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This exposition is concerned with the main theorems of graph-factor theory, Hall’s and
Ore’s Theorems in the bipartite case, and in the general case Petersen’s Theorem, the I-Factor
Theorem and the f-Factor Theorem. Some published extensions of these theorems are discussed
and are shown to be consequences rather than generalizations of the f-Factor Theorem. The bipartite
case is dealt with in Section 2. For the proper presentation of the general case a preliminary theory
of “G-triples”® and “f-barriers” is needed, and this is set out in the next three Sections. The f-Factor
Theorem is then proved by an argument of T, Gallai in a generalized form. Gallai’s original proof
derives the 1-Factor Theorem from Hall’s Theorem. The generalization proceeds analogously from
Ore’s Theorem to the f-Factor Theorem.

1. f-Factors

The graphs of this paper are finite. They may have loops and multiple joins.
We write val (G, x) for the valency of a vertex x in a graph G. It is the number of
edges of ¢ incident with x, loops being counted twice.

If S and T are disjoint sets of vertices of G we write A(S, T') for the number
of edges of G joining S to T. If T has only one vertex ¢t we write A(S, T) also as
(S, 1). If A is an edge of G we write G for the graph derived from G by deleting 4.
We write |S| for the cardinality of a set S.

A vertex-function of G is a mapping f of the vertex-set V(G) of G into the
set of integers. Given such an f we define an associated vertex-function f” by the
following rule.

(M f(x) = val (G, x)—f(x)

for each x in V(G). Thus (f’'Y =f.
Given a vertex-function f of G we define an f-factor of G as a spanning sub-
graph F of G such that

@ val (F, x) = f(x)

for each vertex x.
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Each f-factor of G has a unique associated f*-factor, defined by the remaining
edges of G.

1.1. Let f be a vertex-function of a graph G. Then G has an f’-factor if and only if
it has an f-factor. |}

This result introduces a duality into the theory of graph-factors. When possible
we shall state our general theorems in self-dual forms, symmetrical as between f
and f’. Truly unsymmetrical theorems occur in dual pairs. Each member of such
a pair is the result of stating the other for f” instead of f, and then reverting to f by
using (1). Consider for example the statement that G has no f-factor if f(x)<0
for some x. The dual theorem asserts that G has no f-factor if val (G, x)<f(x) for
some Xx.

The vertex-function f of G such that f(x)=1 for each x is the unit vertex-
function of G. The corresponding f~factors are the I-factors of G. They are of special
importance in the literature. The classical theorems of Petersen and Hall are theo-
rems about 1-factors.

2. Bipartite graphs

A bipartition of a graph G is an ordered pair (X, ¥) of complementary sub-
sets of ¥ (G) such that each edge of G has one end in X and one in Y. A bipartite
graph is one with a bipartition. Thus a bipartite graph can have no loops.

The bipartite case deserves special study as being the easy part of graph-
factor theory. Moreover in the present paper the general case is made to depend on it.

Let f be a vertex-function of a graph G with a bipartition (X, ¥). If Sand T
are subsets of X and Y respectively we write

(3 7(S, T) = A(S, T)—sé;f(s)-:ezr'f’(t)’
that is
@ (S, T) =t€ZT’f(t)—sgs'f(S)—l(X—S, 7).

If also S; and T; are subsets of X and Y respectively it is clear that

ASUSL, TUT)+HASNS,, TNTY = A(S, T)+A(S;, Ty).
Hence, by (3),
() y(SUS, TUTD+y(SNS, TNTY = 9(S, T)+y(Sy, TY).
We say that f is balanced with respect to (X, Y) if
(©) x%; f(x) = %, f).

The following theorem says all that need be said about the unbalanced case,
since X and Y can be interchanged in its statement.
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2.1. Suppose that
2 f&x)y< Z fO)
x€X yEY

Then G has no f-factor. Moreover y(X, Y)=0.

Proof. If F were an f-factor of G then each side of the inequality would have to
be equal to the number of edges of F. The second part of the theorem follows
from (4). |

We proceed to the proof of Ore’s Theorem. The symbol @ denotes a nuil set.

2.2. Let f be balanced with respect to (X, Y). Then G is without an f-factor if and
only if there are subsets S and T of X and Y respectively such that

M y(S, T) = 0.

Proof. Suppose (7) to hold for some § and 7. If F is an f-factor of G let n be the
number of its edges incident with vertices of T. Then

2fty=n= 2 fO+AX-S,T).
teT €S

But then y(S, T)=0, by (4), which contradicts (7).

Conversely, consider the class of graphs G having no pair (S, T) satisfying
the stated conditions. If possible choose such a G so that G has no f-factor, and
so that the number o of edges of G has the least value consistent with this condition.

We observe that f(x)=0 for each x in X, and that f’(»)=0 for each y in Y.
For otherwise (7) would be satisfied by a pair (S, T) of the form ({x}, @) or (8, {y}).

We can prove also that f'(y)=0 for each vertex of y that is incident with
at least one edge. For suppose f'(»)=0, that is f(y)=val(G,y) for one such y.
Then we form a bipartite graph H from G by deleting y and its incident edges.
We define a balanced vertex-function g of H by the rule that for each vertex v of
H the number g(v) is f(v) diminished by the number of edges joining v to y in G.

If H has a g-factor then clearly G has an f-factor. So by the choice of G
we can find SSX and TS Y—{z} such that y(S,7)>0 in H. But then we have
also y(S,TU{yP)=0 in G, by (3). From this contradiction we infer that in fact
'»»=0.

