
HEURISTICS FOR WEIGHTED PERFECT MATCHING t

Kenneth d. Supowit
David A. Plaisted
Edward M. Reingold

ABSTRACT

The problem of f ind ing near optimal perfect
matchings of an even number n of vert ices is con-
sidered. When the distances between the vert ices
sa t i s fy the t r iang le inequa l i t y i t is possible to
get w i th in a constant mu l t i p l i ca t i ve factor of the

optimal matching in time O(n 2 log K) where K is the
ra t io of the longest to the shortest distance be-
tween ver t ices. Other heur is t ics are analyzed as
we l l , inc luding one that gets w i th in a logar i thmic

factor of the optimal matching in time O(n 2 log n).

Finding an optimal weighted matching requires G(n 3)
time by the fastest known algori thm, so these heu-
r i s t i c s are qui te useful .

Department of Computer Science
Univers i ty of l l l i n o i s

Urbana, l l l i n o i s 61801
graph G whose edges sa t i s fy the t r iang le inequal i -
ty . Let n, even, be the number of vert ices in G.
The most e f f i c i e n t algorithm known for the general

weighted matching problem requires ~(n 3) time, and
we would l i ke to f ind good approximation a lgor i -
thms fo r the special case of the t r iang le inequal-
i t y and the special case of the vert ices ly ing
in the un i t (Euclidean) square. The former case
was f i r s t considered in Reingold and Tarjan [14]
and they analyzed the behavior of a greedy heuris-
t i c ; the l a t t e r case was f i r s t considered by Papa-
d imi t r iou [I 0] who was concerned with the expected
cost of a matching.

When the n vert ices l i e in the un i t (Eucl i -
dean) square, no heur is t i c can be guaranteed to

1 produce a matching of cost less than 7 ~ / ~ in the

worst case. We analyze various heur is t ics for th is
case, inc luding one that always produces a matching

costing at most ~ / ~ . In addi t ion, th is heuris-

t i c also f inds a t rave l ing salesman tour of the n
vert ices costing at most ~'n~. A d i f f e ren t one
of the heur is t ics analyzed produces asymptot ical ly
optimal resu l ts . I t is also shown that asymptoti-
ca l l y optimal t rave l ing salesman tours can be
found in O(n log n) time in the un i t square.

INTRODUCTION

Consider the problem of f ind ing a minimum
cost matching in a weighted complete undirected

t This research was supported in part by the
National Science Foundation, grant numbers
NSF MCS 77-22830 and NSF MCS 79-04897.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Motivat ion fo r studying th is approximation
problem is threefo ld: F i r s t , as described in [14],
matching has d i rec t appl icat ions to minimizing the
time required to draw networks on a mechanical

p l o t t e r ; in such cases the ®(n 3) opt imizing algo-
r i thm is unacceptable since n can be large. Se-
cond, a s u f f i c i e n t l y close approximation to an op-
timal matching could be used to improve Christo-
f ides ' t rave l ing salesman problem heur i s t i c [3] ,
[4] wi thout rea l l y harming the closeness of i t s
approximation. F ina l l y , matching is an in te res t -
ing combinatorial problem in i t s own r i gh t and as
such i t s approximation is also of in te res t .

We w i l l consider two s im i la r , but not
i den t i ca l , versions of the matching problem, each
of which corresponds to a physical s i t ua t i on .
F i r s t , we consider the general case of matching
when the weights sa t i s fy the t r iang le inequa l i t y .
The resul ts we obtain here are also appl icable to
our more special ized second case, that of n points
in a bounded region of the Euclidean plane (t yp i -
ca l l y the un i t square). In the case of the bound-
ed region (motivated by the p lo t te r appl icat ion
referred to above) we w i l l analyze a heu r i s t i c ' s
behavior by bounding the absolute cost of the
matching found, i r respect ive of the cost of an op-
timal matching. In the case of the t r iang le in -
equa l i ty (that i s , an unbounded region) the cost
of the matching can be unboundedly large for any
number of vert ices and so we must consider a mea-
sure of how bad the h e u r i s t i c a l l y found match is
compared to the optimal match, namely the ra t i o of
the two costs.

TRIANGLE INEQUALITY

© I 9 8 0 A C M 0 - 8 9 7 9 1 - 0 1 7 - 6 / 8 0 / 0 4 0 0 / 0 3 9 8 $00.75 Let G be a complete undirected graph with

398

n vert ices and weighted edges sa t i s fy ing the t r i a ~
gle inequa l i t y . Let OPT(G) denote the minimum
cost of a matching of G. Let M(G) be the cost of
a matching produced by algorithm M. Let RM(n) be

the worst case ra t i o M(G)/OPT(G) as a funct ion of
n, the number of vert ices of G.

In [14], Reingold and Tarjan considered the
greedy heur is t i c (GR) that repeatedly matches the
two closest unmatched points. This can be imple-

mented in worst case time O(n21ogn), a s i gn i f i can t
improvement over the opt imizing algorithm. The
closeness of the approximation, however, is not
very sat is fac tory . Reingold and Tarjan showed
that

3
RGR(n) = ~n Ig2--I :] n "585

and that th is bound is achievable for a l l n.

Papadimitriou [12] proposed an O(n 2) heuris-
t i c based on spanning trees (ST): Begin with
spanning tree on the vert ices and convert i t in to
a matching by replacing "f lowers" x I , x 2 x m,

v in the tree by matching vert ices as indicated
by the wavy l ines:

~ Y ~ ~ - I

Xl ~ xm
• ~ 2

X l ~ I / / X m - I

 'Xm
m even m odd

Then a l l vert ices matched and a l l edges inc ident
on them are deleted from the tree and the process
is repeated. Papadimitriou showed that the ra t io
of the cost of the matching thus found to that of

n the optimal matching can be as bad an ~ and no

worse. We present an independently found proof
here.

n That the ~ ra t io is asymptot ical ly achieva-

ble fol lows from Papadimitriou's example

E

l

E E

In this example, the optimal match obviously con-
F' sists of ~ - l edges of length ~ and one edge of

l + ~ with total cost l + ~ , while the length
n heuristic produces a matching with ~ edges of

n length l for a total cost of ~ . Thus

RsT(G) -> n/2n
I + ~

n which approaches ~ as ~ ÷ O.

To prove that RST(n) ~ ~, suppose we are
given a minimum spanning tree. We partition the
edges of the tree into two classes

Even = {e I removal of e results in two
subtrees each of which contains an
even number of vertices}

Odd = {e I removal of e resul ts in two
subtrees each of which contains an
odd number of ver t ices}

(Recall that n, the number of ver t ices, is even.)
The desired resu l t fol lows d i r ec t l y from three
claims.

Claim I: ST(G) < z cost(e)
ec0dd

Proof: Immediate from the t r iang le inequa-
l i t y since by i t s nature the heur is t i c chooses
only edges of Odd or edges whose cost is bounded
above by the sum of two edges of Odd. BED Claim 1

Claim 2: Let t be the maximum number of
odd edges on any path in the minimum spanning t ree
Then,

Z cost(e) S t.0PT(G)
e¢Odd

Proof: I f an edge e of the optimal match-
ing is not in the minimum spanning tree, then add-
ing e to the tree causes a cycle in which each
edge has cost at most cost(e) (see [13]). I f the
cycle has edges from Odd of costs c l , c 2, c m

then c i ~ cost(e) and summing th is we get

sc i Am.cost (e) . Summing th is inequa l i t y over a l l

edges e of the optimal matching we get on the
r i gh t a value that is at most t.OPT(G) where t is
as defined above. On the l e f t we get a value that
is at least z cost(e) (i . e . , every odd edge ap-

eEOdd
pears on the l e f t at least once) because every
vertex in each of the two sets of odd ca rd ina l i t y
is matched in the optimal match and at least one
must be matched to a vertex in the other set.
The claim fol lows. QED Claim 2

Claim 3: t ~ , where t is as defined in
Claim 2.

Proof: Define a mapping from vertices to
edges of the tree as follows: Let the path con-
sist of vertices v l , v 2 v k (in order). For

i = 2, 3 k (in that order) map to the edge

399

(vi_ I , vi) both v i and al l vertices that are dis-

connected from v i by the removal of the edge

(vi_ l , v i) and that have not been previously

mapped to some vj, j < i . This mapping maps some

of the n vertices to the edges of the path, and i t
follows easily by induction and the nature of an
odd edge that each edge from Odd on the path is
the image of at least two dif ferent vertices.
Since there are only n vertices in the tree, i t
follows that i f the path has o edges from Odd then

n 2o ~ n and o ~ ~ as desired, qED Claim 3

Putting these claims together yields

ST(G) ~ E cost(e) 2 t.OPT(G) ~ ~.OPT(G),
e~Odd

n
so that RsT(G) ~ ~ .

We now present two heuristics, the .~__~-
r e d (HG) heuristic and the factor of two (F2)
heuristic. We show that RHG(nTT~o~3n ~d

RF2(n) ~ 8. A refinement of the factor of two

heurist ic, the factor of two with sorting (F2S),
gives RF2S(n) ~ 7. To lower bound the worst case

rat io, we have found graphs G with a rb i t ra r i l y
many vertices such that HG(G)/OPT(G) = 21og3n.
As with the spanning tree heurist ic, these graphs
are embedded in the circumference of the unit
c ircle. Also, we have found graphs with
a rb i t ra r i l y many vertices demonstrating that
RF2(n) > 4 - E and RF2S(n) > 3 - E. By s l i g h t l y

s imp l i f y i ng the heu r i s t i c s , we obta in the h ~ -
greedy heu r i s t i c w i thout bridges and the fac to r of
two heu r i s t i c w i thout br idges. These have ra t ios

I °g3(3/2) n '369 and at leas t as large as about n =
I °g2(5/4) .322

n : n , respec t i ve ly . The graphs
achieving these ra t ios can be embedded in a l i n e ,
as wi th the bad examples fo r the greedy a lgor i thm
in [14] . Therefore, the use of bridges is an es-
sen t ia l par t o f these heu r i s t i cs . The hyper-

greedy h e u r i s t i c runs in time O(n21ogn). The fac-

to r o f two heu r i s t i c runs in time O(n21og K), where
K is the r a t i o o f the la rges t to the smal lest edge

weights in G, and is never worse than O(n3). The
fac to r of two heu r i s t i c wi th sor t ing runs in time

O(n2(logn + logK)) and is never worse than O(n3).
The hyper-greedy h e u r i s t i c wi thout bridges runs in

time O(n2), and the fac to r of two heu r i s t i c w i th -

out bridges runs in time O(n21og K), and is never

worse than O(n3). I f G is sparse, and weights os
missing edges are taken to be the length of the
shor test path between the endpoints, then the

hyper-greedy heu r i s t i c runs in time O(E log2n)
where G has E edges. The fac to r o f two heu r i s t i c
runs in time O(E logn log K) in th is case. These
heur i s t i cs can be modi f ied to solve the fo l l ow ing
problem, fo r an a r b i t r a r y weighted graph G not
necessar i ly s a t i s f y i n g the t r i a n g l e i n e q u a l i t y :
Find a low cost subgraph G' of G such that every
node in G appears in G' and has odd degree in G'.

The heur i s t i cs have the same asymptotic running
time and performance bounds fo r th is problem as
fo r the weighted matching problem.

The basic idea of the heur i s t i cs is to
co l lapse subsets of the nodes of G in to "super-
nodes" to obta in a graph G I . The heu r i s t i c is

then appl ied recurs ive ly to G 1 to obta in a sub-

graph G' o f G I . Also, a spanning t ree is con-

s t ructed w i th in each supernode of G I , and the f l o -

wer heu r i s t i c (see above) is appl ied to obta in
a matching of a subset of th is spanning t ree.
This is done so tha t these matchings, when com-
bined wi th G', y i e l d a subgraph of G in which
every node has odd degree. This subgraph is then
converted to a matching by repeatedly apply ing the
t r i a n g l e i n e q u a l i t y .

