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This exposition is concerned with the main theorems of graph-factor theory, Hall's and 
Ore's Theorems in the bipartite case, and in the general case Petersen's Theorem, the I-Factor 
Theorem and the f-Factor Theorem. Some punished extensions of these theorems are discussed 
and are shown to be consequences rather than generalizations of the f-Factor Theorem. The bipartite 
case is dealt with in Section 2. For the proper presentation of the general case a preliminary theory 
of "G-triples" and '~-barriers" is needed, and this is set out in the next three Sections. The f-Factor 
Theorem is then proved by an argument of T. Gallai in a generalized form. Gallai's original proof 
derives the 1-Factor Theorem from Hall's Theorem. The generalization proceeds analogously from 
Ore's Theorem to the f-Factor Theorem. 

1. f-Factors 

The graphs  o f  this paper  are finite. They may  have loops  and mul t ip le  jo ins .  
We write val  (G, x) for  the valency of  a vertex x in a g raph  G. I t  is the number  o f  
edges o f  G incident  with x, loops  being counted  twice. 

I f  S and  T are disjoint  sets o f  vertices o f  G we write 2 (S ,  T) for  the number  
of  edges of  G jo in ing  S to T. I f  T has only one vertex t we wri te  2 (S ,  T) also as 
2 (S ,  t).  I f  A is an  edge o f  G we write G ]  for  the g raph  derived f rom G by dele t ing A.  
We write IS] for  the card ina l i ty  o f  a set S. 

A vertex-function of  G is a mapp ing  f o f  the vertex-set  V(G) of  G into the  
set o f  integers. Given  such an  f we define an  associa ted  ver tex-funct ion f"  by the 
fol lowing rule. 

(1) f ' (x)  = val  (a, x) - f ( x )  

for  each x in V(G). Thus  ( f ' ) ' = f .  
Given  a ver tex-funct ion f of  G we define an  f-factor of  G as a spanning  sub- 

g raph  F o f  G such tha t  

(2) val (/7, x)  = f ( x )  

for  each vertex x. 
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Each fifactor of G has a unique associatedf '-factor,  defined by the remaining 
edges of  G. 

1.1. Let f be a vertex-function of  a graph G. Then G has an f'-factor if  and only if  
it has an f-factor. I 

This result introduces a duality into the theory of  graph-factors. When possible 
we shall state our general theorems in self-dual forms, symmetrical as between f 
and f ' .  Truly unsymmetrical theorems occur in dual pairs. Each member of  such 
a pair is the result of stating the other for f '  instead o f f ,  and then reverting to f by 
using (1). Consider for example the statement that G has no f-factor if f ( x ) < 0  
for some x. The dual theorem asserts that G has no f-factor if val (G, x)<f(x) for 
some x. 

The vertex-function f of  G such that f (x )= 1 for each x is the unit vertex- 
function of G. The corresponding f-factors are the 1-factors of G. They are of special 
importance in the literature. The classical theorems of  Petersen and Hall are theo- 
rems about 1-factors. 

2. Bipartite graphs 

A bipart#ion of  a graph G is an ordered pair (Z, Y) of complementary sub- 
sets of V(G) such that each edge of G has one end in X and one in Y. A bipartite 
graph is one with a bipartition. Thus a bipartite graph can have no loops. 

The bipartite case deserves special study as being the easy part of  graph- 
factor theory. Moreover in the present paper the general case is made to depend on it. 

Let f be a vertex-function of  a graph G with a bipartition (X, Y). I f  S and T 
are subsets of X and Y respectively we write 

(3) 
that is 
(4) 

y(S, T) = 2(S, T)-- Z f ( s ) - -  Z f ' ( t ) ,  
sES tET  

y(S, T) = Z f ( t ) -  Z S ( s ) - 2 ( X - S ,  T). 
tET  s £S  

I f  also S~ and T~ are subsets of X and Y respectively it is clear that 

2(SUS,, T UTO+).(SNS~, T NTa) ~= 2(S, T ) + 2 ( $ t ,  7"1). 

Hence, by (3), 

(5) g(SUS~, T UTx)+v(SO S~, T nT t )  -~ g(S, T)+7(Sa ,  TO. 