Now suppose that a=0. Since f is balanced, and since f’(y)=—f(») in this
case, it follows from the preceding observation that f(v)=0 for each v in V(G).
But then G is its own f-factor, and we have a contradiction.

We deduce that G has an edge 4. Any f-factor of G/, would be an f-factor
of G. So, by the choice of G, we can find §,< X and T, C Y such that y(S,, T,)=0
in G. But y(S,, T,)=0 in G. Considering the definition (3) we see that the only
way in which these requirements can be reconciled is for 4 to join a vertex z of
T, to a vertex of X—S,. (The value of /’(z) is one less in G/ than in G.) Then more-
over we have y(S,, T,)=0in G.

It follows from these observations that we can find SC X and TC Y so that

8) y(§,7T)=0 in G,

and so that some edge of G joins T to X—S. Choose such a pair (S, T) so that
|[SUT| has the least possible value. Since f/(z)>0 for at least one z in 7, it follows
from (3) and (8) that there is an edge B of G joining S to T.

6*



82 W. T. TUTTE

As with 4 we can find S; S X and T5< ¥ so that
® 7(Sp, Tp) =0 in G,

and so that B joins Ty to X—Sp.
By the choice of G neither y(SU Sy, TUT}) nor p(SNSg, TNTp) can be
positive in G. Hence, by (5), (8) and (9) we have

10) 9(SNSp, TNTg) =0 in G.

But the edge B joins TN Ty to a vertex not in SMN.Sy. It follows, by the choice of
S and T, that SCS S; and TS T;,. But this is impossible; the edge B joins S to T,
but not Sy to Ty. The theorem follows. J

The above form 2.2 of Ore’s Theorem has the advantage of being self-dual.
But the following form is often preferred.

2.3. Let f be balanced with respect to (X, Y). Then G is without an f-factor if and
only if there is a subset T of Y such that

) 2 f(t) = > Min{f(x). AT, )}
teT x€X

Proof. If (7) holds, then so does (11), by (4). If (4) holds we define S as the set of
all vertices s of X such that f(5)>2(7T, x). We can then deduce (7) from (4). Accord-
ingly Propositions 2.2 and 2.3 are equivalent. J

If TS Y let us write D(T) for the set of all vertices of X that are joined to T.
We can now state Hall’s Theorem as follows.

2.4. Let (X, Y) be a bipartition of G such that |\X|=|Y|. Then G is without a 1-factor
if and only if there is a subset T of Y such that

(12) IT] > |D(T)].

Proof. The requirement |X|=|Y| is merely a restriction to the balanced case. Theo-
rem 2.3 reduces immediately to 2.4 when we take f to be the unit vertex-function.
For if x is in X then Min {f(x), A(T, x)} is 1 if x is in D(T), and is zero
otherwise. |J

We conclude this Section by noting one more property of the function y(S, 7).

2.5. Let f be balanced with respect to the bipartition (X, Y) of G. Let S and T be
subsets of X and Y respectively. Then

(13) 7S, T)=y(Y -T,X-5),

where the left and right sides are defined in terms of the bipartitions (X, Y) and (Y, X)
respectively.

Proof. Since f is balanced we can rewrite (4) as
WS, T)= X fo— F fO)-2(X-S,T).
sEX-S tEY—-T

But the expression on the right is (¥ — T, X—§), by another application of (4). I
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3. G-triples and f-barriers

Let G be a graph, and let f be a vertex-function of G.

Any subset U of V(G) defines an induced subgraph Ind (G, U) of G. It is
made up of the vertices of U and the edges of G having both ends in U. (A loop is
said to have two coincident ends.) We refer to the components of Ind (G, U) as
the components of U in G.

A G-triple is an ordered triple (S, T, U), where S, T and U are disjoint sub-
sets of V(G) whose union is V(G). If B=(S, T, U) is a G-triple we write B’ for the
G-triple (7, S, U).

If B=(S, T, U) is a G-triple, and C is any component of U in G, we write

(14) J(B, f,C) = ceyZ(O {f©)+AT, o)}

We say that C is an odd or even component of U in G, with respect to B and f, accord-
ing as J(B, f, C) is odd or even. We denote the number of odd components of U
in G, with respect to B and f, by h(B, f).

3.1. Let B=(S, T, U) be a G-triple, and let C be a component of U in G. Then
(15) JB,f, C)=J(B,f,C) (mod?2).
Proof.

JWB, f, Cy+J(B, f, C) = c(g('o {val(G, )+ A(T, )+ A(S, o)},

by (1) and (14)

= 2 val(C,e)=0 (mod2). 1
c€V(C)

Thus a component of U in G is odd with respect to B’ and f” if and only if
it is odd with respect to B and f. We thus have

(16) h(B’,f") = h(B,f).

We define the deficiency (B, f) of the G-triple B=(S, 7, U), with respect
to f, as follows.

an 5(B, f) = h(B, f)—sgs'f(S)—‘GZ;f’(t)+l(S, 7).
By (16) we have
(18) 6(B,f) =6(B",f).

We can indeed regard (17) as a self-dual definition, symmetrical with respect to the
double interchange of f with f” and B with B".

An f-barrier of G is a G-triple B=(S, T, U) such that 6(B, f)=0. If B is an
Jf-barrier then B’ is an f’-barrier, by (18).

