota l  
4b 

number of ca l ls  to the optimizing algorithm. Note 

~ b i t h a t  t = - i= l  " 

Now f o r  a l l  r > 1,  t h e  c o s t  o f  t h e  m a t c h i n g  
p r o d u c e d  by t h e  o p t i m T z i n g  a l g o r i t h m  on r p o i n t s  

1 1 l ( ~ +  in a ~ by ~ square is at most ~ o(,/F)) 

1 The ~ factor scales down the cost from the uni t  
1 1 square to the ~ by ~ square. Thus the sum of 

the costs of a l l  ca l ls  to the optimizing algorithm 
is at most 
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c2 + ¼(t(~ + o(VD) + i ~ l  
2 

= ¼ ( t ~ 4 ~ +  ~ C b ~  i + 0(C2 b~)), since 
i~l 

b. < 4b fo r  a l l  i ,  1 < i < c 2, and since t < C 2"  

The matching produced in step 4 by the s t r i p  a lgo-  

r i thm on at  most c 2 points in the un i t  square has 

cost ~ - v ~ ' +  O( l ) .  Therefore, the t o ta l  cost of  

the matching is at most 

2 

i=l 
2 

C 

We now show that t /7[5 + ~ ~ i  is maxi- 
i=l 

mized when b I = b 2 = . . .  = bc2 = b. Let f : 

c2 -~ ~ be defined by 

c 2 
f (b  I ,  b 2 . . . . .  b 2 ) = t ~/~ + ~ i  

c i~l 

c 2 k c2 
- 

c 2 c 2 
= (n - ~ b i )  " 7 ~  + ~ i "  Then 

i= l  i ~  

fo r  a l l  i 1 < i < c 2 ~f = l 2 ~ .  ' ' Bb---i- ~ +  : O ~ : ~ b  = 
1 

b i ,  and ~---~- < O. 
~2b. 

I 

Thus f is maximized at b I = b 2 = . . .  = b 2 = b. 
c 

Note that  b I = b 2 = . . .  : bc2 = b impl ies n ~ bc 2, 

which impl ies n : bc 2 (since b : F - ~ I  and hence 
I C - i  

bc 2 ~ n). This i ~p l i es  

n - i~  1 b i n_c2b 
t = 4b = 4b O. Thus 

1 
4b 

expression ( I )  is maximized when t = 0 and 
b I = b 2 = . . .  = b 2 = b; hence 

cost <_ ~ + 

= acE+ o(c~ + ~.. 

N°te that /6":~T~T< ~-T < c~2 + ,  1 : / ~ - +  1 
C 

". cost S mv'~'+ o ( v ~  + (m + ~ )  C o 

: ~v~ '+  o(V~) + (~+ ~) • 
v~ 

¢dlgn 

: ~ " +  o ( ~ ' ) ,  

as we claimed. 

Next we show that the algorithm runs in 
time 0(nlogn). Step 2, the partitioning of the 
points, can be performed in time 0(n) as follows: 
for each input point p, we determine, by a few 
simple arithmetic operations, which subsquare con- 
tains p. We can do this since the subsquares form 
a grid. More precisely, we associate each sub- 
square with the grid point (Xo, y0) at i ts lower 
le f t .  Thus for each input point p = (x, y), com- 
pute 

~ ]  l i f  x ~ l 
x 0 ÷ • ~ ' 

L 1  _ l  i f x =  1 C m 

¼ ,ify l 

~ 1 - ~ , i f y  = 1 . 

Then put p in the l i s t  o f  input  points found to be 
in the subsquare whose lower l e f t  corner is 

(x O, yo ). Since there are c 2 < n subsquares, the 

whole p a r t i t i o n i n g  can be performed in time O(n). 

In step 3, there are at most t + c 2 ca l l s  
on the cubic time opt imiz ing  a lgor i thm,  each ca l l  
having ~ 4b po ints .  Thus the time fo r  step 3 is 

c 2 
n - i ~ i b i  ( t  + c2)(4b) 3 = ( _ _ ~ L  + c2)(4b) 3 

(~b + c2)(4b) 3 : O(nb 2 + c2b 3) 

: O (n ( /T~ )  2 + ( l ~ a ~ n  ) 2 ( v ~ )  3) 

Step 4 requires time O(c21g c 2) 

: O(nlogn). 

, ~ ~21 , n , : 0(t l ~ g  n, gt-vT~.)) = 0(n log n). 

Thus the total running time is 0(n log n). 

Decomposition Algor i thm fo r  TSP 

A decomposition a lgor i thm s i m i l a r  to the 
above can be used, wi th s i m i l a r  resu l t s ,  f o r  the 
t r ave l i ng  salesman problem in the un i t  square. 
Recall that  the s t r i p  a lgor i thm gives a t r ave l i ng  
salesman tour  of  length at most /~'V~'+ 0 ( I ) .  Also, 
the optimal tour  of  n points on a l by 1 hexagonal 
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in time O(n log 
ble in that  the 
hard [6 ] ,  [9 ] .  

2 /6"+ 0( I )  Therefore there gr id has length 7 " ~  

exists some real 8 such that 1.07 = V ~  2 A 8 

< ¢~'= 1.41 and 

8 : i n f  {x:  x¢~'+ o (¢~  upper bounds the 
worst case cost of the opt imizing 
TSP algorithm in the un i t  square}. 