I t is necessary to d i s t i ngu i sh "odd
ve r t i ces" of G and "even ve r t i ces" o f G fo r th is
to work. Supernodes o f G 1 are constructed e n t i r e -

l y from odd ver t i ces of G. A supernode havi'ng'an
odd number o f elements is ca l l ed an odd supernode,
and one having an even number o f elements is c a l l -
ed an even supernode. Also, even ver t i ces o f G
are considered even supernodes of G I . The graph

G' is constructed so tha t odd supernodes have odd
degree and even supernodes have even degree. The
matchings w i t h i n supernodes are constructed to
match nodes of even degree in G'. Note tha t each
supernode w i l l have an even number of such ver-
t i ces . The f i n a l r esu l t is a subgraph o f G in
which odd ver t i ces have odd degree and even ver-
t ices have even degree. To s t a r t the heu r i s t i c s ,
a l l ver t i ces are considered odd ver t i ces .

The Hyper-greedy Method

The hyper-greedy method works in the fo l -
lowing way: Suppose G = (V, E) is the given
undirected graph satisfying the tr iangle inequa-
l i t y . We construct a sequence G O , G l , G 2 G k

of graphs as fo l lows : G O is G. Let G i be (~ , E i)

in general (thus V i are the ver t i ces of G i and E i

are the edges). Also, V i = Odd i u Eveni, Odd i n

Even i = ~, where Odd i are the "odd ve r t i ces" of G i

and Even i are the "even ve r t i ces" o f G i . We have

Odd 0 = V and Even 0 = ~. Let Pi be a set of paths

in G i connecting odd ver t i ces wi th odd ver t i ces

o f G i . We choose Pi so tha t the sum of the

weights of the paths in Pi is as small as possible,

subject to the cond i t ion that each odd ver tex of
G i is connected to one o f i t s nearest odd neigh-

bors by a path in Pi" A "nearest odd neighbor"

o f v is an odd node w which can be reached from
v by a path in G i of minimal length. I t w i l l

turn out that G i need not s a t i s f y the t r i a n g l e

i n e q u a l i t y fo r i > I , so a path from v to w may
have length smaller than the length di(v, w) of

the edge between v and w in G i . We w i l l show be-

low how Pi may be e f f i c ien t ly computed using a

4 0 0

"generalized Voronoi diagram".

G' , ' E' Let i be the graph (V i Ei) where i is

the set {{v, w}: there is a path in Pi having v
i

and w as endpoints}. I t wi l l turn out that G i con-

sists of a disjoint collection of trees, plus
isolated vertices (the vertices in Eveni). A

connected component of G i having an odd number of

vertices, at least 3 vertices, is called an odd
f

component of G i . A connected component having an

even number of vertices is called an even

component of G i . A connected component having a

single vertex is an element of Eveni and is consi-

dered to be an even component of G i-
i

Note that every odd component of G i wi l l

have at least 3 vertices. Hence lOddi+li ~ p d d i i .

The sequence G O , G l G k stops when Odd k = 0.

Since lOddiI is even for al l i , k ! log3(3n/2).

An edge between Vl and V2 in G i corresponds

to an edge between vl and v2 in Gi_ l , for some

vl E Vl and v2 ~ V2 such that di_l(Vl, v2) is

minimal. Similarly, an edge in Gi_ l corresponds

to an edge in Gi_ 2. Continuing in this way, an

edge in G i corresponds to an edge in G. Also,
t

every edge in G i corresponds to a path in G i , and

therefore to a set of edges in Gi, hence a set of

edges in G. We keep track of these correspond-
f

ences between edges of G i , edges of G i , and edges

of G to construct a matching of G.

We obtain a matching by examining the
graphs G k, Gk_ l G O in order. We first,use

the "flower heuristic" on al l the trees of Gk_ l

to obtain matching of the odd vertices of Gk_ I.

(Recall that Odd k = @ so G k has no odd vertices.)
J

Each tree edge in Gk_ l corresponds to a path in

Pk-l' hence to a path in Gk_ I. The flower heuris-

t ic matches vertices in a tree by edges or pairs
of edges from the tree. By applying the flower
heuristic, we obtain a set of paths in Gk_ l match-

ing the odd vertices of Gk_ I. The actual edges in

G are obtained from these edges in Gk_ l as indi-

cated above. We then use the flower heuristic on
Gk_ 2, passing over the nodes which are endpoints

of the paths in Gk_ I. By the way paths are con-

structed, an even number of vertices wi l l already
be matched in each even tree and an odd number of
vertices wi l l be matched in each odd tree. Hence

i

each tree in Gk_ 2 wi l l have an even number of ver-

tices remaining to be matched. Thus the flower
G' heuristic yields a match on k-2' and we interpret

each edge of this matching as a set of edges of G
as before. We then proceed to Gk_ 3, using the

flower heuristic but passing over vertices which
i i

have been matched in Gk_ l or Gk_ 2, and so on.

To analyze the worst case rat io, let T i be

the total length of the trees at level i . Let H i

be the total length of the match edges produced by
this heuristic at level i . Let M i be the total

length of the optimal edges at level i . (We assign
levels to optimal edges by grouping them into
"paths" between vertices of G i for various i .) We

have T i ~ 2M i by a simple argument except that

vertices of T i may have been matched at levels

higher than i . Therefore we have T i ~ 2M i +

2Mi+ l + . . . + 2M k for al l i . Summing over i ,

noting that H i ~ T i for a l l i , we get that

k~IH. < 2kk~IMi . (Note tha t H k = M k : 0.) Since
i=O 1 - i=O
k ~ log3(l.5n) , we have a ratio bounded by

21og3(l.5n).

The Factor of 2 Method

The factor of 2 method is similar to the
hyper-greedy method except that paths of Pi are

included in a different manner. Let c be the
length of the shortest path between odd vertices
of Gi; then Pi includes al l paths between odd ver-

tices of G i whose length is in the interval

(~, 2~). However, paths occurr ing in cycles are
deleted u n t i l Pi consists of a set of d i s j o i n t

t rees. Other than t h i s , the fac to r o f 2 method is
i den t i ca l to the hyper-greedy method. Note tha t
we cannot guarantee k ~ log 3 (l . 5n) in th i s case.

Instead, k ~ log2K.

The analys is is s i m i l a r to tha t o f the
hyper-greedy method, except tha t T i ! 4 M i ignor ing

ver t i ces matched at a h igher l eve l . Inc lud ing
these, and not ing tha t edges at h igher leve ls get
longer and longer, we have tha t T i ! 4 M i + 2Mi+ 1 +

Mi+ 2 + Summing over i , we obta in tha t

zT i ~ 8~M i so the r a t i o is at most 8.
i 1

The fac to r o f 2 h e u r i s t i c w i th so r t ing d i f -
fers in tha t paths w i th length in the range (£, 2~)
are included in order of s ize , skipping over paths
tha t would form cycles w i th paths already included
in Pi" Thus we const ruct a set of "minimum span-

i

ning t rees" o f the components of G i . We now have

T i ~ 3M i except fo r ver t i ces matched at a h igher

l eve l . Inc lud ing these, we get T i ~ 3M i + 2Mi+ 1 +

Mi+ 2 + 12~i+3 + ... so ~T i < 7~M., giving a rat io
i - i I

of at most 7.

The heuristics without bridges are the same

401

except Pi only includes paths of length 1 (that is,

s ingle edges). In other words, we consider the
distance between odd vert ices to be the length of
the edge connecting them.

Implementations

We construct the graphs G i for the three

bridge heur is t ics using generalized Voronoi dia-
grams~ as follows:

Given a graph G and a subset S of the ver-
tices of G, the generalized Voronoi diagram for G
relative to S is defined as a part i t ion of the ver-
tices of G according to which element of S they
are closest to. Associated with each vertex v of
S we have a Voronoi region consisting of al l ver-
tices of G that are closer to v than to any other
element of S. (Ties may be broken a rb i t ra r i l y .)
Also, with each vertex of G we keep the distance
to the closest element of S. Since G may fa i l to
satisfy the triangle inequality, this distance
is the length of the shortest path to an element
of S. I t is not d i f f i cu l t to see that the general-

ized Voronoi diagram can be constructed in O(n 2)
time i f G has n vertices. I f G is sparse, the
Voronoi diagram can be constructed in O(E log n)
time.

We obtain Gi+ l from G i for the hyper-greedy

method using the generalized Voronoi diagram as
follows: Let VG i be the generalized Voronoi dia-

gram of G i relative to Odd i . I t turns out that i f

v E Odd i and w is the closest odd vertex of G i to

v then the Voronoi regions of v and w wi l l be ad-
jacent. That is, there w i l l be an edge in G i con-

necting a vertex in the Voronoi region of v with
a vertex in the Voronoi region of w. Therefore,
by examining a l l edges in G i whose endpoints l ie

in different Voronoi regions, we can find the sets
i

Pi and E i. This requires time proportional to the

number of edges of G i . Finally, constructing
i i

Gi+ l = Gi/E i given G i and E i requires time propor-

tional to the number of edges in G i . Therefore
i

--~ -w --~ G i
each step G i VG i E i i/Ei takes O(n 2) time

and the work per level is O(n 2) for a total of

O(n21og3n). For sparse graphs, O(E(logn) 2)
suf f ices.

The generalized Voronoi diagram also suf-
f ices for the factor of 2 methods with and wi thout
sor t ing, fo r the fo l lowing reason: I f v and w are
odd vert ices of G i then the Voronoi regions of v
and w in VG i w i l l be adjacent unless there is an

odd vertex x of G i such that di(v, x) S di(v, w)

and di(w, x) _< di(v, w). To see this, consider

a shortest path between v and w in G i . I f some

vertex on this path is not in the Voronoi region
of v or w, then this vertex must be in the Voronoi
region of some vertex x as above. Therefore, i f
v and w may be connected by a path of length 2~

or less, then v and x may be connected by such a
path, and x and w may be connected by such a path.
Hence v and w w i l l s t i l l end up in the same com-

i

ponent of G i i f the Voronoi diagram is used to con-
s t ruc t the components.

The number of levels for the factor of two
heur i s t i c is bounded by Flg K] since the edge

length doubles each time. However, the number of
levels may be much less than th i s , and w i l l never
be larger than n. Hence the to ta l work fo r the

factor of two heur i s t i c is O(n21og K) and is never

more than O(n3). Possibly th is heur i s t i c can be
implemented more e f f i c i e n t l y than th i s . For
sparse graphs, O(E logn logK) time suf f ices.

The factor of two heur i s t i c wi th sor t ing
requires the sort ing of edges and paths. Although
there may be many leve ls , whenever two edges or
paths must be compared i t means that there w i l l be
fewer odd vert ices and paths in l a t e r leve ls . The

to ta l sor t ing time is therefore O(n21ogn). The
construct ion of minimum spanning trees can be done
using the UNION-FIND algori thm [13] , which takes
neg l ig ib le time. Since there may be log K leve ls ,
the work to construct generalized Voronoi diagrams

is O(n21og K). The to ta l work is therefore

O(n2(log n + log K)). For sparse graphs,
O(E logn logK) su f f i ces .

The hyper-greedy heur i s t i c wi thout bridges

runs in time O(n 2) since the number of odd vert ices
is a decreasing geometric series. For the fac tor

of two heur i s t i c wi thout bridges, O(n21og K) work
suf f ices since there are up to log K levels . I t
would be in te res t ing to know i f bet ter heur is t ics

ex i s t that run in O(n 2) time. Also, is there a
heur i s t i c wi th a constant worst-case ra t i o that

runs in time O(n21og n)?

BOUNDED EUCLIDEAN REGIONS

Here we w i l l measure the performance of a
heur i s t i c by the absolute cost of the matching
produced in the un i t square. I f we have n points
in the un i t square then no heur i s t i c can do bet-

ter than 7 - ~ v ~ ' : .537rE'in the worst case, since

that is the cost of the optimal matching i f n
points on a l by l hexagonal grid. In fact, we
wi l l be able to come close to this bound.

Avis [2] has analyzed the greedy heuristic
on the unit square. He has shown that a matching

2 V~ ~ 1.07v~, thus found w i l l have cost at mos tT - ~

although the worst known case has cost
3 - ~ i - ~ . v ~ ' : .806~/~" . This performance is poor,

especia l ly considering that the algorithm requires

time proport ional to n21ogn. In the resul ts below
we w i l l improve dramat ical ly on both the cost of
the matching and the time required.