If K is any subgraph of G we write X(K, f) for the sum of the numbers f(x)
over all vertices x of K. We say that f is odd-summing or even-summing on K accord-
ing as Z(K, f) is odd or even.

3.2, Let B=(S, T, U) be a G-triple. Then
19 0(B,f) =2(G,f) (mod?2).



84 W. T. TUTTE

Proof. By (14) and (17)
o(B,f) = ueZ('j {f)+A(T, u)}+sgs'f(5)+t€2T {val (G, t) +f()}+ (S, T)

= X(G, f)+A(T, U)+A(S, T)+ D val(G, 1)
fe€T
=J7(G,f) (mod2). }
We conclude this Section by seeking out some examples of f~barriers. We
note some obvious but important ones in the following two theorems.
3.3. If f(x)<O for some x in V(G) then ({x},9, V(G)— {x}) is an f-barrier. Dually
if f(x)<0, that is if f(x)>val (G, x), then (B, {x}, V(G)—{x}) is an f-barrier.
3.4. If f is odd-summing on G, then (9, 9, V(G)) is an f-barrier.
Theorem 3.3 is an immediate consequence of (17). Theorem 3.4 can be regarded
as a consequence of 3.2. For the deficiency of (8, 8, V(G)) is non-negative by (17),
and odd by 3.2. |§
We can discover occurrences of f-barriers in the bipartite theory of Section 2.
Let us return to the case in which G has a bipartition (X, Y).
Let S and T be subsets of X and Y respectively. Let B be the G-triple
(S, T, V(G)-(SUT)). By comparing Equations (3) and (17) we find that
(20€) 0(B,f) = (5, 7).
Applying this result to 2.2 we obtain the following.
3.5. Let G have a bipartition (X, Y) and let f be balanced with respect to (X, Y).

Then if G has no f-factor it has an f-barrier (S, T, U) such that SCX and
€Y. |1

Another observation of interest can be made in the bipartite case. Let P
and Q be complementary subsets of ¥ (G), and let B be the G-triple (P, Q, #). Then

o(B, f) = MPNX, QNY)+A(QNX, PﬂY)—p%f(P)—q%;f'(q), by (17),
= y(PNX, QNY)+y(PNY, 0NX)

by (3). Here the first y is defined in terms of (X, Y) and the second in terms
of (¥, X). Hence

21 0(B.f) = 2y(PNX, QNY), by (13).
‘We note that if S€ X and 7€ Y we can arrange that PNX=Sand ONY=T
by writing
P=SU-T) and @=(X-S)UT.
3.6. Let G be a bipartite graph. Then G has either an f-factor or an f-barrier of the
Jorm (P, Q, 9), but not both.

Proof. Choose a bipartition (X, Y) of G. If f is not balanced with respect to (X, )
the theorem follows from 2.1 and Equation (20). In the balanced case we use 2.2
and Equation (21). |
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4. Transformations of G-triples

Let f be a vertex-function of a graph G.

Let B=(S, T, U) be a G-triple. If x is a vertex of S or T we write u(x) for
the number of components C of U, odd with respect to B and f, such thut x is joined
to C by some edge of G.

4.1. Let x be a vertex of S, and let B, be the G-triple (S— {x}, T, UU {x}). Then
(22) 0(By,f)—6(B,f) =f(x)—p(x)— AT, x) +n(x),
where n(x) is 0 or 1 and is chosen to make the right side of (22) even.

Proof. Consider Equation (17), the definition of §(B, f). When we change from B
to By the term A(S, T) is diminished by A(T, x), the term —Zf"(¢) is left unaltered,
and the term —2f(s) is increased by f(x). The graph Ind (G, U) loses u(x) odd
components, and perhaps some even ones too. The lost components are all absorbed
into the single new component D containing x. We deduce that in the transforma-
tion 4(B,f) is diminished by u(x)—«, where « is 1 or 0 according as D is odd or
even with respect to B, and f. We conclude that

0(By,f)—06(B,f) = f(x)—pu(x)— (T, x)+a.
But §(B,, f) and 6(B, f) have the same parity, by (3.2). Hence a=n(x). 1
4.2. Let x be a vertex of T, and let B, be the G-triple (S, T—{x}, UU{x}). Then
(23) 0(By,f)—3(B,f) =f"(x)—p(x)— A(S, x)+n'(x),
where n’(x) is O or 1, and is chosen to make the expression on the right even.

Proof. This theorem is the dual of 4.1. To prove it we first state 4.1 with By, B’
and f* replacing B,, B and f respectively. We then use (18). We also use 3.1 to show
that u(x) is invariant under duality. |

We refer to the change from B to B, in these two theorems as a fransferrence
of x from S or Tto U. When using the theorems we should bear in mind that

(24) u(x) = AU, x).
Two applications follow.

4.3. Let B=(S, T, U) be a G-triple, and let x be a vertex of S such that f(x)=val
(G, x) or val (G, x)—1. Then the transferrence of x from S to U does not diminish
the deficiency of B.

Proof. By (24) the expression on the right of (22) must be non-negative. [

44. Let B=(S, T, U) be a G-triple, and let x be a vertex of T such that f(x)=0
or 1. Then the transferrence of x from T to U does not diminish the deficiency of B.

This is the dual of 4.3, derivable analogously from 4.2.

Our next theorem relating different G-triples concerns a G-triple B=(S, T, U),
a component C of U, and a C-triple Bc=(S¢, T¢, U). It deals also with a vertex-
function f; of C.
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We define the augmentation of B by B, as the G-triple B,=(S,, Th, U}),
where §$,=SUS¢ and T,=TUT,.
For each vertex ¢ of C we define the divergence div (f¢, ¢) of f¢ at ¢ as follows.