We w i l l  present a hybrid between an exhaustive op- 
t imiz ing algorithm and the s t r i p  heur i s t i c .  Ana- 
logously to our matching resu l ts ,  th is  hybrid has 
worst case cost bounded by 8/6"+ o(/n ') ,  and runs 

n). This is  pa r t i cu l a r l y  remarka- 
Euclidean TSP is known to be NP- 

Input.: a set V 

Output: 

Method: 

O. 

of n points in the un i t  square. 

a t rave l ing  salesman tour of V. 

22 
i f  n < 22 = 65,536 

then exhaust ively search a l l  n! permu- 
tat ions to f ind  the shortest tour ;  
ha l t .  

[This step is to ensure below that  
Ig lg lg lgn  is defined and >_ I ] .  

+ F ~ n -I 1. c -Trg 'g  ! 

2. pa r t i t i on  the un i t  square in to  c 2 
subsquares of equal size. 

3. For each of these subsquares, 
a) exhaust ively f ind  the shortest tour 

of K input points chosen a rb i t ra -  
r i l y  from that  subsquare, where 

K= rain { 4 - [ ~ ] ,  number of input  

points in the subsquare not 
yet chosen}. 

I te ra te  th is  step un t i l  a l l  input  points 
of the subsquare have been chosen. 

b) i f  the subsquare o r i g i n a l l y  has at 
least  one input point  in i t  then 
d is t ingu ish one of those points" 

4. Perform the s t r i p  heur i s t i c  to f ind  a 

tour of  the < c 2 d ist inguished points.  

5. T' ÷ the union of the edges in the 
tours found in steps 3 and 4. [Note 
that  T' is a connected graph whose 
nodes are the set V. Also, T' contains 
an Eulerian c i r c u i t .  Therefore one can 
convert T' in to a tour T of V using the 
method in [3 ] ,  so that ,  by the t r iang le  
i neq ual i ty ,  

length(T) < Z length (e) ] .  
- eeT' 

Output T constructed in th is  way, and 
ha l t .  

The analysis of the worst-case cost is 
ident ica l  to that  for  the matching decomposition 
algori thm, y ie ld ing  

cost < 8c v5 ~+ o(cv'~) + /2-c (where b :F~] ) .  

. ' .  cost £ ~v~'+ (e+¢D(~glglglgh) + o(~) 

= 8 ~ "  + o ( ~ f f ) ,  as  c l a i m e d .  

Note that  th is  resu l t  is merely of theore- 
t i ca l  i n te res t ,  since one of the "lower order 

terms" is ¢~ which, for  pract ica l  purposes dlglg lg lgn 

is not neg l ig ib le .  

As for  the time required, step 2 takes O(n) 
time, as shown above. 

For step 3, an exhaustive search fo r  the 
shortest tour of r points can be performed in 

time r! = o ( r r ) .  Therefore the to ta l  time requ i r -  
ed fo r  the ca l l s  on the opt imizing algori thm is at 
most 2 

c bi 
n - i=Zl ( + c2) (4b) 4b 

4b 

= O((~b + c2)(4b) 4b) : 0(c2(4b) am) 

(since ~b = 0(c2))" 

Now (4b) 4b • b 4b = (2b)8(bb) 4 < (2b)e(22b) 4 

: O [ ( Ig lg lgn)8( Ig lgn)  8] 

(since b < Ig lg lg lgn  + I )  

: O(Ign). 

. ' .  the time needed for  step 3 is 

O(c21gn) = O(nlogn). 

Step 4 can be performed in time 
O(c 2 Ig c 2) = O(nlogn). 

Step 5 takes time O(n), using the method of 
[3] .  

Thus, as claimed, the to ta l  time is 
O(nlogn). 
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SUMMARY 

The following tables summarize known re- 
sults for matching (in both the bounded and un- 
bounded regions) and the traveling salesman pro- 
blem. Lower order terms are omitted. 

Algorithm Order 
.... r~nninQ 

Optimizing 

Greedy 

Spanning Tree n21og 

n 3 

n21og 

Hypergreedy 
without bridges 

n21og 

n21og Hyper-Greedy 

Factor of 2 n21og 
i without bridges 

Factor of 2 n21og K 8 

Factor of 2 n2(log n + log K) 7 wlt~ c~÷ inn  

of J Worst case 
t ime ...]NerFormance ratio__ 

1 

n ~ nlg~ 

n n 
, 

n ~(nl°g3 2) 

n 2 log3n 

n a(n lg# ) 

with sortinq 

Table l Summary of known results for matching 
n vertices whose distances satisfy the trian- 
gle inequality, where K is the ratio of the 
longest to the shortest edge. 

Algorithm Order of 
runninQ time 

Optimizing ~ n 3 

Greedy n21og n 

Triangle n log n 

Rectangle n log n 

4 Square n log n 

Square- 
Rectanal~ 

St r ip  

Decompos i t i  on 

n log n 

n log n 

n log n 

Worst known I Upper bound 
example cost l WOrSt case 

.537~" I ? 

.806/~" 1.07~n 

1.97/~ l .  97,'~" 

1.44V~ 1.44~" 

l .  39/~" ? 

1.5~"  ? 

.707,~" .707~/~" 

same as f o r  optimizing 

0 n 
cos L 

Table 2 Summary of known results for matching 
n vertices in the Euclidean unit square. 

Algorithm Order of !Worst known Upper bound or 
running time exam p.le cost worst casecosl 

Optimizing exponential 1.07~/~" ? 

Strip n log n 1.41/~" 1.41/~ 

Decomposition n log n same as for optimizing 

Table 3 Summary of known results for the tra- 
veling salesman problem on n cit ies in the 
Euclidean unit square. 

lo 
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