402

Par t i t i on Algorithms

Here we present a class of O(n log n) time
algorithms, each of which operates by pa r t i t i on ing
the region in to subregions and recurs ive ly solving
the smaller matching problems thus obtained. I f a
subregion contains an odd number of points, then
a l l but one are matched and the odd point is then
matched with an odd point in another subregion
(there must be another since there is an even num-
ber of points in t o t a l) .

The f i r s t of these algorithms we consider
is the~ectangle heurist ic, which works as follows.
The unit square is imagined to be enclosed in a
v'2"by l rectangle. I f n > 2 then this rectangle
is sp l i t into two equal-s~zed subrectangles, each
having a /~'to l ratio between the long and the
short sides. The algorithm is performed recur-
sively on each of the two subrectangles. In
general, when called on a rectangle R, the algori-
thm does the following:

i f R contains > 2 input points,
then I. spTit R into two rectangles

R l and R 2 each having a ¢2 to

l ratio between the long and
short sides

2.

3.

4.

perform the algorithm on R 1

perform the algorithm on R 2

i_f R 1 and R 2 each contain an

odd number of input points
then

put the edge (PI ' P2) in

the matching, where Pl is

the input point in R I which

was not matched in step 2,
and P2 is that of R 2 not
matched in step 3.

in the f igure below n = 4:

7

As an example,

/F

1
3~Z

The f i r s t s p l i t was on the heavy so l id l ine . The
l e f t ha l f was then s p l i t along the dotted l ine .
The matching produced is in jagged l i ne .

There is one more deta i l of the algorithm:
the level of recursion is not allowed to go be-

yond ~gn]. More precisely, define a rectangle

to be e i ther the main V~by 1 rectangular
region, or one of two rectangular subregions with
sides having ra t io v'~'to 1 into which a rectangle
may be s p l i t . Also, l e t R(P) denote the subset
of P contained in rectangle R. Furthermore, i f
R is a rectangle, then l e t

level(R) =

I 0, i f R is the main v'~'by 1
rectangle

leve l (R ') + I , otherwise,
where R' is a rectangle
which sp l i t s in to R and
some other rectangle .

The algorithm now is :

i.f_ level(R) ~ Flgnl

then do as described above

else a rb i t ra r i l y match up the input
points in R unt i l 0 or l is l e f t

The reason for th is r es t r i c t i on on the depth of
recursion is that i t enables the algorithm to run
in time O(nlogn). The time is dominated by the
pa r t i t i on ing of the points. Now for each rectangle
R, for each input point p ~ R(P), we can decide
with a s ingle comparison which ha l f of R p l ies in.
Also, for each input point p, we make at most 1 of
these comparisons on each level of recursion, and
hence at most Flgnl such comparisons in total .
Hence the time is O(n log n).

In order to analyze the performance, that
is the worst case cost of the matching produced
by the algori thm, we f i r s t f ind that worst cost
for a rb i t ra ry sets of points in the ,/~'by 1 rectan-
gle. Later, we w i l l use th is resu l t to upper bound
the cost for a set of points a l l in a 1 by 1 square
w i th in the,/ '~'by 1 rectangle.

I f P is a set of points in the v'~'by 1
rectangle, then l e t rcost(P) denote the sum of the
lengths of the edges in the matching produced by
the rectangle algorithm on P. For a l l n > O, l e t
C n = sup{rcost(P): P is a set of n points} . By

"set of points" we mean, here and throughout th is
sect ion, a set of points in the ,/~'by 1 rectangle.
Note that we are not p r imar i l y interested in C for n
odd n; they are defined so as to help analyze C n
for even n. Our f i r s t lemma shows that the res-
t r ic t ion to Flgn] levels of recursion does not af-
fect the C . n

Lemma I : Let n > O, P a set of n points.
Then (V set of points Q~[IQI = n and rcost(Q) >
rcost(P) and no level Flgn! + 1 rectangle contains
L 2 points of Q].

Proof: First , we introduce some notation
used throu~out the analysis. I f P' is a set of
points, and R a rectangle, then let R(P') denote
the set of points of P' within R.

Now i f (V level Flgn] + l rectangle R)
[JR(P) I ~ 1], then we have nothing to prove. So
let R 1 be a level Flgn] + 1 rectangle such that

IRi(P) I ~ 2. Then R2(P) is empty for some level
Flgn] rectangle R2, for otherwise IPI ~ 2Flgn] + l

403

> n (since there are 2 Flgn] level Flgn] rectan-
gles). Our strategy now is to show that the
points of P can be rearranged to produce a set Q
of n points such that rcost(Q) > rcost(P) and
IRi(Q) I = IRI(P) I - 2 and]R2(QT 1 = 2, but other-

wise Q is jus t l ike P, Let PI ' P2 c Ri(P) such
that Pl is matched to P2 by the algorithm. Define

Q to be jus t l ike p except that PI' P2 ~ Q and Q
has points PI' and P2' in opposite corners of R 2.
Thus:

Ri(P):

(there
may be
other
points
also)

l ° p I

R2(P):

Ri(Q):
(there
may be
other
points,
but not
Pl ' P2)

R2(Q):
°i P2'

Pl'

Now i t is easily proved by induction on
i that the dimensions of a level i rectangle are

/E 1
(/~)i by (v~)i • . ' . the length of a long

diagonal in a level i rectangle is (vT) i

. ' . d(Pl, P2) < ~ " <
- (/E) rl gnl-~l (v~) Flgnl

= d(Pl' , p2') .

This "moving" of the two points into R 2 does not

affect the algorithm's matching of the other
points. . . . rcost(Q) > rcost(P). In this manner

we continue to rearrange P until no level Fignl + l
rectangle has >_ 2 points in i t . ~ Lemma I.

From here on, we analyze the algorithm
as i f there were no restrict ion on the depth of
recursion. Lemma l implies that this assumption
does not affect the worst case costs, that is, the
C . n

Our strategy is to define a class of
input sets and then show that these sets are the
worst case for the algorithm. Specifically, we
say that a set of points P is balanced i f for a l l
rectangle R such that IR(P)I ~ 2, R sp l i ts into
rectangles R I , R 2 such that

(i) i f 4 divides IR(P)i then IRi(P)I

LR(P)L = LR(P)L _ 1 and IR2(P)I = + 1 2 2 '

(i i)

(i i i)

i f 4 does not divide IR(P)I then

I f JR(P)1 is even then the point Pl
stranded (i .e . l e f t unmatched) by the
call on R 1 and the point P2 stranded
by R 2 are in opposite corners of R.

Note that we do not require iPI to be
even; we define balanced sets of odd cardinality
in order to help analyze those of even cardinality.
In other words, for a balanced set, each rectangle
R with an even non-zero number of points splits
odd-odd, with the two subrectangles having almost
the same number of points, and the edge produced
at the end of the call on R is along one of R's
diagonals. In tu i t ive ly , one might expect such a
set P to be a worst case for the algorithm. This
is indeed the case, as is proved in the next two
lemmas.

Lemma 2: Let n > 0 be even, and P a
set of n points.- Then (3 set of points Q)[IQ 1 = n
and rcost(Q) ~ rcost(P) and (V rectangle R such
that IR(Q)I ~ l

[l . IR(Q)I even ~ R splits into R l , R 2

such that IRi(Q)I, IR2(Q)I are

odd, and R l and R 2 strand points

of Q in opposite corners of R,

2. IR(Q)I odd ~ R strands a point of
Q In one of i ts own corners,

3. IR(Q)I > 2 ~ the two subrectangles
of R-each contain at least l
point of Q]].

(When we say a rectangle R' "strands" an input
point p we mean that p is within R' and is not
matched by the algorithm to another point in R').

Proof: We wi l l rearrange P (in the manner of
lemma l) so as to satisfy the desired property,
and then wi l l le t Q be this new P.

First we consider al l rectangles R such
that IR(P)i = I. Let R be such a rectangle, and
le t Pi be the point in R(P). Since n is even,

the algorithm must match Pl to some other point
P2 ~ P outside of R. I f Pl is already in a corner

of R, then define P' to be l ike P except that in- n stead of having Pl' P' has point Pl in the corner

of R which is farthest from P2" Thus,

404

R(P): ~ ep2 R(P'): L I . p 2

Pl'

Hence d(p I , p2) < d(Pl ' , p2). Since this "moving"
of Pl to PI' af fects no other matches made by the

algorithm on P, we have rcost(P) < rcos t (P ') , and
iP'~ = IPI = n. Thus, we le t P be P' and continue
~vith • the rearranging.

Having so rearranged, i f necessary, a l l
rectangles containing exact ly 1 point of P, we now
consider those containing 2 points. Let R be such
a rectangle, R(P) = {PI ' P2 }" Since IR(P)I is
even, the arrangement of the points of P within R
does not a f fec t the matching of any points outside
of R. Therefore i f PI ' P2 are not in opposite
corners of R, then "move" them there by le t t i ng P'
be l ike P except that instead of having Pl and P2'

P' has PI' and P2' in opposite corners of R, thus

R(P): eP 2

eP 1

R(P'): L
PI'

Since d(Pl, p2) < d (P l ' , p2 ') , we have rcost(P)
< rcost (P ') , IP'I = IPI', which is what we want;
so le t P = P'.

Now assume we have rearranged al l rec-
tangles R such that IR(P)r S k for some integer
k ~ 2. We w i l l now rearrange each rectangle R
such that IR(P)J = k+l. Let R be such a rectangle.

Case l: k + 1 is odd. Then R splits into rec-
tangles R I, R 2 such that IRi(P) I is odd and
IR2(P) I is even.

Case I . I : IR2(P) I : O. Then IR i (P) IL3 . . ' . R 1

sp l i t s into some rectangles Sl, S 2 such that

rSi(P) I ~ 2. Let PI' P2 be two points in S 1
matched to each other by the algorithm (such
points must ex is t since S 1 strands at most one

point and i f S 1 strands one point then ISi(P) I

3). Now define P' to be exactly l ike P except
that P' has points PI' and P2' in opposite corners
of R 2, and no point at Pl or P2" Thus,

R l R 2 R l R 2

R(P): S2 R(P'): S2 P2

Pl Pl '

Moving Pl and P2 out of S 1 does not a f fec t the
matching of the other points in R I. Also,

d(P I , P2) < d (p] ' , p2') . . ' . rcost(P) < rcost(P')

and IPI = ~P'I~h~ ~ le t P = P' and continue to
is , rearrange IRi(P)I is now < k+l.

o'. rearrange Ri, and then rearrange R, using
case 1.2 below. (This procedure terminates since
IRi(P)I < IR(P)I).

Case 1.2: IR2(P) J > O. Then IRi(P) I , IR2(P) I <

k+l and hence both R l and R 2 have already been

rearranged. In particular, R l strands a point Pl

in a corner of R I. The algorithm matches Pl to

some point P2 outside of R. I f Pl is already in

a corner of R, then we have nothing to rearrange.
So assume Pl is not in a corner of R. Thus, e.g.

R l R 2

R(P): Pl [eP2

Now let P' be like P except that the points in R l

has been rotated and perhaps swapped with those
in R 2 so that Pl is now in an extreme corner from

P2" Thus
R l R 2

R(P') : I eP2

i

PI'

This rotat ing and swapping has no e f fec t on the
cost of the matching of the points in R(P) other
than PI" . . rcost(P) < rcost (P ') , and since

IP'I = I Pr, let P = P' and continue with the
rearrangl ng.

Case 2: k + 1 is even. Let R I, R 2 be the sub-

rectangles of R, and assume, without loss of
generality, that IRl(P) i L IR2(P)I.

Case 2.l: IR2(P) I = 0. Then proceed exactly as
in Case l . l .