(25) div (f¢, ©) = [f(©)— AT, ) —fc()l.

We define the rotal divergence div (f¢) of fc as follows.

(26) div(fd = 3 div(fe, o).
ceEV(O)

4.5. Let B=(S, T, U) be a G-triple, C a component of U, and B.=(S¢, T¢, Ug)
a C-triple, Let B,=(S,, Ty, U,) be the augmentation of B by B, and let f. be a vertex-
function of C. Then

@n 3(By,f) = (B, f)+6(Bc,fo)—div(fo)—1.

Proof. We begin with some deductions from the definition of an odd component.
We observe first that any odd component of U with respect to B and f; other than
C, is also an odd component of U; with respect to B, and f. Moreover if D is an
odd component of U, with respect to B¢ and f¢, and if the divergence of f¢ is zero
at every vertex of D, then D, is an odd component of U, with respect to B, and
Jf. Hence

(28) h(Bl’f)éh(Baf)—'l_*_h(BCSfC)_uGZU' div(fC3 u)'
But, by (17), ¢

a(Buf)—&(B’f) = h(B,, f)_h(B,f)_sezsl f(S)
— EZT: {val (G, t)—f ()} +A(Sc, T)+A(S, To)+A(Sc, T¢)

= h(Be.fo—1— 2 div(fe, )
uelUe

—sezs' {f(S)—}.(T, S)}_tz {val (C’ t)—f(t)'*"l(Ta t)}

€T
+A(Sc, To), by (28),
= 6(Bc, fo)—1-div(fo),
by (17) and (26). |

Let 4 be an edge of a graph G. A G-triple B=(S, T, U) can also be regarded
as a G -triple. Let its deficiency be §(B, f) in G and 8,(B, f) in G.

Let us first consider the change in Ind (G, U) when A is restored. If 4 has
both ends in a component C of Ind (G, U) then A is added to that component.
The other components persist unchanged in Ind (G, U), and no component changes
its parity with respect to B and f. If A joins two distinct components of Ind (G, U)
these are united with 4 to form a single new component of Ind (G, U). The new
component is even if and only if the two original components were both even or
both odd. The other components of Ind (G, U) persist with their parities unchanged.
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In all the remaining cases Ind (G, U) is the same graph as Ind (G, U).
A component of this graph has different parities in G and G if 4 joins it to a vertex
of T, but not otherwise.

Having made these observations we can use (17) to establish the follow-
ing rule.
4.6. 5A(B’ f) = 5(3, f)+2,

if A joins two odd components of Ind (G}, U), if it joins one odd component to T,
or if it has both ends in T. In all other cases

5A(B)f) = 5(B’f)- I

5, f-Prefactors

Let f be a vertex-function of a graph G.

Let B=(S, T, U) be a G-triple. An f-prefactor of G based on B is a spanning
subgraph H of G satisfying the following three conditions.

(i) Each edge of H is incident with a vertex of S or T.

(ii) If x is in S or T then val (H, x)=f(x).

(iit) If C is any component of U in G, then
30) > val(H,¢)= 2 f(¢) (mod2).

c€V(C) cEV(C)
The term “f-prefactor™ is justified by the following theorem.

5.1. Let F be an f-factor of G and let B=(S, T, U) be a G-triple. Let H be the spanning
subgraph of G defined by those edges of F that have an end in S or T. Then H is an
fprefactor of G based on B.

This theorem is an easy consequence of the fact that F satisfies (2). It may
suggest to us that in seeking for an f-factor of G we should first try to construct
an f-prefactor H based on some B=(S, T, U). Having succeeded in this we might
hope to turn H into an f-factor by adding edges in the components of U. That is
the basic idea of the generalized Gallai method. The next theorem shows that we
must accept certain restrictions on H and B.

58.2. Let H be an f-prefactor of G based on a G-triple B=(S, T, U) such that §(B, f)=0.
Then 6(B, f) must be zero.

Moreover if C is a1y component of U in G then the edges of H having an end
in C are the edges of G joining C to T, except that just one edge e(C) must be added
to or omitted from these when C is odd with respect to B and f.

Furthermore each edge of G having both ends in T belongs to H, and no edge
of G with both ends in S belongs to H.

Proof. Consider any odd component C of U. By Equation (14) and Condition (jii)
the number of edges of H joining C to SUT has the parity of

J(B, f,C)y+ > AT, 0.
cEV(C)

But J(B, f, C) is odd. Hence we can find an edge e(C) of G such that either e(C)
is in H and joins C to S, or e(C) is not in H and joins C to T.
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We choose one such edge ¢(C) for each odd component C of U. Of the result-
ing h(B, f) edges e(C) let there be p in H and ¢ not in H.

Let &k be the number of edges of H joining S to 7. Then, by (2) the following
inequalities must hold.

(31 k ésgs'f(s)ﬂ?,
(32) k= tez; {f(1)—(val (G, £)—A(S, D)} +4.

Combining these we find that
0=p+g- %f(s)—'EZTf'(t)—i-l(S, T) = 6(B,f).

Since 8(B, f) is non-negative by hypothesis we deduce that it is in fact zero.