We say that f is balanced with respect to (X, Y) if  

(6) Z f(x) = Z f(y). 
xEX y E Y  

The following theorem says all that need be said about the unbalanced case, 
since X and Y can be interchanged in its statement. 
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2.1. Suppose that 
f (x)  < Z f(Y). 

x E X  Y E Y  

Then G has no f-factor. Moreover 7(X, Y)>0.  

Proof. I f  F were an f-factor of G then each side of the inequality would have to 
be equal to the number of  edges of  F. The second part of the theorem follows 
from (4). l 

We proceed to the proof of Ore's Theorem. The symbol 0 denotes a null set. 

2.2. Let f be balanced with respect to (X, Y). Then G is without an f-factor if  and 
only i f  there are subsets S and T of X and Y respectively such that 

(7) "~ (S, T) > 0. 

Proof. Suppose (7) to hold for some S and 7". If  F is an f-factor of  G let n be the 
number of its edges incident with vertices of T. Then 

Z f ( t )  = n ~_ Z f ( s ) + 2 ( X - S ,  T). 
t E T  sES 

But then ~(S, T)~_0, by (4), which contradicts (7). 
Conversely, consider the class of graphs G having no pair (S, T) satisfying 

the stated conditions. I f  possible choose such a G so that G has no f-factor, and 
so that the number c~ of edges of G has the least value consistent with this condition. 

We observe that f(x)->0 for each x in X, and tha t f ' (y ) ->0  for each y in Y. 
For  otherwise (7) would be satisfied by a pair (S, T) of the form ({x}, 0) or (0, {y}). 

We can prove also that f ' ( y ) > 0  for each vertex of  y that is incident with 
at least one edge. For  suppose f ' ( y ) = 0 ,  that is f(y)=val(G,y) for one such y. 
Then we form a bipartite graph H from G by deleting y and its incident edges. 
We define a balanced vertex-function g of H by the rule that for each vertex v of  
H the number g(v) is f(v) diminished by the number of edges joining v to y in G. 

I f  H has a g-factor then clearly G has an ]=factor. So by the choice of  G 
we can find S~=X and T ~ Y - { z }  such that 7 ( S , T ) > 0  in H. But then we have 
also ~(S, Tt3 {y})>0 in G, by (3). From this contradiction we infer that in fact 
f "  (y) > 0. 

Now suppose that ~ = 0. Since f is balanced, and since i f (y )= - f ( y )  in this 
case, it follows from the preceding observation that f(v)=-0 for each v in V(G). 
But then G is its own./=factor, and we have a contradiction. 

We deduce that G has an edge A. Any ]=factor of G~t would be an f-factor 
of G. So, by the choice of G, we cart find S a ~  X and T t ~  Ysuch that y(S t ,  TA)>0 
in G~. But y (S t ,  Tt)~-0 in G. Considering the definition (3) we see that the only 
way in which these requirements cart be reconciled is for A to join a vertex z of  
T a to a vertex of X -  S t .  (The value of f "(z) is one less in G~t than in G.) Then more- 
over we have 7 (S t ,  Ta )=0  in G. 

It follows from these observations that we can find S _  c X and T _  C Y so that 

(8) ~,(S, T)  = 0 in G, 

and so that some edge of  G joins T to X - S .  Choose such a pair (S, T) so that 
]SLI T] has the least possible value. Since i f ( z )> 0 for at least one z in T, it follows 
from (3) and (8) that there is an edge B of  G joining S to T. 

6* 
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As with A we can find Sn ~ X and TB ~ Y so that 

(9) 7(SB, Tn) = 0 in G, 

and so that B joins T B to A"-SB. 
By the choice of  G neither y(SU S B, TU TB) nor y(SN SB, T• TB) can be 

positive in G. Hence, by (5), (8) and (9) we have 

10) 7(SfqSn, T A T B ) = O  in G. 

But the edge B joins TATn  to a vertex not in SNSn .  It follows, by the choice of 
S and T, that SO= Sn and T ~  T B. But this is impossible; the edge B joins S to T, 
but not SB to TB. The theorem follows. II 

The above form 2.2 of Ore's Theorem has the advantage of being self-dual. 
But the following form is often preferred. 