Case 2.2: IR2(P) I > O. Then IRl(P) I, JR2(P) I <

k+l. . ' . R l and R 2 have already been rearranged.
Since IR(P) I = IRl(P) J + JR2(P) I is even, we have
two cases:

Case 2.2.1: IRi(P) I, IR2(P) I are both even. This
is the most interesting of all the cases, since i t
is the only one which depends on the shape of our
rectangles. Since Rl, R 2 already satisfy the de-
sired properties, we have the following situation:

405

R 1 R 2

Pl P3

That i s , R is a rectangle of s ize a/~ 'by a, fo r
some a > O. R I , a subrectangle o f R, matches

points Pl and P2 in opposi te corners o f R I . R 2

s i m i l a r l y matches P3 and P4 in i t s opposi te cor-

ners. S 2 is the even subrectangle of the subrec-

tangle o f R 1 which strands P2" S 1 is the odd

subrectangle of the subrectangle o f R 2 which

strands P3" (We say a rectangle R' is even i f

IR'(P)I is even, otherwise i t is od.__d).

Now l e t P' be l i k e P except that the
points in S 1 have been swapped wi th those in $2:

R(P'):

Hence, rcost(P)

some c ~ O, and

+ c. Now d(p I ,

J(~_)2 + a2

~a 2 + (a/~ 2

. ' . rcost(P) =

= a/3"+ ~ - + c = r cos t (P ') .

Hence, since IP' I = IPI , we have what we want, so
l e t P = P' and continue to rearrange.

R 1 R 2

a

Pl

= d(p l , p2) + d(p 3, p4) + c fo r

r c o s t (P ') = d(p 1, p4) + d(p 2, p 3 ')

P2) = d(P3' P4) =

= a/3" Also, d(Pl p4) = 2

= a/ciT and d(p 2, p3') =

aV~-

2

2(a ~) + c = a/~-+ c < a ~ + c

Case 2.2.2: IRi(P)I, IR2(P) I are both odd. Since

IR i (P) I , IR2(P) I < k+l , we already have that R 1

strands a po in t Pl in one o f i t s corners, and R 2

strands a po in t P2 in one o f i t s corners. I f Pl

and P2 are not in opposi te corners o f R, then the

appropr ia te ro ta t i ons of Ri(P) and R2(P) w i l l pro-

duce a set P' of cost greater than that o f P.

Thus, we cont inue to rearrange P, un t i l we have
rearranged the main, leve l O, rectangle . Then l e t
Q be th is f i n a l arrangement. Q s a t i s f i e s the
proper t ies stated in the lemma. QED Lemma 2

The set Q constructed from P in Lemma 1 has
some of the proper t ies of a balanced set , but not
a l l . The next lemma rearranges th is Q so as to be
balanced, w i thou t changing rcost(Q). This com-
pletes the claim that balanced sets cons t i t u te a
worst case fo r the a lgor i thm.

Lemma 3: Let n > 0 be even, P a set o f
n po ints . Then (3 set of po in ts Q i) [IQ i I = n and

rcost (Ql) ~ rcost(P) and Q1 is balanced].

Proof: Let Q be a set s a t i s f y i n g the
proper t ies stated in Lemma 2. We w i l l rearrange
Q to a new set Q1 such tha t (V rectangle R) [i f R I ,

R 2 are the 2 subrectangles of R then I IR i (Q i) I -

IR2(Qi) I I ! 2]. Furthermore, Q1 w i l l s t i l l have

the property of Lemma 2 tha t even, non-empty rec-
tangles s p l i t odd-odd stranding points in opposi te
corners. Together, these proper t ies imply that Q1

is balanced.

F i r s t , note tha t a l l rectangles R such
that IR(Q)I = l or 2 are already balanced, and
hence need no rearranging.

Assume we have balanced a l l rectangles R
such that IR(Q)I S k fo r some in teger k. Let R be
a rectangle such tha t IR(Q) I = k+l . Let R I , R 2 be

the subrectangles o f R, and S I , T 1 the subrectan-

gles o f R i , and S 2, T 2 the subrectangles o f R 2.

Say that a rectangle R' is even i f IR'(Q)I is even,
otherwise R' is odd.

Case I:

choice about Q.

thus

R is even. Then Rl, R 2 are odd, by our

Assume WLOG that T l , S 2 are odd,

R(Q):

R l R 2

I "1 . _ S l _ _ $2

• Tl T 2

Then swap Si(Q) with T2(Q), to get, in the notation
of Lemma 2,

R(Q'):

R 1 R 2

! "t T 2 S 2
- - m

• Tl S l

Since IRi(Q) I, IR2(Q) I ~ k, we have that R l , R 2
were balanced before this swap. Therefore, lett ing
s 1 = IS i (Q) I , s 2 : IS2(Q) I, t l = ITi(Q) I,

t 2 = IT2(Q) I , we have tha t ISl - t l l = 1 and

Js 2 - t21 = 1.

. ' . IIRi(Q')I- IR2(Q')I I :

406

I (t l + t 2) - (s I + s2) I ~ 2, which is what
we want. Now th is swapping o f Si(Q) wi th T2(Q)

may have made R l or R 2 (or both) unbalanced.

. ' . we now rearrange R l and R 2 (th is procedure

terminates since IRI (Q') I , IR2(Q,)I < IR(Q,) I) .

Thus R is now balanced, so we l e t Q = Q' and con-
t inue to rearrange other rectangles.

Case 2: R is odd. Assume, WLOG, R l is even and

R 2 is odd. Define s l , s2, t l , t 2 as in Case I .

By the choice of Q, IRi(Q) j > 0 and hence IRI(Q) j ,

IR2(Q) I ~ k. . ' . s l , t I are odd. Assume WLOG,

s 2 is odd and s I ~ t l , thus

R 1 R 2

Case 2.1: s 2 ~ t 2.

have s 2 = t 2 + I .

get Q', thus

Then since R 2 is balanced, we

Then swap Si(Q) wi th S2(Q) to

R 1 R 2

I I S 2 T 2
R(Q'):

T1 • S1

Note that we also may need to ro ta te S2(Q) so that

i t s stranded po in t is opposi te that o f T I . Since

0 ~ s I - t I ~ 2, we have IJRi(Q') I - IR2(Q') I I

= J(s 2 + t I) - (s I + t2) I = I(s2 - t2) + (t I - Sl) I
= { 1 + (t I - S l) l S I , which is what we want.

Case 2.2: s 2 < t 2. Then s 2 = t 2 - I . Swap Ti(Q)

with S2(Q) to get Q', thus (a f t e r possib ly r o t a t -

R 1 R 2

I" t R(Q'): Sl T2

S2 • Tl

ing)

Now I IR i (Q ') I - JR2(Q')II = I(Sl + s 2) - (t I + t2) I

= l(s2 - t 2) + (s I t l) I = I - I + (s I - t l) I ! I ,
as desired.

Thus l e t Q = Q', and a f t e r re-balancing R 1 and R 2

i f necessary , continue to rearrange other rectan-

F i n a l l y , a f t e r balancing the main, level

O, rectangle , l e t Ql be th is new Q, and we are

done. Note that the rearrangement can change nei -
ther the cost o f the set , nor the assumed proper-
t ies o f Q. QED Lemma 3

Thus the balanced sets cons t i tu te the
worst case fo r the a lgor i thm; that i s , f o r a l l even
n ~ O, C n = rcost (P) , where IPI = n and P is

balanced. We now analyze the C .
n

v~
C O = C 1 = O, C 2 = ,/~, C 3 = ~7~ • A balanced

set o f 4n points s p l i t s in to two balanced sets-
one wi th 2n + 1 po in ts , and one wi th 2n - 1
points - and matches 2 points in i t s opposi te
corners.

Thus vn ~ I , C4n = ~ (C2n+l + C2n_l) + /~'. The

f a c t o r ~ i s to scale down the cost from the

by 1 region to the 1 by ~ r e g i o n . More precise-

l y , the length o f a longest edge on leve l i + 1 is

= 1 ~ r l
- -~+ l - - (V ~) = - - (the length o f a longest

vTZ vT
edge on level i) .

S i m i l a r l y , Vn > 1

1
C4n + 1 = 72"(C2n + 1 + C2n)'

an6 Vn ~ O,

1
C4n + 2 = 7~'(C?n + 1 + C2n +I) + ~ '

l +)
C4n + 3 = ~ (C2n + 2 C2n + l

l For no ta t iona l convenience, l e t m = ~ , and

D n = ~ C n Vn ~ 0 . Then i t can be shown by induc-

t ion on i that fo r a l l i ~ l , Di+ l - Di_ l

= ~Flg(¼i)l

We were not able to solve fo r each C n

exact ly . We can however, put a ra ther t i g h t upper
bound on the C n. Our s t ra tegy is to def ine a spe-

c ia l class of n and then solve (to w i t h i n an O(~n)

term) fo r C fo r n in th is c lass. Then we w i l l n
show that th is func t ion o f n uppers bounds C fo r n
a l l n.

Given an in teger r ~ 0 , we say that a set
P is f u l l to leve l r i f

(i) P is balanced
(i i) (V r e c t a n g l e R)

_ -] ~ I R (P) I >0 [I . leve l (R) < r
2. leve l (R) ~ r ~ I R(P) I ~ I] .

, and

Note that th is d e f i n i t i o n impl ies that every level
r rectangle has 0 or 1 points o f P in i t , and
every level r - 1 rectangle has 1 or 2 points of P
in i t .

407

We say that an integer n is fu l l to level
r i f there exists a set P such t h a t - ~ T ~ n and P
Ts fu l l to level r. We now show that (Vr > O)
(3n ~0) [n, n + l are both fu l l to level r-]. Now
le t r > 0 and assume that n and n + l are both
fu l l to level r. Then 3 sets Pn' Pn+l such that

JPnJ = n, IPn+ll = n + 1 and Pn and Pn+l are both

fu l l to level r. Now we construct two sets both
fu l l to level r + I :

Case l : n is even. Then le t P2n + l be the set

consisting of Pn in i ts l e f t subrectangle, and

Pn+l in i ts r ight subrectangle:

Pn Pn+l

Also, l e t P2n + 2 be the set consisting of Pn+l

as i ts l e f t subrectangle and Pn+l as i ts r ight

subrectangle. Then both P2n + l and P2n + 2 are

fu l l to level r + I .

Case 2: n is odd. Then le t P2n be the set with

subrectangles consisting of Pn and Pn" Also, le t

P2n + l be the set with subrectangles consisting

of Pn and Pn+l" Then P2n' P2n + l are both

fu l l to level r + I .

Thus O, l are fu l l to level O, and i f ,
+ l are fu l l to level r then ~ even ~ 2~ + l ,

2~ + 2 are fu l l to level r + l , and c odd ~ 2c,
2~ + l are fu l l to level r + I . Thus the sequence
(O,l, 1,2, 2,3, 5,6, l O , l l , 21,22) consists
of numbers fu l l to some level . In fact, i t is
easily proved by induction that this sequence con-
tains a l l numbers fu l l to some level . Call the
sequence the fu l l numbers. Incidental ly, i t is
also easy to show that i f P is a balanced set,
then (P is fu l l to some level) ~=~ iV rectangle R
such that JR(P) J > 0)[4 does not divide IR(P) I].

Now le t r > 0 and P a set fu l l to level
r, such that IP 1 = n-is even. We wish to relate
n and r. For a l l i > O, l e t E i = l{rectangle R:

level (R) = i and IR(P) I is even and > 2} I. Sim-
i l a r l y , le t O< = I{rectangle R: leveT (R) = i and
IR(P) I is odd~ I. Since n is even, we have that
E 0 = l , 00 = O. Since P is balanced, we have that

each non-empty even rectangle spl i ts odd-odd, and
(of course) each odd rectangle sp l i ts odd-even.
Thus,

V l < i < r - l , 0 i = Oi_ I + 2Ei_ l ,

E i = Oi_ l ,
Also, since P is fu l l to level r, we have E i = 0

V i > r. Also note that V O < i < r - l , 0 i + E i =

2 i since there are a total of 2 i level i rectangles.
2 i The solution to this recurrance is 0 i = ~(2 - (- l) i)

for 0 < i < r - l , and

=/-~(2i-l-('1)i'l)'~p'o for 0 < i < r- I
E i

L O , for i > r .