But for this deficiency to be zero equality must hold in both (31) and (32).
Equality in (31) means that any edge of H with an end in S must either join Sto T
or be one of the p such edges of the form ¢(C). Equality in (32) means that if an
edge of G has an end in T but no end in S, then either it belongs to H or it is one
of the ¢ such edges of the form ¢(C). The theorem follows. [

From 5.1 and 5.2 we can deduce the following theorem 5.3, partially revealing
the relationship between f-factors and f-barriers.

5.3. If G has an f-barrier it has no f-factor. ||

Theorem 5.2 indicates that G-triples of zero deficiency are likely to be impor-
tant in our theory. We therefore insert an existence theorem about them.,

5.4. Suppose G to have at least one edge. Suppose further that G has no f-barrier,
but G, has an f-barrier for each edge A of G. Then there exists a G-triple B=(S, T, U)
such that §(B, f)=0 in G and such that S and T are not both null.

Proof. By 3.4 fis even-summing on G, and therefore on G for each edge A.

For each A the graph G/ has an f-barrier B,=(S,, T,, U,). By 4.6 the
restoration of 4 can decrease the deficiency of B, by at most 2. We infer from 3.2
that 6(B,,f)=2in G, and 6(B,f)=01in G.

We may now assume that B,=(0, 8, V(G)) for each A4, since otherwise the
theorem holds. By 4.6 this means that each A is an isthmus of G, whose deletion
splits the corresponding component of G into two connected pieces, the end-graphs
of 4 in G, and moreover f is odd-summing on each of these end-graphs.

We see that G is a forest. It therefore has a monovalent vertex x with the
single incident edge X. Write B=({x}, 0, V(G)— {x}). Then ¥V(G)— {x} has one odd
component with respect to B and f, namely the end-graph of X not including x.
But f(x)=1, by 3.3. Accordingly §(B,/)=0 by our hypothesis. This completes
the proof. |

We conclude the Section with an existence theorem for f~prefactors. It rep-
resents the application of bipartite theory in the generalized Gallai method.

5.5. Let B=(S, T, U) be a G-triple with 6(B, f)=0. Then either G has an f-prefactor
based on B or it has an f-barrier Z=(P, Q, R) such that PS S and QCT.
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Proof. We construct from G a graph G,, as follows. The edges of G, are the edges
of G with at least one end in S or T, together with one new edge a(C) for each com-
ponent C of U in G. The vertices of G, are the members of § and T, together with
two new vertices x(C) and y(C) for each component C of U. The ends in G, of
a(C) are x(C) and y(C). If an edge of G joins a component C of U to S, then it
is incident with y(C) in G,. If instead it joins C to T then it is incident with x(C)
in G,. The other incidences of G, are as in G. The construction is illustrated in
Figure 1, for a case in which U has just two components C, and C,.

Wae define a vertex-function f; of G, by the following rules. £, (x)=/(x) if x
isin S or T. If C is a component of U in G then f;(x(C))=4(x(C), T) and £;(»(C))
is 0 or 1 according as C is even or odd in G with respect to B and f. As a conse-
quence of (14),

(33) HL(FO)+A( () = ce;@f (c)
for each C.
yc) Y& T
G, X&) xC S

Fig. 2
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We now make a further change by deleting from G, every edge having both
ends in S, or both in T. Let the new graph be G,. For it we define a vertex-function
fo as follows. First we define m(z), where ¢ is in T, as the number of edges of G
incident with ¢ and having both ends in T, loops on ¢ being counted twice. For each
vertex x of G, not in T we write £,(x)=f;(x). But for ¢ in T we put f,(¢t)=£,(¢) —m(2).
The graph G, is shown in Figure 2.

. Let U’ be the set of vertices x(C), and U” the set of vertices y(C). We note
that G, has a bipartition (X, Y), where X=SUU’ and Y=TUU”. We can show
that f, is balanced with respect to (X, Y). For, in notation appropriate to G and f,

2 20) = k(B N+ Z{f@)-m@)}
= k(B )= ZJ /) +A(S, D+AU, T)
te

= 6(B, f)+ EZ'sf(SH—uEZL'] MT, ), by (17),
= 2 fi(x).
xeX

Suppose G, to have an f,-factor F,. Let H, be the spanning subgraph of
G, defined by the edges of F, with at least one end in S or T, together with the edges
of G, having both ends in T. Then H is an f; -prefactor of G, based on the G,-triple
(S, T, V(G,)—(SUT)), as we may see by applying 5.1 to G,. The components of
V(G)—(SUT) in G,, as in G,, are the single-edge connected subgraphs defined
by the edges of the form a(C). Using (33) we deduce that the edges of H; define in
G an f-prefactor H based on B.

In the remaining case we deduce from 2.2 that there exist S;E X and T,E Y
such that, in terms of G,

(34 A(Sy, T)— g fz(5)+erT {val (G, )~f>(1)} = 0.

Putting this in terms of G; we have

(39) A(Sy, Tl)—sg f1(8)+‘EZT {val(Gy, ) —f:(1)} = 0.

By (35) the G,-triple (S,, Ty, U,), where U;=V(G)—(S;UTy), is an f;-
barrier of G,. But by 4.3 any vertex of U’ occurring in S, can be transferred to
U, without diminishing the deficiency of the G,-triple. By 4.4, any vertex of U”
occurring in T, can likewise be transferred to U;. We can therefore assert that G,
has an f;-barrier Z,=(P, Q, R;) such that PC S and QET. Let Z=(P, @, R) be
the G-triple with the same first and second members as Z;.