2.3. Let f be balanced with respect to (X, Y). Then G is without an f-factor if and 
only i f  there is a subset T of Y such that 

(11) Z f ( t )  > ~ '  Min {f(x), 2(T, x)}. 
tET  xEX 

Proof. If  (7) holds, then so does (1 I), by (4). If (4) holds we define S as the set of 
all vertices s of X such that f (s )>2(T,  x). We can then deduce (7) fi'om (4). Accord- 
ingly Propositions 2.2 and 2.3 are equivalent. II 

If  T ~  Y let us write D(T) for the set of all vertices of X that are joined to T. 
We can now state Hall's Theorem as follows. 

2.4. Let (X, Y) be a bipartition of G such that IX[= [El. Then G is without a 1-factor 
i f  and only if there is a subset T of Y such that 

(12) ITI > ID(T)t. 

Proof. The requirement IX] = [Y[ is merely a restriction to the balanced case. Theo- 
rem 2.3 reduces immediately to 2.4 when we take f to be the unit vertex-function. 
For  if x is in X then Min {f(x), 2(T, x)} is 1 if x is in D(T), and is zero 
otherwise. II 

We conclude this Section by noting one more property of the function 7 (S, T). 

2.5. Let f be balanced with respect to the bipartition (X, Y) of G. Let S and T be 
subsets of X and Y respectively. Then 

(13) 7(S, T) = 7 ( Y - T , X - S ) ,  

where the left and right sides are defined in terms of the bipartitions (X, Y) and (Y, X) 
respectively. 

Proof. Since f is balanced we can rewrite (4) as 

y ( S , T )  = ~ f (s)--  ~ f ( t ) - ) . ( X - - S ,  T). 
sEX- -S  t E ¥ - - T  

But the expression on the right is 7 ( Y -  T, 1 ( -  S), by another application of (4). II 
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3. G-triples and f-barriers 

Let G be a graph, and let f be a vertex-function of G. 
Any subset U of V(G) defines an induced subgraph Ind (G, U) of G. It is 

made up of the vertices of U and the edges of G having both ends in U. (A loop is 
said to have two coincident ends.) We refer to the components of Ind (G, U) as 
the components of U in G. 

A G-triple is an ordered triple (S, T, U), where S, T and U are disjoint sub- 
sets of V(G) whose union is V(G). If B=(S, T, U) is a G-triple we write B" for the 
G-triple (T, S, U). 

If  B=(S, T, U) is a G-triple, and C is any component of U in G, we write 

(14) J(B,f,C) = • {f (c)+2(r ,  c)}. 
c E v(C) 

We say that C is an odd or even component of U in G, with respect to B and f ,  accord- 
ing as J(B,f, C) is odd or even. We denote the number of odd components of U 
in G, with respect to B and f ,  by h(B,f). 

3.1. Let B=(S, T, U) be a G-triple, and let C be a component of U in G. Then 

(15) J(B',f ' ,  C) =-- S(B,f, C) (rood 2). 

Proof. 

J(B' , f ' ,  C)+J(B, f ,  C) = ~ '  {val(G, c)+2(T, c)+2(S, c)}, 
cEV(O 

by (1) and (14) 
- Z v a l ( C , c ) - 0  (mod2). [ 

cEV(C) 

Thus a component of U in G is odd with respect to B'  and f "  if and only if 
it is odd with respect to B and f.  We thus have 

(16) h (B',f ') = h (B,f). 

We define the deficiency 6(B,f) of the G-triple B=(S,  T, U), with respect 
to f ,  as follows. 
(17) ~5(B, f )  = h(B, f ) -  ~ f ( s ) -  ~ f ' ( t ) + 2 ( S ,  T). 

sES tET 
By (16) we have 
(18) 6 (B, f )  = 6 (B ", f ' ) .  

We can indeed regard (17) as a self-dual definition, symmetrical with respect to the 
double interchange o f f  with f '  and B with B'. 

An f-barrier of G is a G-triple B=(S, T, U) such that 6(B,f)>O. If  B is an 
f-barrier then B" is an f ' -barrier,  by (18). 