Now since P is balanced, we can associate with
each even, non-empty rectangle R a pair {pl,P2 } c P

such that Pl and P2 are in opposite corners of R

and are matched to each other by the algorithm.
n These ~-pairs form a par t i t ion of P.

r-1 2 [r 1~) i - l)
. ' . n = z 2.E i = ~ (2 i - I - (- I]

i =0 i =0
2 r+ l 2 ~ , r+ l

- 3 + ~(-l) .

2 r+ l 2, . . r + l
Def ine , f o r a l l r > 0, b r = T - + ~ - I) .

Then, as j u s t shown, the sequence (b0,b l , b 2) =
(0 , 2 , 2 , 6 , 1 0 , 2 2 , 4 2 ) cons i s t s of a l l even f u l l

numbers. Also f o r a l l r > 0, l e t w : I 2r+l I •
- . r L 3 _I

The sequence (Wo,Wl,W 2) = (0 , I , 2 , 6 , I 0 , 2 1 , . .)

arises in connection with merge insert ion {Knuth
[8] , p. 187) and with an algorithm for f inding the
greatest common divisor of two integers (Knuth [7] ,
exercise 4.5.2 - 2.7). Knuth points out that i t is
curious that this sequence arises in such d i f ferent
settings. We now add to this l i s t of cur iosi t ies
by observing that

- - - -~= b r, i f r even

Wr 12 r+l 1
L T - -~ b r - l , i f r odd.

Thus, w r is the smaller of the two numbers fu l l to

Ievel r.
Now f i x some r > O, and some P f u l l to

level r such that IPI is even (i . e . , IPI = n = br).

Ne analyze rcost(P), that is Cbr.

r - l
rcost(P) = ~ Ei.(length of a long diagonal of a

i=O

level i rectangle)

r-1 ~2(2i-I) i - l) v T
z - (- I •

i :o (~ i

: 7 T (1 + + /~ '- ,/~"

~ " 1 r
+Zf(2 - 2 ~)(- ~ZZ) .

2r+l
Now n = T + 32- (- l) r + l "

. ' . r = Ig(23--n) + 0(~) (Using the Tay lo r expansion).

408

Also, (_ ~) r : (_ ~7~ : 0

• ". C n : rcos t (P) : (I + ~) ~ + V3 r - /6-+ 0(~n).

Thus we know (up to an 0(~n) term) C n f o r

an i n f i n i t e class o f even n. Now we consider the
o ther even values o f n. Fix some t > 0. We wish

to upper bound C2t. Recall D2t = ~ C 2 t . Let 2m

be the l a r g e s t i n tege r such tha t 2m < 2t and
2m = b k f o r some k > 0. Then we can-wr i te D2t as

D2m + i~odIDi+l - Di_ l) •

2m+l <i <2t- l
Recall that this implies

D2 t : D2 m + ~ J i g (i) l
iodd

2m+l <i <2t - I
Now as formulas i17) and (-18) o f Knuth [8] ,

p. 187, imply tha t (Vw k < i < W k + l) [F l g (# i) l = k] .

. ' . in p a r t i c u l a r , r l g (¼ i) l = k V odd i such

tha t w k < 2m < 2m+l < i < 2 t - I < 2t < Wk+ I .

. ' . z Jlg(~n)l = (t - m)~ k.
i odd
2m+l <i<2t-l

Next we express K in terms of m. Note that k is
even ~ w k is even. ." i f k is even then

2 k+l 2 and hence k = Ig(3m + l) . w k = 2m = - T - -
2 k+l 1

I f k is odd then w k = 2m-I = - T - - 3 and hence

k = I g (3 m - I) . Thus

D2t = D2m + (t-m)c~ k = D2m + (t-m)(~) k

<_ D2m + (t - m) (~ Ig(3m-l)

l C t-m
= ~ - 2m + ~ _ . r

: ~ T [i l + ~) / 2 ~ + v3"- v~'+ 0(~m)]
t-m + ~ - I "

: ~ + l)V~'+ l - ,~ '+ o(+ 7~ - I ' "

Lemma 4: (/ E + I) / ~ + l - / ~ + 0i +

< + - 0i >

Proof: Let d = ~vr~ '+ l) . Since 2m <_ 2t < bk+ l

< 4m+l, we have that O(~m) = O(~). .'o we need

t-m show only that d,/~" + ~ <_ d/~', i .e. that

t-m dye'- dv'~'+ ~ > _ O. Let 2r be the least even

fu l l number > 2t. ." m < t < r. Define the

Function f : [m, r] + ~ by f (y) = d~y - d / m - ~ - .

d2(3m-l) Furthermore Then f ' (y) = 0 ~ y = 4

f " (y) < 0 V m ~ y ~ r . . . f is minimized in the
range [m, r] a t m or a t r . Now by the d e f i n i t i o n s
of m and r , t = m~=~t = r . " (V m ~ y ± r)

[f (y) _> f(m) = d ~ ' - d /~ - ~m-m = O]. ~._ED_Lemma

4

By Lemma 4, D2t ~ (l + V~')/~'+ l - ~2-+ O (~ .

An argument similar to the above ibut using
k = Ig(3m + l) instead of Igi3m - l) shows that

+ 2 nT + n ' - o i l) : C2 t
1 . 6 8 v ' ~ - .717 - o (1) . We s ta te the upper bound
as

Theorem l : Let n > 0 be even, and P be a set of n
po in ts in the v~ 'by 1 rec tang le . Then rcost (P)

il O(n) : 1707 -717 +

O(~n). Furthermore, this bound is asymptotically

achievable (in part icular, when n = b k for some
k > 0) .

So far we have considered the performance
of the rectangle algorithm on points in the /~'by
l rectangle. However, the fixed region matching
problem is usually considered on the l by l square.
Therefore we now adapt the rectangle algorithm
to the unit square as follows. Given a set of n
points P in the unit square (i .e . for al l ix , y)~P,
0 < x < l , O < y < l) , we perform the rectangle
algorithm treating P as a set in the rectangle
defined by [0, v~] x [0, l] , as shown below:

II
v~

. L - ~ I

l

The unit square is shown in solid l ine; the /~'by
l rectangle is in dotted. We now upper bound
rcostiP).

For the analysis, choose some even integer
k > O. Let r be the least integer such that

- ~ l = /~k. r • ~ ~ 1. Let s = __ T - Note that

each level k rectangle has vertical length l ~k V~
and horizontal length ~k- ' since k is even (the

proof is a simple induction on k). Therefore the
unit square, and hence P, l ies within the leftmost
set of r.s level k rectangles:

409

S . - ~ 1

\

Let d : r •

Y

~Z
r . ~ - > I

VT v~ k . Our strategy is to upper bound

the cost of the rectangle algor i thm on an a r b i t r a r y
set in the d by 1 rectangle• Since d > I , th is
bound w i l l also upper bound rcost (P) .

So l e t Q be a set of points in the d by 1
k-I

region, n = IQI- Let rcostk(Q) : rcost(Q) -
i=O

(sum of lengths of a l l edges produced at the

i th level of recursion by the algor i thm on Q).

Since there are 2 i level i rectangles, and since

the length of an edge produced at the i t-~ leve l •

is at most . ~ , we have that rcostk(Q) ~ rcost(Q)

k-I 2i ~/~ • = rcost(Q) - o (~ k) .
i=O /~-i

. ' . rcost(Q) _< rcostk(Q) + O(v~k). We now upper

bound rcostk(Q), which is the sum of the lengths

of the edges produced at leve ls > k. There are
rs leve l k rectangles which compose the d by 1
region containing Q. Call these rectangles Rj,

1 < j < rs. Let t = rs. For a l l 1 < j < t , l e t

nj = IRj(Q) I. By theorem I , for a l l 1 < j < t ,

the sum of the lengths of the edges produced

wi th in Rj is - < ~ 2 Cnj - ~ [(I + +

- ~ ' + O(n~<)] . (The fac tor is to scale the
J

cost down to leve l k) .
t

. . rcostk(Q) < ~ ~ [(I + ~)/~; + /3"- /6"
j=l

1 + o(-~.)]
3
t

= ~ (I + ~ ~ n~. + O(t)
j= l J

1 1 t - I

+ O(t).

Define the funct ion f : ~ t - I ÷ ~ by
t - I ~ t - I

= ~ x ~ - n - ~ xj f (x l ' x2 Xt - l) j= l j=l

Taking part ia l derivatives shows that f is maxi-
t - l n

mized at x I = x 2 = . . . = xt_ l = n - ~ xj = -
j=l t "

. ' . rcostk(Q) < _ ~ (I + ~ .) t ~ + O(t)

v~ k (I +) r ~ V~'+ O(rs)

1 Jdv~ k v~k / ~ + 0(2 k)

i~Z)~ o :~2-(I + + (2 k)

• rcost(Q) < rcostk(Q) + 0 (~ k) = v~" ~ + o(2k).

By the def in i t ion of d, we have that d ÷ l as
k ÷ - . Thus, for a l l E > O, we have

rcost(Q) <_ (l + E) ~ (l + ~ , / ~ ' + O(1)

= (l + ~)I•436/~ + 0 (I) .

For example, we can take k = I0 and hence r = 23,

23 ~ s = 32, d = ~ 2 - ~ l .Ol6, and therefore

rcost(Q) ~ 2~2 (I + ~) ~ n + 0 (I)

= 1.447~n + 0 (I) .

In order to show the t ightness of th is
bound, we again choose some even k > O, but th is
time l e t r be the greatest in teger such that

r " ~2~ S I . Then l e t d • ~--[~ I , and s =

as before. Construct a set Q' in the d by 1 re-
gion, so that each of the rs level k rectangles in

that region contains a balanced r ~ p o i n t set. We

choose n = IQ'I so that n = b~ for some i , thus

making C.n_asymptotic to (I"~ + ~) I r ~ • A s imi lar

rs
analysis to the above shows that rcost(Q')

¢/~.(IV~'' +--~)~/~- 0(2 k). Hence (V~ > 0)(3 set Q'

l in the un i t square) [rcost (Q') ~ (I - ~) ~7..~,
VL

(I + ~ v ~ ' - 0 (I) z (I - e) 1.436V~- 0 (I)] .

The reader may wonder why we did not simply
choose some k such that the 1 by 1 square can be
exact ly tesse l la ted by level k rectangles (i . e .
we would have d = I) . Unfor tunate ly , as is eas i l y
shown, no such k ex i s t s .

1 (I + ~) In summary, 1.436 :

= i n f { x : fo r a l l n-point sets P in the un i t square,
rcost(P) ~ xv~ + 0 (~ , where i n f denotes the
greatest Tower bound.

410

A square can be pa r t i t i oned in to two 45
45 ~ 90 n t r i ang les . Also, a 45"' - 45 ~ • 9C
t r i a n g l e can be pa r t i t i oned in to two 45 ° - 45 ° -
90 ° subtr iangles of equal s ize. This suggests a
second p a r t i t i o n a lgor i thm, which we ca l l the
t r i a n g l e a lgor i thm: given a set P of n points in
the un i t square, do exact ly as the rectangle a lgo-
r i thm, except that when a region is s p l i t , i t is
s p l i t i n to two equal sized 45 ° - 45 ° - 90 ° t r i a n -
gles. An example in which n = 4 is shown below.

Here the f i r s t s p l i t is along the main d iagonal ;
the second s p l i t is shown in dotted l i ne . The
matching produced is in jagged l i n e .

In analogy to the previous sect ion, def ine
a t r i a l to be e i t he r (i) one of the two main
45 ° - 45 ° - 90 ° t r i ang les wi th hypoteneuse ~ ,
in to which the square is s p l i t , or (i i) one of the
two 45 ° - 45 ° - 90 ° subtr iangles in to which a
t r i a n g l e may be s p l i t . Furthermore, i f T is a
t r i a n g l e , then l e t

leve l (T) = I

O, i f T is a main t r i ang le
(o f hypoteneuse length v~)

level (T') + I , otherwise,
where T' is the t r i a n g l e
which s p l i t s in to T and
some other t r i a n g l e .