There is a 1—1 correspondence @ relating the components K of R in G to
the components ®(K) of R, in G,. The rule is that K is obtained from &(K) by
replacing the edges of the form a(C) in it, each deleted with its two ends, by the
corresponding subgraphs C of G. We note that the sum of the numbers fi(x) in
@(K) has the same parity as the sum of the numbers f(x) in K, by (33). It follows
that @ preserves parity, taken with respect to Z and f in G, and with respect to Z,
and f; in Gy. Accordingly #(Z, f)=h{Z,, /1) and therefore §(Z, f)=6(Z,, f)=0.
So Z is an f-barrier of G with the required properties.

This completes the proof. |
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6. The general case

We can now state and prove the f~Factor Theorem, as follows.

6.1. Let f be a vertex-function of a graph G. Then G has an f~factor or an f-barrier,
but not both.

Proof. In view of 5.3 it suffices to prove that G has an f~factor or an f-barrier.

If possible choose G and f so that G has no f-factor and no f-barrier, so that
the number of edges of G has the least value o consistent with this condition, and
so that the number 8 of vertices has the least value consistent with these conditions.

Suppose first that «=0. Then f(x)=0 at each vertex x, by 3.3. But then G
is its own f-factor, and we have a contradiction.

If 4 is any edge of G the graph G has no ffactor. For any such f-factor
would be an f-factor of G. So, by the choice of G, G has an f-barrier. We deduce
from 5.4 that there is a G-triple B=(S, 7, U) such that (B, f)=0, and such that
S and T are not both null. Choose such a B so that |U| has the least possible value.
By 5.5 G has an f-prefactor H based on B.

For each component C of U in G we define a vertex-function f as follows.

(36) fele) =f(c)—val (H, o),
for each ¢ in V(C).

Referring to 5.2 and the definition of even and odd components we find that
fc is even-summing on C. By 5.2 and (25) div (f, ¢) is zero at every vertex ¢ of
C if C is even, and at every vertex but one if C is odd. The exceptional vertex in
the odd case is the end of e(C) in C. There div (f,, ¢)=1. We note that, in all cases,

(7 div(f) = 1.

Assume that C has an f.-barrier B¢=(S¢, T¢, Ug), for a particular C. Let
B,=(S;, Ty, U;) be the augmentation of B by B.. By 3.2 we have

(3%) 0(Bc,fo) = 2.

It follows from (17) and the connection of C that S. and T are not both null.
Accordingly

(39) Uy =< U

Applying (37) and (38) to (27), and remembering that 6(B, f)=0, we find
that 8(B;,f)=0. Hence, by our hypothesis, §(B,, f/)=0. But because of (39) this
contradicts the choice of B.

We deduce that no C has an fc-barrier. But each C has fewer vertices than G.
Hence, by the choice of G and f, there exists an f.-factor F. for each component
C of U. But then the edges of H and the graphs F, taken together, define an f~factor
of G, by (36). Thus our initial assumption that G and f can be chosen so that G has
no f-factor and no f-barrier is false. The theorem follows. |

Let us now consider some specializations. A necessary and sufficient con-
dition for the existence of a 1-factor appears in [8]. In order to state it we need the
following definition. If SC ¥V (G) then we write A(.S) for the number of components
of ¥(G)—S in G with an odd number of vertices. The *““I-Factor Theorem” is as
follows.
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6.2. G is without a 1-factor if and only if there is a subset S of V(G) such that
(40) IS] < h(S).

Proof. We apply 6.1 to the case in which f is the unit vertex-function. Using 4.4
we find that G is without a 1-factor if and only if it has an f-barrier of the form
B=(S, 0, V(G)—S), that is if and only if there is a subset S of V(G) sat-
isfying (40). |

The most famous of graph-factor theorems, Petersen’s Theorem, runs as
follows.

6.3. Let G be a cubic graph, either without isthmuses or having all its isthmuses in a
single arc. Then G has a l-factor.

Proof. Suppose G to have no 1-factor. Then by 6.2 there exists SE V(G) satisfying
(40). Since the number of vertices of a cubic graph is even |S| and £(S) have the
same parity. Hence

41) [S|= h(S)—2.

Of the A(S) components of V(G)— S with an odd number of vertices let there be
p joined to S by a single edge, and g joined to S by 3 or more. (The number of join-
ing edges of such a component must be odd.) Then

(42) 31S| = A(S, V(G)—S) = p+3q.

Since A(S)=p--q it follows from (41) and (42) that p is at least 3. Accordingly G
has three isthmuses not lying on a single arc. |

There is an interesting application of the f~Factor Theorem in a proof of the
Erd8s—QGallai Theorem on graphic sequence [1].

Let P=(f1, f2, ..., f,) be a non-increasing sequence of p non-negative integers
fi, such that the f; sum to an even number 2q. We say that P is strictly graphic
if there is a graph G, without loops or multiple joins, whose p vertices can be enu-
merated as vy, v, ..., v, so that val (G, v;)=/; for each suffix /. The Erd6s—Gallai
Theorem gives a necessary and sufficient condition for P to be strictly graphic.

Let X, be a complete p-graph, with vertices vy, v., ..., v,. Let f be the vertex-
function on K, such that f(v)=f; for each /. Evidently P is strictly graphic if and
only if K, has an f-factor. So, by 6.1 P fails to be strictly graphic if and only if X,
has an f-barrier B=(S, T, U).