If  K is any subgraph of G we write S(K, f )  for the sum of the numbers f(x) 
over all vertices x of K. We say that f is odd-summing or even-summing on K accord- 
ing as Y,(K,f) is odd or even. 

3.2. Let B=(S,  T, U) be a G-triple. Then 

(19) 6(B,f) -- z ( a , f )  (mod 2). 
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Proof. By (14) and (17) 

c~(B, f )  =-- Z {f(u)+;t(T, u)}+ Z f ( s ) +  Z {val (G, t )+f(t)}+2(S,  T) 
uEU sES t E T  

--- Z(G, f )+2(T,  U)+,~(S, T)+ .~  val(G, t) 
t E T  

7.(G,f) (rood2). II 

We conclude this Section by seeking out some examples of ./:barriers. We 
note some obvious but important ones in the following two theorems. 

3.3., I f  f(x)<O for some x in V(G) then ({x}, 0, V(G)-  {x}) is an f-barrier. Dually 
i f  f (x)<0, that is i f  f (x)>val  (G, x), then (0, {x}, V(G)-  {x}) is an f-barrier. 

3.4. l f  f is odd-summing on G, then (0, O, V(G)) is an f-barrier. 

Theorem 3.3 is an immediate consequence of (17). Theorem 3.4 can be regarded 
as a consequence of 3.2. For the deficiency of (0, 0, V(G)) is non-negative by (17), 
and odd by 3.2. II 

We can discover occurrences off-barriers in the bipartite theory of Section 2. 
Let us return to the case in which G has a bipartition (X, Y). 

Let S and T be subsets of X and Y respectively. Let B be the G-triple 
(S, T, Y(G) - (SU T)). By comparing Equations (3) and (17) we find that 

(20) ~ (B,f)  _~ r (S, T). 

Applying this result to 2.2 we obtain the following. 

3.5. Let G have a bipartition (X, Y) and let f be balanced with respect to (X, 10. 
Then i f  G has no f-factor it has an f-barrier (S, T, U) such that S ~ X  and 
TC=r'. l 

Another observation of interest can be made in the bipartite case. Let P 
and Q be complementary subsets of V(G), and let B be the G-triple (P, Q, 0). Then 

~ ( B , f ) = 2 ( P N X ,  Q N Y ) + 2 ( Q N X ,  P N Y ) - ~ f ( p ) - Z f ' ( q ) ,  by(IT), 
pEP qEQ 

= ~(PNX, Q N Y ) + 7 ( P N Y ,  Q N X )  

by (3). Here the first 7 is defined in terms of (X, Y) and the second in terms 
of (Y, X). Hence 

(21) 6(B,f)  = 2~(PNX, Q N Y), by (13). 

We note that if S ~  Xand T~  Ywe can arrange that P N X = S  and QN Y = T  
by writing 

P = S U ( Y - T )  and Q = ( X - S ) U T .  

3.6. Let G be a bipartite graph. Then G has either an f-factor or an f-barrier of  the 
form (P, Q, 0), but not both. 

Proof. Choose a bipartition (X, Y) of G. I f f  is not balanced with respect to (X, Y) 
the theorem follows from 2.1 and Equation (20). In the balanced case we use 2.2 
and Equation (21). II 
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4. Transformations of G-triples 

Let f be a vertex-function of a graph G. 
Let B=(S ,  T, U) be a G-triple. I f  x is a vertex of S or T we write p(x) for 

the number of  components C of U, odd with respect to B and f ,  such that x is joined 
to C by some edge of G. 

4.1. Let x be a vertex of S, and let B1 be the G-triple ( S -  {x}, T, UU {x}). Then 

(22) c5 (BI , f )  -- ~5 (B,f)  = f (x) - p (x) - 2 (T, x) + ~l (x), 

where q(x) is 0 or 1 and is chosen to make the right side of  (22) even. 

Proof. Consider Equation (17), the definition of 6(B, f ) .  When we change from B 
to BI the term 2(S, T) is diminished by 2(T, x), the term -~. f ' ( t )  is left unaltered, 
and the term -~, f (s)  is increased by f (x) .  The graph Ind (G, U) loses /l(x) odd 
components, and perhaps some even ones too. The lost components are all absorbed 
into the single new component D containing x. We deduce that in the transforma- 
tion h(B , f )  is diminished by i t ( x ) - e ,  where ~ is 1 or 0 according as D is odd or 
even with respect to B~ and f We conclude that 

~(B~,f ) -~(~, f )  = f ( x ) - ~ ( x ) -  2(T, x)+~. 