Note that the level of a t r i a n g l e is 1 less
than the level o f recursion on which the t r i a n g l e
l i es (in contrast to the level o f a rectangle in
the previous sect ion, which equals the level of
recursion on which i t l i e s) . We def ine level in
th is way because our s t ra tegy is to analyze the
worst case cost of points in a main t r i a n g l e , and
then use that r esu l t to analyze the worst case
cost fo r points in the un i t square.

I f P is a set of points in the un i t square,
then l e t tcost(P) = the sum of the lengths of the
edges in the matching produced by the t r i a n g l e
a lgor i thm on P. For a l l n ~ 0 , l e t E n =

sup{tcost(P) : P is a set of n points in a main t r i -
angle o f the un i t square}, and l e t F n =

sup{tcost(P) : P is a set of n points in the un i t
square}. As mentioned above, we w i l l f i r s t
analyze the E n and then use that resu l t to analyze

the F n .

F i r s t note that we can r e s t r i c t the leve ls
of recursion to at most r l gn l and so enable the
a lgor i thm to run in time O(n log n), as fo r the
rectangle a lgor i thm. This r e s t r i c t i o n does not
a f f ec t the worst case cost, as can be proved by
an argument jus t l i ke lemma I .

Fro:~ here ~r th e end o f the a n a l ~ i ~ o ~ the
En, l e t "set of po in ts" denote a set of points in

a main t r i a n g l e (i . e . of hypoteneuse length V~).
I f T is a t r i a n g l e , P a set of po in ts , then l e t
T(P) denote the set of points o f P contained in T.
Define the property balanced exact ly as in rectan-
gle a lgor i thm's ana lys ls , except subs t i t u t i ng the
word " t r i a n g l e " fo r " rec tang le " , and understanding
the "opposi te corners" o f a t r i a n g l e to mean i t s
two 45 ° corners. In analogy to the rectangle re-
su l t s , we now show the balanced sets to be the
worst case fo r the t r i a n g l e a lgor i thm.

Lemma 2 ' : Let n > 0 be even, and P a set of n
points . Then (3 Yet o f points Q)[IQI = n and
tcost(Q) > tcsot(P) and (V t r i a n g l e T such that
T(Q) > I) -

- [I . IT(Q)I even ~ T s p l i t s i n to T I , T 2

such that ITi(Q) I , IT2(Q) I are odd, and

T 1 and T 2 each strand a po in t of Q in a

45 ° corner of T,

2. IT(Q) I odd ~ T strands a po in t of Q in
one of i t s own 45 ° corners,

3. IT(Q) I ~ 2 = the two subtr iangles o f
T each contain at least 1 po in t o f Q]].

Proof: Another rearranging argument, very s i m i l a r
to that of lemma 2. Say a t r i a n g l e T is even i f
IT(P) I is even otherwise T is odd. The rearrang-
ing argument fo r t r i ang les is s l i g h t l y more com-
p l i ca ted than that f o r rectangles, since the
fa r thes t par t of an odd t r i a n g l e from some po in t
may be a 90 ° corner ra ther than a 45 ° corner. To
handle th is s i t u a t i o n , we make use o f the fo l l ow ing
terms: i f a t r i a n g l e T s p l i t s in to subtr iangles
T 1 and T 2, then we say that T is the fa the r of T 1

and T 2, and that T 1 and T 2 are brothers.

F i r s t we rearrange a l l t r i ang les T such
that IT(P)I = I . Let T be such a t r i a n g l e , and
Pl the po in t in T. Let T b be the brother o f T,

and Tf the fa the r (T b and Tf must ex i s t since n

is even and T is odd). Let P2 be the po in t match-

ed to Pl by the a lgor i thm. Let A denote the corner

of T which is f a r t hes t from P2"

Case I : A is a 45 ° corner o f T. Then simply
"move" Pl to A, w i thout decreasing the cost:

T(P):

A

P2
T(P')." , ~

A P1

P2

(We w i l l not e x p l i c i t l y def ine P' in th is proof
as we did in the proof of Ic~ma 2. I t should be
c lear by now how we "move" po in ts .)

411

Case 2: A is a 90 ° corner of T. Then the far thest
part of Tf from P2 must be some 45 ° corner B of

Tf.

T f (p i ~ T

D T b p~ T

P2
T b

Thus move Pl to a 45 ° corner of T and then swap T

with T b. This does not a f fect any other matches

since T b is even.

For t r iangles T such that IT(P) I = 2, merely
note that the arrangement

gives the greatest cost.

Now assume we have rearranged a l l t r iangles
T such that JT(P) I < K for some K > ~ Let T be a
t r iang le such that TT(P) I = K + I . - et T I , T 2 be
the subtriangles of T, T b the brother of T, and

Tf the father of T.

Case I : K + 1 is odd. Assume WLOG that T 1 is

odd, T 2 even.

Case I . I : IT2(P)I : O. Handle th is jus t as in the

proof of Lemma 2; namely, move 2 points out of the
corners of Tl 'S even subtriangle into T2's cor-

ers.

Case 1.2: IT2(P)I > 0. T strands some point PI'

which is matched to some point ~ outside of T.
Let A be the corner of T which farthest from P2"

Since ITi(P) I ! K, Pl is already in a 45 ° corner

of T 1 .

Case 1.2.1: A is a 45 ° corner of T. Then i f Pl

is not already in A, then rotate T 1 and then swap

T 1 with T 2 (i f necessary) to put Pl in A, e.g.

T(P):

T 2

P2

T(P'): A ~ T2 °P2

Case 1.2.2: A is a 90 ° corner of T. Then the
far thest part of Tf from P2 is some 45 ° corner B

of Tf.

Tf(P):
P2

B ~ p l T

T b
Note that B is also a 45 ° corner of T b. Therefore

swap T b with T and rearrange T using Case 1.2.1.

(This affects no matchings of points other than
Pl and P2' since T b is even. We know that T b

is even since P2 ~ Tb(P)' which we know since the

far thest corner from any point in T b must be a

45 ° corner of T).

Case 2: K + 1 is even. Assume WLOG that {Ti(P) 1

IT2(R) I.

Case 2.1: IT2(P) I : O. Then proceed as in Case

1 . 1 .

Case 2.2: IT2(P)I >0. Then both T 1 and T 2 both

have already been rearranged.

Case 2.2.1: ITi(P) I ,]T2(P)I both even. Thus,

T(P):

Pl k. P~
v

h

That i s , T is a t r iang le of hypoteneuse length h
for some h > O. T 1 matches points Pl and P2 in

i t s opposite corners. T 2 matches points P3 and P4

in i t s opposite corners. S 2 is the even subtr ian-

gle of T 1 which strands P2" S 1 is the odd sub-

t r iang le of the subtriangle of T 2 which strands P3"

Now l e t P' be l i ke P except that the poir, ts
in S 1 have been swapped with those in $2:

T(P') :

J

Pl P3 P4

412

Hence tcost(P) = d(P l , p2) + d(P3, p4) + c fo r

some c > O, and t cos t (P ') = d(Pl , p4) + d(P2, p3')
+ C.

Now d(p I , p2) = d(P3, p4) = ~2' d (P l ' P4) = h,
h ". tcost(P) = hv~-+ c < ~h + c d(P 2, P3') = ~ • .

= t c o s t (P ') , as desired; so l e t P = P' , and
cont inue.

Case 2.2.2: I T i (P) I , I T 2 (P) I both odd. Then T 1

strands a po in t Pl in one of i t s 45 ° corners, and

T 2 strands a po in t P2 in one of i t s 45 ° corners.

I f Pl and P2 are not both in 45 ° corners of T,

then ro ta te T 1 or T 2 or both to put them there.

F i n a l l y , l e t Q be th is rearranged version of P.
Q s a t i s f i e s the proper t ies stated in the Lemma.
QED Lemma 2'

Lemma 3 ' : Let n > 0 be even, P a set of n po in ts .
Then ~Tse t of poTnts Q)[IQI = n and tcost(Q) >
tcost(P) and Q is balanced]. The proof is i d e n t i -
cal to tha t f o r Lemma 3, s u b s t i t u t i n g " t r i a n g l e "
fo r " rec tang le" .

Thus (V even n > O)[E n = t cos t (P) , where P

is a balanced n po in t se t] . The length of a level

i ~-#2" 7~.(/T~ i hypoteneuse s =) = ¢~ (length of a

diagonal in a level i rectangle). ." for a l l

even n 3_0, En = ~ C n < ~ [(I + ~) / ~ + /~ r - /~"

+ O(~n)]. Note tha t f o r a l l odd n > O, E n < En_ I ,
To see t h i s , l e t P be a set of po in ts , IPI = n be
odd. Then there is some Pl ~ P such tha t Pl is

not matched to any other po in t by the a lgor i thm.
Then tcost(P) = t c o s t (P - { p l }) , and hence

E n ! E n _ I . . ' . f o r a l l n > O, En < ~ (I + ~) ~ 6 "
+ o(1).

Now we analyze the F n, which are our pr i -

mary interest . Let P be a set of points in the
uni t square. The square is s p l i t into two main
t r iangles, one with m points and one with n-m
points, for some 0 < m < n. . . tcost(P) <

max {E m + + / 2 "< 1 + O<m<n En-m} om<~<Xn{ "

(/~ + /~:~')} + 0 (I) .

Treating d~'+ ~ as a real function of m and
d i f fe ren t ia t ing shows that v~+ ~ is maximized

= n " tcost(P) < ~ (I + ~ 2 ~ + a t m 2 " " "

O(1) : ~ (l + ~) V ~ ' + O(1). Thus for a l l n >_0,

F n < ~ r (l +]J~),/~+ O(1) : 1.97/~'+ O(1). This

bound is asymptotically achievable, since i f
n = 2b r for some r >_ O, then we can construct a

set P such that the unit square sp l i ts into T~,
T 2 such that T l(P) and T2(P) are both balancea b r

point sets. . . as shown in the previous section,

C b
since 7~ =÷ (l + , , ~ as r -~ ~, we have that

r

t c ° s t ~ ÷ ~ (I + v n ~) as n ÷o~.

Our t h i r d p a r t i t i o n i n g method, the
Square-Rectanqle Alqor i thm, works j u s t l i k e the
rectangle or t r i ang le h e u r i s t i c s , except tha t
the regions are pa r t i t i oned as fo l lows . We s t a r t
o f f w i th n points in the un i t square. The square

is s p l i t v e r t i c a l l y in to two 1 by rectangles.
1 Thesel rectangles are then each s p l i t i n to two

by ~ squares. (As in the l as t two a lgor i thms, we

do th i s s p l i t t i n g only i f the region has > 2

points in i t and is at or below the [I g n l tn level
of recurs ion, count ing the un i t square as leve l
0.) In general , each square is s p l i t v e r t i c a l l y
in to two rectangles of r a t i o 2 to 1 between the
ve r t i ca l and hor izon ta l s ides; and each rectangle
is s p l i t i n to two squares.

We do not yet know how to put a t i g h t upper
bound on the cost of the matching produced by th i s
a lgor i thm. A very crude upper bound can be derived
by assuming tha t each region (square or rectangular)
matches two points in i t s opposite corners, thus

cost < Z 2 i v~" + Z 2 i /~
- - " " ~ T O<i<lgn+l /~ l O<i<Ign+l

i even i odd

< (v ~ + ~) / ~ ' + 0 (I) = 7 . 3 0 / ~ + O(i) .

Cer ta in ly the least upper bound is much lower than
t h i s ; we merel~, wanted to show the cost to be
bounded by O(¢n}. Below we const ruct an example

in which the cost is asymptotic to ~ / ~ .

Let P be a set o f points in the un i t square
such tha t each even square s p l i t s in to two even
rectangles, and each even rectangle R s p l i t s in to
odd squares S I , S 2 such tha t S 1 and S 2 strands

points in opposite corners of R. A region is even
i f i t contains an even number o f points of P,
otherwise i t is odd. Assume P is f u l l to some
level 2r+l in the sense tha t each leve l 2 (r - l) + 1

rectangle has exac t l y 1 or 2 points in i t . We can
so const ruct P using the technique used to con-
s t r uc t f u l l sets f o r the rectangle a lqor i thm (see
above). Thus i f R is a rectangle of level i f o r
some 1 < i < 2 (r - l) + I , then

leve l i level i+ l leve l i+2 evenl
non-ze

of)
points

e ["P2
0

v d
e d

> n
o e
d v
d e

• n J

Pl

413

Note that i f a leve l i rectangle R is odd then R
s p l i t s i n to three even and one odd leve l i + 2
rectangles. I f R is even then i t s p l i t s i n to two
even and two odd leve l i + 2 rectangles. For a l l
0 < i < r - l , l e t E i = the number of even rectangles

of leve l 2 i+ I , 0 i = the number of odd rectangles

of leve l 2 i+ I . (Note that a leve l K consists of
rectangles~=~K is odd). Then

E 0 = 2, 00 = O.