The theory simplifies in this case since U has at most one component in G.
Hence h(B, )=0 or 1. Moreover f is even-summing on K, and therefore (B, f)
is even, by 3.2, We can therefore assert that P fails to be strictly graphic if and only
if there is a K,-triple B=(S, T, U) such that

(43) A(S, T)—S.?,;f(S)—tGZTf'(t) > 0.

Some improvemenis on (43) are possible. For example we can arrange that
if tis in T then f(¢)=|T|+ |U]|, for otherwise we could transfer ¢ to U without dimin-
ishing the left side of (43). Considering possible transfers from U to T we see that
we can then arrange that if % is in U then f(u)<|T|+|U|. By transfers between



GRAPH FACTORS 93

S and U we can further arrange that f(s)=|T| if s is in S, and that f(2)>|T| if u
is in U.

These arrangements having been made we observe that T now consists of the
vertices with suffixes from 1 to r, where r=|T|. We have moreover A(S, T)=
r(p—r—|U| and f'(t)=p—1—f(t). We can now assert that P fails to be strictly
graphic if and only if there is a non-negative integer r, not exceeding p, such that

(44) ;; fi>r(r—D+ 2”1 min (r, f).

i=r+

This is the condition given by Erd6s and Gallai.

7. Variations
Let G be a graph. Let f and g be vertex-functions of G such that

45) val(G, x) =f(x) = g(x) =0,

for each vertex x of G. We define a (g, f)-subgraph of G as a spanning subgraph
H such that

(46) fx)=val(H, x) = g(x)

for each x in V(G). Thus an f-factor of G is an (f, f)-subgraph.

Graph-factor duality carries over into the theory of (g, f)-subgraphs. For
if H is any (g, f)-subgraph of G then the remaining edges of G define an (f, g’)-
subgraph. However we shall not emphasize this aspect of the theory in the pre-
sent Section.

Let H be a (g, f)-subgraph of G. We define its shortcoming M(H,f) with
respect to f as follows.

47N M(H, f) = xe%'o) {f(x)—val (H, x)}.

This number measures the amount by which A fails to be an f-factor. We note that
(48) M(H, f)=Z(G, f) (mnod2).

Most published extensions and generalizations of the f~Factor Theorem are
theorems about (g, f)-subgraphs. Often they derive fairly easily from the following
theorem 7.1. Yet this theorem is not a true generalization of the f~-Factor Theorem
but a simple deduction from it.

We need one more definition. Let B=(S, T, U} be any G-triple. Then we
define 44(B, f, g) as the number of components C of U in G such that C is odd with
respect to B and f, and such that f(¢)=g(c) for each vertex ¢ of C.

7.1, Let f and g be vertex-functions of G satisfying (45). Let M and q be non-negative
integers, M having the parity of Z(G, f). Then either G has a (g, f)-subgraph H such that

49) M-2¢g=MHf=M
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or it has a G-triple B=(S, T, U) satisfying one of the following conditions (i), (ii)
and (ii1). But it cannot have both.

() 6(B,f) =M,
() 6(B,g)> 2 {f()—g(x)}—M+2q,
x€EV(G)

(iii) ho(B, f, g)—s,?;f(S)—tég’(t)+ﬂ(S, T)=0.

Proof. We construct a graph K from G as follows. We introduce one new vertex k.
If x is in ¥ (G) we join k to x by exactly f(x)—g(x) new edges. Finally we attach ¢
new loops to k. Next we define a vertex-function f; of K. We put f, (k)= M and write
fi(x)=f(x) for each x in V(G). We note that f] is even-summing on K, by (48). It
is easily verified that G has a (g, f)-subgraph H satisfying (49) if and only if X has
an f;-factor.

By 6.1 either G has such an H or there is a K-triple Z=(P, @, R) such that

(50) 8(Z,fy)=0 (but not both).

With such a Z there are three possibilities: k is in P, @ or R. Conditions
(i), (i) and (iii) are obtained by stating (50) in terms of G for each of these.

To deal with the first possibility we consider any G-triple B=(S, 7, U) and
the K-triple Z=(P, Q, R), with k in P, such that S=P—{k}, T=0 and U=R. We
note that Ind (G, U) and Ind (K, R) are identical, and that J(B, f, C)=J(Z, f;, C)
for each component C of Ind (G, U) by (14). Hence, by (17),

3(Z, f) = h(B, f)—sEZSf(S)—M
—‘EZT{f'(t)+(f(t)—g(t))}+/1(5, T)
-2 () —e®)
teT

= §5(B,f)—M.

We deduce that there is a Z with & in P and satisfying (50) if and only if there is a
B satisfying Condition (i).

Next we consider any G-triple B=(S, T, U) and the K-triple Z=(P, 0, R),
with k in Q, such that S=P, T=0—{k} and U=R. Again the graphs Ind (G, U)
and Ind (K, R) are identical, but now J(Z, f;, C)=J(B, f, C)+Z( f(c)—g(c)) for
each component C, the sum being over the vertices ¢ of C. Hence, by (17)

8(Z, 1) = h(B, g)_,;;f(s)
—tEZ;{f’(!H(f(t)—g(!))}—{xé%'c) (f)—g ()~ M+2q}
+A(S, TH% (f(5)—g(s)
= h(B, g)—s;; g(s) —é‘; gD+, T)

- 2 (fx)—gx)—2q+M.
*€W@)
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Accordingly there is a Z with k in Q and satisfying (50) if and only if there is 2 B
satisfying Condition (ii).