But 6(Ba,f)  and 6(B , f )  have the same parity, by (3.2). Hence a=r/(x).  II 

4.2. Let x be a vertex o f T ,  and let B~ be the G-triple (S, T - { x } ,  UU {x}). Then 

(23) t~(Bl , f ) - - ~ ( B , f  ) = f ' ( x ) - p ( x ) -  2(S, x) + ~l'(x), 

where q'(x) is 0 or 1, and is chosen to make the expression on the right even. 

Proof. This theorem is the dual of 4.1. To prove it we first state 4.1 with B~, B'  
a n d f '  replacing B1, B and frespectively. We then use (18). We also use 3.1 to show 
that p(x) is invariant under duality. II 

We refer to the change from B to B1 in these two theorems as a transferrence 
of  x from S or T to U. When using the theorems we should bear in mind that 

(24) /~(x) _<- 2(U, x). 
Two applications follow. 

4.3. Let B=(S ,  T, U) be a G-triple, and let x be a vertex of S such that f ( x ) = v a l  
(G, x)  or val (G, x ) -  1. Then the transferrence of x from S to U does not diminish 
the deficiency of B. 

Proof. By (24) the expression on the right of  (22) must be non-negative. II 

4.4. Let B = ( S ,  T, U) be a G-triple, and let x be a vertex of T such that f ( x ) = 0  
or 1. Then the transferrence of x from T to U does not diminish the deficiency of B. 

This is the dual of  4.3, derivable analogously from 4.2. II 
Our next theorem relating different G-triples concerns a G-triple B = (S, T, U), 

a component C of U, and a C-triple B c = ( S c ,  Tc, Uc). It deals also with a vertex- 
function f c  of C. 
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We define the augmentation of B by Bc as the G-triple BI=(Sa, / '1 ,  U1), 
where $1 = S USc and 7"1 = TU T c 

For each vertex c of C we define the divergence div ( fc ,  c) offc at c as follows. 

(25) div (fc, c) = [ f (c) -2(T,  c)-fc(c)l. 

We define the total divergence div (fc) o f fc  as follows. 

(26) div (fc) = Z div (fc, c). 
c £ v(C) 

4.5. Let B=(S,  T, U) be a G-triple, C a component of U, and Bc=(Sc ,  Tc, Uc) 
a C-triple. Let B1 = (S~, 7"1, UI) be the augmentation of  B by Bc, and letJc be a vertex- 
function of C. Then 

(27) 6 (B~, f )  >- 6 (B, f )  + 6 (Bc, fc) - div (J'c) - 1. 

Proof. We begin with some deductions from the definition of an odd component. 
We observe first that any odd component of U with respect to B and f other than 
C, is also an odd component of U~ with respect to BI and fi Moreover if Dc is an 
odd component of U c with respect to Bc and fc ,  and if the divergence of Jc is zero 
at every vertex of Dc, then D c is an odd component of U1 with respect to B~ and 
fi Hence 

(28) h (Bt, f )  _~ h (B, f ) -  I + h (Bc, fc)--  • div (fc,  u). 

But, by (17), u~uc 

`5 ( B l , f )  - ~ (B, f )  = h (B~, f )  - h (B, f )  - Z f ( s )  
sES¢  

- Z {val (G, t ) - f ( t ) } + 2 ( S c ,  T)+,~(S, Tc)+2(Sc, Tc) 
t E T  c 

>= h (B c, fc) - 1 -- ._.,Y div (fc, u) 
uEUc  

- ~ '  {f(s)-2(T,  s )}-  Z {val(C, t ) - f ( t ) + 2 ( T ,  t)} 
sE5 c l E T  c 

+ ,~(Sc, Tc), by (28), 

~_ ,5 (Bc, fc) - 1 - div (fc), 

by (17) and (26). II 

Let A be an edge of a graph G. A G-triple B= (S, T, U) can also be regarded 
as a G~-triple. Let its deficiency be 6(B,f)  in G and ~SA(B,f) in G~. 