V1 < i < r - I , E i = 2Ei_ 1 + 3 0 i _ I ,

0 i = 2Ei_ 1 + Oi_ I .

E i + 0 i = 2.4 I .

The so lu t i on to these equations is E i = ~4 i +

5~-I) i Oi :-~4 i - ~(- l) i V 0 < i < r- I

Let n = I PI. Then
r-1

n = ~ 2. E i = ~- 4 r + ~ - l) r - l , and hence
i=O

r = Iog4(45~) +_O(1). Since the length of a level

/g
2i+l diagonal is ~ - , we have

r ~ 2 ~ n cost(P) = i=OZ E i • ~ T - > - 0 (I) .

We conjecture that the asymptotic worst case cost

for this algorithm is very close to ~v~.

The last partitioning method we consider,
the Four-Sqqare Algorithm, works as follows. Each
square S (i n i t i a l l y the unit square) which has > 2
input points in i t is sp l i t into 4 equal sub-
squares. The algorithm is applied recursively to
each of these subsquares, Then the best matching
of the < 4 stranded points is made (the best match-
ing of 3 points is the closest pair). In analogy
to the other partitioning algorithms, i f a square

S contain > 2 points and is on the ([log~nl + l) rs---~-
level of r~cursion, then arb i t rar i l y mat#h up the
points in S unti l 0 or l is le f t . Thus this algo-
rithm also runs in time O(n log n).

As for the square-rectangle heuristic, we
have no t ight upper bound for this algorithm, but
know i t to be (~(v~. As for a lower bound, we

construct an example below of cost ~ (I + ~) ~ / ~ -

0 (I) = 1.39~/~'- 0 (I) .

Construct a set P of points in the un i t
square such that each even square S s p l i t s i n to
S l , S 2, S 3, S 4 such that Si , S 3 odd, S 2, S 4 even,

and S 1 and S 3 strand points in opposi te corners of

S. Also, each odd square S s p l i t s i n to odd squares
S I , S 2, S 3, and even square S 4 such tha t each o f

the 3 points stranded by S i , $2, S 3 is in a d i f -

fe ren t corner of S. Thus at leve l i , each even

square cont r ibutes an edge of length -~ , and each
2 '

1 odd square contr ibutes an edge of length ~ - . Make

P such that fo r some in teger r , each leve l r - I
square has e i t h e r 1 or 2 points of P in i t . For
a l l 0 < i < r - l , l e t E i = the number of even

leve l i squares and 0 i = the number of odd leve l i

squares. Then E 0 = I , 00 = O, and (Vl < i < r - l)

[E i = 2Ei_ 1 + Oi_ I , 0 i = 2Ei. 1 + 30i_ I , E i + 0 i

= 4 i] . The so lu t i on is Ei = ~4i + ~, Oi = ~4 i - ~.

Let n : IPI. Note tha t n = Or_ 1 + 2Er_ 1 (s ince

each leve l r -2 square has 5 or 6 po in ts , each
leve l r - I square has 1 or 2 po in ts , and each leve l

r+l square has 0 or 1 po in t) . " n = ~4 r 2 • . - ~ '

r - I
and hence r = log4(3n + 2). ." cost(P) =

i=O

• ~ - + r -2

O(~n) : 1 .394~- 0 (I) . I n c i d e n t a l l y , th is expres-

sion is exac t l y the same as that found to upper
bound the cost o f the t r i a n g l e a lgor i thm on n
points in a main t r i a n g l e . We have no geometric
exp lanat ion f o r th is coincidence.

Comparing these resu l ts (see summary)
we conclude tha t the best (in terms of worst case
performance) p a r t i t i o n method is e i t h e r the rec-
tangle or the four-square. I f indeed the four -
square is super io r , then the rectangle is a close
second.

The S t r ip Algor i thm

This a lgor i thm is a mod i f i ca t ion of one
analyzed f o r expected performance in Papadimit r iou
[lO].

Let r = [~] . The un i t square is d iv ided

in to r v e r t i c a l s t r i p s , each o f width ~ Then a
r "

t r ave l i ng salesman tour T] is constructed by

s ta r t i ng at the lowest input po in t in the le f tmost
s t r i p , going up that s t r i p in the path which in -
cludes a l l input points of tha t s t r i p , then down
the next s t r i p , up the next , e t c . , and f i n a l l y
re turn ing to the s t a r t i n g po in t , as shown:

414

Here T 1 is shown in jagged l i ne . For ease

of drawina, not a l l of the input points are pic-
tured here (since in order to have r = 5 s t r ips
there must be 50 ~ n ~72 input points) .

Then, a second t rave l ing salesman tour T 2

is constructed in the same way, except that here
1 1 the s t r i p boundaries have been sh i f ted by ~ •

to the r igh t . The s t r i p boundaries for T 1 are

shown below as so l id l ines , those for T 2 in dashed:

I I I
I

I I s
I I

t
I I I I

I I I
I i

I |
I I l I
I I ~ I

Thus there are r + 1 s t r ips used in construct ing
1

T 2, each of width ~. Note that the leftmost of

these s t r ips contains no input points in i t s l e f t
ha l f . S imi la r ly the rightmost s t r i p contains no
input points in i t s r i gh t ha l f .

Thus we have two t rave l ing salesman tours
T 1 and T 2, Since n is even, each tour contains
exact ly two matchings. The algorithm outputs the
shortest of these four matchings.

To upper bound the cost of the matching
produced, consider paths P1 and P2 defined as f o l -

lows: P1 star ts at the bottom, on the median of

the leftmost of the s t r ips used in construct ing T I .

P1 fol lows the median of the s t r i p up to the top,

then down the median of the next s t r i p , up the
next, etc. For each s t r i p , for each point in that
s t r i p , the path P1 ju ts out to that point and then

back to the median, moving at r i gh t angles, as
i l l u s t r a t e d : (PI is in jagged)

The path P2 is defined l i ke PI ' except

that P2 fol lows the medians of the s t r ips used to

construct T 2.

I t fol lows from the t r iang le inequa l i t y
that length (Ti) ! length (P1) and length (T2) 2
length (P2). Our strategy is to upper bound

length (P1) + length (P2).

Consider some input point q. q must l i e
in some s t r i p (shown below between so l id l ines)
used for T 1 and PI ' and in some s t r i p (between

dashed l ines) used for T 2 and P2:

1
r

I

I
I
I
!

_ . f

1
r

A segment of P1 is shown in heavy so l id l i ne , and

a segment of P2 in jagged l i ne . I t should be

clear that the to ta l amount of hor izontal l i ne of
Pl or P2 which ju ts out to q and back is

1 1 Since q was a rb i t ra ry , there is a 2(• ~) =

uni ts of hor izontal l i ne in P1 and P2 to ta l of r
together which j u t out to points and back. Also,
PI has r • 1 = r uni ts of ver t ica l l i ne (i . e . , r

s t r ips of length I) . P2 has r + l s t r ips and
1 hence r + 1 uni ts of ve r t i ca l l i ne . P1 has 1 -

uni ts of hor izontal l i ne which run from the end
of one s t r i p to the s ta r t of the next. P2 has 1

un i t of such l ine . F ina l l y , P1 and P2 each have a

segment of length less than v~'which jo ins the end
of the las t s t r i p back to the s tar t ing posi t ion.

Thus, in t o ta l , length (T I) + length(T 2)

< n + r+(r+ l) + (l - n) +I + vT"
- r

n < - + 2r + 3 + 2 v~- r

n r~/] = ~ + 2 + 3 + 2/2"

< 2V~'~n + 5 + 2/~"

: 2~Z~'+ 0(1).

Thus, min{length(T I) , length(T 2)}
< ~ + o (I)

415

Therefore the cost of the matching produced

is ~ ½ min{ length(Tl) , length(T2)}

~ /6"+ 0(I) = .707/~'* 0 (I) .

This bound is asymptotical ly achievable, as
shown by the fol lowing example:

,

I I I 1 1 i
I I ~ I i I , , I / , l , , l i t
I I ' 1

;j / ,

¢ ~ 0

T 1 is shown in jagged l ine. T 2 is not shown, but

looks almost l i ke T 1 shi f ted by 2~ to the r ight .

The points are arranged so that halfway between
each sol id ver t ica l l ine and e i ther of i t s two
neighboring dotted ver t ica l l ines, there is a ver-
t i ca l s t r ing of 0(/~) points. I n t u i t i v e l y , these
poin~are placed so that T 1 and T 2 must zigzig and

hence look very much l i ke P1 and P2' respect ively.

This attains the maximum amount (neglecting lower
order terms) of horizontal l ine for T 1 and T 2.
There is a point at the bottom of each s t r i p , so
as to at ta in the maximum ver t ica l length. A sim-
ple computation shows length(Tl) , length(T 2) =

/2"fn-+ 0 (I) , and also that the cost of the

matching is ~ - ~ n + 0 (I) .

The algorithm can be implemented in time
O(n log n) using sort ing. Note that the s t r i p
algorithm can be used to obtain a t ravel ing sales-
man tour (i . e . , the shorter of {T I , T2}) in the

uni t square, of length at most v~'~/~+ 0 (I) . These
results generalize eas i ly to a 1 by x region giv-

ing a matching whose cost is at most~'~n + 0(I)

and a t ravel ing salesman tour whose cost is at
most v'~ /6"+ 0 (I) .

Decomposi t i on A1 gori thn !

This las t matching algorithm is a hybrid

between Edmond's O(n 3) time optimizing algorithm,
and any of the O(n log n) time heur ist ics. The
resul t ing algorithm has the best properties of
both: an O(n log n) time bound and a cost bound
which is the same, neglecting lower order terms,
as that for the optimizing. In the fol lowing pre-
sentation of the algorithm, we happen to choose
the s t r i p heur is t ic as our O(n log n) heur is t ic :

F/~q
1 c I

2 2. Par t i t ion the unit square into c
subsquares of equal size.

3. For each of these subsquares, perform
the optimizing algorithm i t e r a t i v e l y
on sets of K input points chosen arbi -
t r a r i l y from that subsquare, where K
is the largest even integer

~min {4 " [c ~ 7 , number of input points
s t i l l unmatched in the
subsquare},

unt i l the subsquare is l e f t with 0 or
1 point in i t .

4. Perform the s t r i p heur is t ic on the re-
maining < c 2 points.

5. Output the union of the matchings found
in steps 3 and 4, and hal t .

In order to analyze the algori thm's perfor-
mance, l e t

= i n f {x: x ~6"+ o(v~) upper bounds the
worst case cost of the optimizing
algori thm}.

1
We know that ~ exists and that .537 z 7 " ~ ~

£ ~ .707, since - 7 - ~ / 6 " + O(1) is the cost of

the optimal matching of n points on a 1 by 1 hexa-

gonal gr id , and s ince~_~6-+ 0(I) is the upper

bound for the s t r i p algorithm. (We suspect that
1 is close to - ~ , but have been unable to prove

i t) . We w i l l show that the decomposition a/.gori-
thm produces a matching of cost ~ s/n + o(/n).
Thus, in an asymptotic sense, the decomposition
algori thm's performance is as good as possible.