Finally we consider any G-triple B=(S, T, U) and the K-triple Z=(P, Q, R),
with k in R, such that S=P, T=0 and U=R— {k}. The components of Ind (G, U)
for which f and g agree at each vertex persist as components of Ind (X, R), and
J(Z, f;, C) is equal to J(B, f, C) for each of them. But the other components of
Ind (G, U) all unite with & to form a single component D of Ind (K, R). Put d=0
or 1 according as D is even or odd with respect to Z and f;. By (17) we have

8(Z ) = d+ho(B. f, 8= 2 1)
-2 {F' O+ ) —g@O)}+AS, T).

Now 3(Z, f;) is necessarily even, by 3.2. It therefore follows from the above result
that there is a Z with & in R and satisfying (50) if and only if there is a B satisfying
Condition (iii). This completes the proof of 7.1. J

We go on to consider some specializations of 7.1. One possibility is to take
M and ¢ so large, with 2g=M, as to impose no restrictions on. M (H, f) other than

(1) 0=MH,f)= xe%@(f(x)—g(x)),

which is required by (46) and (47). With sufficiently large M and g Conditions (i)
and (ii) of 7.1 become impossible. Thus we deduce the following result, called Lovész’
Theorem, from 7.1. [5].

7.2, Let f and g be vertex-functions of G satisfying (45). Then G has either a (g, f)-
subgraph or a G-triple B=(S, T, U) satisfying Condition (iii) of 7.1, but not both. |

M. Las Vergnas [4] has made an interesting observation on the special case
of Lovasz’ Theorem in which g(x) is O or 1 for each x. Essentially he finds that if
G has no (g, f)-subgraph then B can be chosen so as to satisfy the following con-
dition: each vertex ¢ of T satisfies g(¢)=1 and is incident in G only with edges join-
ing it to S.

We can prove this by a careful study of the circumstances in which a vertex
can be transferred from 7 to U or from U to S without diminishing the expression
on the left of the inequality of Condition (iii).

Given B=(S, T, U) satisfying (iii) we write Q for the set of all components
C of U in G such that C is odd with respect to B and £, and such that fand g agree
at every vertex of C.

Take first a vertex ¢ of 7. Let a(?) be the number of members of Q joined
to ¢. If ¢ is transferred to U the expression on the left of the inequality of (iii) increases
by not less than

val (G, t)—g(t)—A(S, t)—a(t).

By making transfers from T to U we arrange that each remaining vertex ¢ of T
corresponds to a negative value of the above expression. This means that g(z)=1,
that each edge incident with ¢ joins it either to S or to a member C of Q, and that
no two edges of G join ¢ to the same member of Q.

7
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Let us now suppose that some edge E joins 7 to a vertex u of some C in Q.
If f()=g@)=0 it is permissible to transfer u to S. For the possible decrease of 1
in hy(B, f, g) is offset by the increase in A(S, 7). If f(u)=g(w)=1 the transfer is
still permissible, since it does not now diminish /,(B, f, g). This is because the sum

of the numbers
F)+MT, x)

over all the remaining vertices x of C is still odd.

When no more transfers from T to U or from U to S can be made without
diminishing the expression of the left of the inequality of Condition (iii) it follows
from the preceding observations that B satisfies Las Vergnas’ condition.

We now specialize 7.1 to the case in which ¢=0 and g(x)=0 for each x.
We take M to be an integer satisfying the following condition (52) and having the
parity of Z(G, f).

(52) 0=M=2(G,f)

If Condition (ii) of 7.1 holds we can transfer each vertex of T to U by 4.4.
The transfer is also possible when Condition (iii) holds, as we have seen in our
discussion of Las Vergnas’ Theorem. So when B=(S, T, U) satisfies (ii) or (iii)
we can assume that 7 is null. But then h(B, g), h,(B, f, g) and A(S, T) are all zero
and the stated inequalities are impossible. Accordingly we have the following theorem,

7.3. Let f and g be vertex-functions of G satisfying (45), g(x) being zero for each x.
Let M be an integer satisfying (52) and having the parity of 2(G, f). Then G has either
a (g, f)-subgraph H such that M(H,f)=M or a G-triple B satisfying Condition (i)
of 1.1, but not both. |}

The special case of 7.3 in which f is the unit vertex-function is of special
interest. We can then suppose B of the form (S, 8, ¥(G)—S), by 4.4. Condition (i)
is then equivalent to the assertion that

(53) M+|S| < h(S).

Here we have Berge’s generalization of the 1-Factor Theorem.

We now take note of a variation on graph-factor theory using edge-capacities.
We suppose given a vertex-function f of G. To each edge E of G we assign a non-
negative integer c¢(E) called its capacity. A solution of f in G, with respect to the
capacities, is a function p assigning to each edge £ a non-negative integer p(E)
not exceeding ¢(E), and having the following property: for each vertex x of G the
sum of the numbers p(E) assigned to the incident edges, loops being counted twice,
is f(x). J. Edmonds has pointed out to the author that such solutions can be found
by algorithmic methods. Here we are concerned only to relate their theory to that
of f-factors.

Let us construct from G a graph K as follows. We replace each edge E by
¢(E) distinct edges with the same two ends. Evidently f has a solution in G, with
respect to the given capacities, if and only if K has an f~factor. The theory of f-factors
is thus easily modified so as to deal with solutions of f. Essentially we have only to
interpret the symbol A(S, T) as the sum of the capacities of the edges joining S to
T rather than as the number of such edges.
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