Let us first consider the change in Ind (G~, U) when A is restored. If  A has 
both ends in a component C of Ind (G~, U) then A is added to that component. 
The other components persist unchanged in Ind (G, U), and no component changes 
its parity with respect to B and fi If A joins two distinct components of Ind (G~, U) 
these are united with A to form a single new component of Ind (G, U). The new 
component is even if and only if the two original components were both even or 
both odd. The other components of Ind (G~., U) persist with their parities unchanged. 
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In all the remaining cases Ind (G~t, U) is the same graph as Ind (G, U). 
A component of this graph has different parities in G and G~t if A joins it to a vertex 
of  T, but not otherwise. 

Having made these observations we can use (17) to establish the follow- 
ing rule. 
4.6. 6a(B, f )  = 6(B, f ) + 2 ,  

i f  A joins two odd components of Ind (G'a, U), if  it joins one odd component to T, 
or i f  it has both ends in T. In all other cases 

6a(~,f) = 6(B,f). I 

5. f-Prefactors 

Let f be a vertex-function of a graph G. 
Let B=(S, T, U) be a G-triple. An f-prefactor of G based on B is a spanning 

subgraph H of G satisfying the following three conditions. 
(i) Each edge oJ" H is incident with a vertex of S or T. 

(ii) I f  x is in S or T then val (H, x)=f(x) .  
(iii) I f  C is any component of U in G, then 

(30) ~ val(H, c) -- ~ f(c) (mod2). 
c E v(C) c E V(C) 

The term "f-prefactor" is justified by the following theorem. 

5.1. Let F be an f-factor of G and let B=( S, T, U) be a G-triple. Let H be the spanning 
subgraph of G defined by those edges of F that have an end in S or T. Then H is an 
f-prefactor of G based on B. 

This theorem is art easy consequence of the fact that F satisfies (2). It may 
suggest to us that in seeking for an f-factor of G we should first try to construct 
an f-prefactor H based on some B=(S, T, U). Having succeeded in this we might 
hope to turn H into an f-factor by adding edges in the components of U. That is 
the basic idea of the generalized Gallai method. The next theorem shows that we 
must accept certain restrictions on H and B. 

5.2. Let H be an f-prefactor of G based on a G-triple B=(S,  T, U) such that 6(B,f)~O. 
Then 6(B,f)  must be zero. 

Moreover if C is a~y component of U in G then the edges of H having an end 
in C are the edges of G joining C to T, except that just one edge e(C) must be added 
to or omitted from these when C is odd with respect to B and/" 

Furthermore each edge of G having both ends in T belongs to H, and no edge 
of G with both ends in S belongs to H. 

Proof. Consider any odd component C of U. By Equation (14) and Condition (iii) 
the number of edges of H joining C to SU T has the panty of 

J(B, L c )+  ~' ~(r, c). 
c~ v(C) 

But J(B,J~ C) is odd. Hence we cart find an edge e(C) of G such that either e(C) 
is in H and joins C to S, or e(C) is not in H and joins C to T. 
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We choose one such edge e(C) for each odd component C of U. Of the result- 
ing h(B, f )  edges e(C) let there be p in H and q not in H. 

Let k be the number of edges of H joining S to T. Then, by (2) the following 
inequalities must hold. 

(31) k ~_ Z f ( s ) - p ,  
s £ $  

(32) k ~ z~ { f ( t ) - (va l  (G, t ) - 2 ( S ,  t))} +q.  
tET 

Combining these we find that 

0 >= p+q- -  ,~ f ( s ) - -  ~ f ' ( t ) + 2 ( S ,  T) = ~5 (B, j0. 
sES t E T  

Since 6(B, j0 is non-negative by hypothesis we deduce that it is in fact zero. 
But for this deficiency to be zero equality must hold in both (31) and (32). 

Equality in (31) means that any edge of H with an end in S must either join S to T 
or be one of the p such edges of the form e(C). Equality in (32) means that if an 
edge of  G has an end in T but no end in S, then either it belongs to H or it is one 
of the q such edges of the form e(C). The theorem follows. 1 

From 5.1 and 5.2 we can deduce the following theorem 5,3, partially revealing 
the relationship between f-factors and ]=barriers. 