Let b = ~ c ~ l . Number the subsquares from

1 to c 2. For a l l 1 < i < c 2, l e t B i denote the

set of input points o r i g i na l l y in the it--~-sub -
square and l e t b i = IB i l mod 4b. Thus

B

I Bi l - b i
+ 1 > the number of ca l ls to the opt i - 4b

mizing algorithm on the i th subsquare. F ina l l y ,
: c 2

l e t t i ~ ~ IBil - bi . Thus t + c 2 ~ the tota l
4b

number of ca l ls to the optimizing algorithm. Note

~ b i t h a t t = - i= l "

Now f o r a l l r > 1, t h e c o s t o f t h e m a t c h i n g
p r o d u c e d by t h e o p t i m T z i n g a l g o r i t h m on r p o i n t s

1 1 l (~ + in a ~ by ~ square is at most ~ o(,/F))

1 The ~ factor scales down the cost from the uni t
1 1 square to the ~ by ~ square. Thus the sum of

the costs of a l l ca l ls to the optimizing algorithm
is at most

416

c2 + ¼(t(~ + o(VD) + i ~ l
2

= ¼ (t ~ 4 ~ + ~ C b ~ i + 0(C2 b~)), since
i~l

b. < 4b fo r a l l i , 1 < i < c 2, and since t < C 2"

The matching produced in step 4 by the s t r i p a lgo-

r i thm on at most c 2 points in the un i t square has

cost ~ - v ~ ' + O(l) . Therefore, the t o ta l cost of

the matching is at most

2

i=l
2

C

We now show that t /7[5 + ~ ~ i is maxi-
i=l

mized when b I = b 2 = . . . = bc2 = b. Let f :

c2 -~ ~ be defined by

c 2
f (b I , b 2 b 2) = t ~/~ + ~ i

c i~l

c 2 k c2
-

c 2 c 2
= (n - ~ b i) " 7 ~ + ~ i " Then

i= l i ~

fo r a l l i 1 < i < c 2 ~f = l 2 ~ . ' ' Bb---i- ~ + : O ~ : ~ b =
1

b i , and ~---~- < O.
~2b.

I

Thus f is maximized at b I = b 2 = . . . = b 2 = b.
c

Note that b I = b 2 = . . . : bc2 = b impl ies n ~ bc 2,

which impl ies n : bc 2 (since b : F - ~ I and hence
I C - i

bc 2 ~ n). This i ~p l i es

n - i~ 1 b i n_c2b
t = 4b = 4b O. Thus

1
4b

expression (I) is maximized when t = 0 and
b I = b 2 = . . . = b 2 = b; hence

cost <_ ~ +

= acE+ o(c~ + ~..

N°te that /6":~T~T< ~-T < c~2 + , 1 : / ~ - + 1
C

". cost S mv'~'+ o (v ~ + (m + ~) C o

: ~v~ '+ o(V~) + (~+ ~) •
v~

¢dlgn

: ~ " + o (~ ') ,

as we claimed.

Next we show that the algorithm runs in
time 0(nlogn). Step 2, the partitioning of the
points, can be performed in time 0(n) as follows:
for each input point p, we determine, by a few
simple arithmetic operations, which subsquare con-
tains p. We can do this since the subsquares form
a grid. More precisely, we associate each sub-
square with the grid point (Xo, y0) at i ts lower
le f t . Thus for each input point p = (x, y), com-
pute

~] l i f x ~ l
x 0 ÷ • ~ '

L 1 _ l i f x = 1 C m

¼ ,ify l

~ 1 - ~ , i f y = 1 .

Then put p in the l i s t o f input points found to be
in the subsquare whose lower l e f t corner is

(x O, yo). Since there are c 2 < n subsquares, the

whole p a r t i t i o n i n g can be performed in time O(n).

In step 3, there are at most t + c 2 ca l l s
on the cubic time opt imiz ing a lgor i thm, each ca l l
having ~ 4b po ints . Thus the time fo r step 3 is

c 2
n - i ~ i b i (t + c2)(4b) 3 = (_ _ ~ L + c2)(4b) 3

(~b + c2)(4b) 3 : O(nb 2 + c2b 3)

: O (n (/T~) 2 + (l ~ a ~ n) 2 (v ~) 3)

Step 4 requires time O(c21g c 2)

: O(nlogn).

, ~ ~21 , n , : 0(t l ~ g n, gt-vT~.)) = 0(n log n).

Thus the total running time is 0(n log n).

Decomposition Algor i thm fo r TSP

A decomposition a lgor i thm s i m i l a r to the
above can be used, wi th s i m i l a r resu l t s , f o r the
t r ave l i ng salesman problem in the un i t square.
Recall that the s t r i p a lgor i thm gives a t r ave l i ng
salesman tour of length at most /~'V~'+ 0 (I) . Also,
the optimal tour of n points on a l by 1 hexagonal

417

in time O(n log
ble in that the
hard [6] , [9] .

2 /6"+ 0(I) Therefore there gr id has length 7 " ~

exists some real 8 such that 1.07 = V ~ 2 A 8

< ¢~'= 1.41 and

8 : i n f {x: x¢~'+ o (¢~ upper bounds the
worst case cost of the opt imizing
TSP algorithm in the un i t square}.

We w i l l present a hybrid between an exhaustive op-
t imiz ing algorithm and the s t r i p heur i s t i c . Ana-
logously to our matching resu l ts , th is hybrid has
worst case cost bounded by 8/6"+ o(/n ') , and runs

n). This is pa r t i cu l a r l y remarka-
Euclidean TSP is known to be NP-

Input.: a set V

Output:

Method:

O.

of n points in the un i t square.

a t rave l ing salesman tour of V.

22
i f n < 22 = 65,536

then exhaust ively search a l l n! permu-
tat ions to f ind the shortest tour ;
ha l t .

[This step is to ensure below that
Ig lg lg lgn is defined and >_ I] .

+ F ~ n -I 1. c -Trg 'g !

2. pa r t i t i on the un i t square in to c 2
subsquares of equal size.

3. For each of these subsquares,
a) exhaust ively f ind the shortest tour

of K input points chosen a rb i t ra -
r i l y from that subsquare, where

K= rain { 4 - [~] , number of input

points in the subsquare not
yet chosen}.

I te ra te th is step un t i l a l l input points
of the subsquare have been chosen.

b) i f the subsquare o r i g i n a l l y has at
least one input point in i t then
d is t ingu ish one of those points"

4. Perform the s t r i p heur i s t i c to f ind a

tour of the < c 2 d ist inguished points.

5. T' ÷ the union of the edges in the
tours found in steps 3 and 4. [Note
that T' is a connected graph whose
nodes are the set V. Also, T' contains
an Eulerian c i r c u i t . Therefore one can
convert T' in to a tour T of V using the
method in [3] , so that , by the t r iang le
i neq ual i ty ,

length(T) < Z length (e)] .
- eeT'

Output T constructed in th is way, and
ha l t .

The analysis of the worst-case cost is
ident ica l to that for the matching decomposition
algori thm, y ie ld ing

cost < 8c v5 ~+ o(cv'~) + /2-c (where b :F~]) .

. ' . cost £ ~v~'+ (e+¢D(~glglglgh) + o(~)

= 8 ~ " + o (~ f f) , as c l a i m e d .

Note that th is resu l t is merely of theore-
t i ca l i n te res t , since one of the "lower order

terms" is ¢~ which, for pract ica l purposes dlglg lg lgn

is not neg l ig ib le .

As for the time required, step 2 takes O(n)
time, as shown above.

For step 3, an exhaustive search fo r the
shortest tour of r points can be performed in

time r! = o (r r) . Therefore the to ta l time requ i r -
ed fo r the ca l l s on the opt imizing algori thm is at
most 2

c bi
n - i=Zl (+ c2) (4b) 4b

4b

= O((~b + c2)(4b) 4b) : 0(c2(4b) am)

(since ~b = 0(c2))"

Now (4b) 4b • b 4b = (2b)8(bb) 4 < (2b)e(22b) 4

: O [(Ig lg lgn)8(Ig lgn) 8]

(since b < Ig lg lg lgn + I)

: O(Ign).

. ' . the time needed for step 3 is

O(c21gn) = O(nlogn).

Step 4 can be performed in time
O(c 2 Ig c 2) = O(nlogn).

Step 5 takes time O(n), using the method of
[3] .

Thus, as claimed, the to ta l time is
O(nlogn).

418

SUMMARY

The following tables summarize known re-
sults for matching (in both the bounded and un-
bounded regions) and the traveling salesman pro-
blem. Lower order terms are omitted.

Algorithm Order
.... r~nninQ

Optimizing

Greedy

Spanning Tree n21og

n 3

n21og

Hypergreedy
without bridges

n21og

n21og Hyper-Greedy

Factor of 2 n21og
i without bridges

Factor of 2 n21og K 8

Factor of 2 n2(log n + log K) 7 wlt~ c~÷ inn

of J Worst case
t ime ...]NerFormance ratio__

1

n ~ nlg~

n n
,

n ~(nl°g3 2)

n 2 log3n

n a(n lg#)

with sortinq

Table l Summary of known results for matching
n vertices whose distances satisfy the trian-
gle inequality, where K is the ratio of the
longest to the shortest edge.

Algorithm Order of
runninQ time

Optimizing ~ n 3

Greedy n21og n

Triangle n log n

Rectangle n log n

4 Square n log n

Square-
Rectanal~

St r ip

Decompos i t i on

n log n

n log n

n log n

Worst known I Upper bound
example cost l WOrSt case

.537~" I ?

.806/~" 1.07~n

1.97/~ l . 97,'~"

1.44V~ 1.44~"

l . 39/~" ?

1.5~" ?

.707,~" .707~/~"

same as f o r optimizing

0 n
cos L

Table 2 Summary of known results for matching
n vertices in the Euclidean unit square.

Algorithm Order of !Worst known Upper bound or
running time exam p.le cost worst casecosl

Optimizing exponential 1.07~/~" ?

Strip n log n 1.41/~" 1.41/~

Decomposition n log n same as for optimizing

Table 3 Summary of known results for the tra-
veling salesman problem on n cit ies in the
Euclidean unit square.

lo

REFERENCES

Avis, D., "Two Greedy Heuristics for the
Weighted Matching Problem, " Proc. Ninth
Southeastern Conf. on Combinatorics, Graph
Theory, and Computing (1978)', 65-76.

2. Avis, D., personal communication.

3.

4.

5.

6.

7.

8.

9.

I0.

11.

Christofides, N., "Worst-case Analysis of a
New Heuristic for the Travelling Salesman
Problem," Technical Report of the Graduate
School of Industrial Administration, Carnegie-
Mellon University, Pittsburgh, PA, 1976.

12.

13.

14.

Cornuejols, G. and G. L. Nemhauser, "Tight
Bounds for Christofides' Traveling Salesman
Heuristic," Math. Prog. 14 (1978), I16-121.

Gabow, H., "An Efficient Implementation of
Edmonds' Algorithm for Maximum Matching on
Graphs," J. ACM ~, (1976), 221-234.

Garey, M. R., R. L. Graham, and D. S. Johnson,
"Some NP-Complete Geometric Problems," Proc.
Eighth Ann. ACM Symp. on Theory of Compu~g
(Ig7B), 10-22.

Knuth, D. E., The Art of Computer Programming,
Vol. 2: Seminumerical Algorithms, Addison'
Wesley Pub. Co., Reading, Mass., 1969.

Knuth, D. E., The Art of Computer Programmin 9,
Vol .. 3: Sortingand Searching, Addison-Wesley
Pub. Co., Reading, Mass., 1973.

Papadimitriou, C. H,, "The Euclidean Traveling
Salesman Problem is NP-Complete," Theor.
Comput. Sci. 4 (1977), 237-244.

Papadimitriou, C. H., "The Probabilistic
Analysis of Matching Heuristics," Proc.
Fifteenth Annual Allerton Conf. on Communica-
tion, Control and .Computing (1977), 368-378.

Papadimitriou, C. H. and K. Steigl i tz ,
Combinatorial Optimization Algorithms and
Complexity, in press.

Papadimitriou, C. H., personal communication.

Reingold, E. M., J. Nievergelt, and N. Deo,
Combinatorial Algorithms: Theory and Practice,
Pren'tice-Hall, Englewood Cl i f fs , NJ, 1977.

Reingold, E. M. and R. E. Tarjan, "On a Greedy
Heur is t ic for Complete Matching," submitted
for publ icat ion.

419