5.3. I f  G has an f-barrier it has no f-factor, l 

Theorem 5.2 indicates that G-triples of zero deficiency are likely to be impor- 
tant in our theory. We therefore insert an existence theorem about them. 

5.4. Suppose G to have at least one edge. Suppose further that G has no f-barrier, 
but G'a has an f-barrier for each edge A of G. Then there exists a G-triple B=(  S, T, U) 
such that 6 ( B , f ) = 0  in G and such that S and T are not both null. 

Proof. By 3.4 f is even-summing on G, and therefore on G~ for each edge A. 
For each A the graph G~ has an f-barrier BA=(Sa, Ta, Ua). By 4.6 the 

restoration of A can decrease the deficiency of BA by at most 2. We infer from 3.2 
that 6(BA, f )=2  in G] and 6 ( B , f ) = 0  in G. 

We may now assume that B a =(0, 0, V(G)) for each A, since otherwise the 
theorem holds. By 4.6 this means that each A is an isthmus of G, whose deletion 
splits the corresponding component of G into two connected pieces, the end-graphs 
of  A in G, and moreover f is odd-summing on each of these end-graphs. 

We see that G is a forest. It therefore has a monovalent vertex x with t h e  
single incident edge X. Write B=({x}, 0, V(GO- {x}). Then V(GO- {x} has one odd 
component with respect to B and f ,  namely the end-graph of X" not including x. 
But J'(x)~_l, by 3.3. Accordingly 3 ( B , f ) = 0  by our hypothesis. This completes 
the proof. I 

We conclude the Section with an existence theorem for f-prefactors. It rep- 
resents the application of bipartite theory in the generalized Gallai method. 

5.5. Let B=(S,  T, U) be a G-triple with 6(B , f )=0 .  Then either G has an f-prefactol 
based on B or it has an flbarrier Z = (P, Q, R) such that P c= S and Q c= I". 
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Proof. We construct from G a graph (71, as follows. The edges of  G1 are the edges 
of G with at least one end in S or T, together with one new edge a(C) for each com- 
ponent C of  U in G. The vertices of  G1 are the members of  S and T, together with 
two new vertices x(C) and y(C) for each component C of U. The ends in GI of 
a(C) are x(C) and y(C). I f  an edge of  G joins a component C of  U to S, then it 
is incident with y(C) in 6;1. If  instead it joins C to T then it is incident with x(C) 
in G1. The other incidences of (71 are as in G. The construction is illustrated in 
Figure 1, for a case in which U has just two components Cx and C~. 

T 

xlC 0 xlCJ 0 S 
F~g. 1 

We define a vertex-function f l  of  6;1 by the following rules, fl(x)=f(x) if x 
is in S or T. If  C is a component of  U in G thenf~(x(C))=2(x(C), T) and f~(y(C))  
is 0 or 1 according as C is even or odd in G with respect to B and f As a conse- 
quence of (14), 

(33) f~(x(C))+fl(y(C)) = Y.~ f(c) 
c E v ( o  

for each C. 

G2 

y{cl} ) 
/tc  

5 

Fig. 2 
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We now make a further change by deleting from G1 every edge having both 
ends in S, or both in T. Let the new graph be G2. For it we define a vertex-function 
f2 as follows. First we define m(t), where t is in T, as the number of edges of G 
incident with t and having both ends in T, loops on t being counted twice. For each 
vertex x of G2 not in T we write f~ (x)=fx (x). But for t in T we put f~ ( t )=f l  ( t ) -  m (t). 
The graph G,, is shown in Figure 2. 

Let U' be the set of vertices x(C), and U" the set of vertices y(C). We note 
that G~. has a bipartition (X, Y), where X=SUU" and Y=TI..JU #. We can show 
that fz is balanced with respect to (X, Y). For, in notation appropriate to G and f ,  

Z f~(Y) = h(B, f )  + Z {f(t) - re(t)} 
Y E Y  t E T  

= h ( B , f ) -  Zf '( t)+,~(S,  T)+2(U, T) 
t ~ T  

= 6(B,f)+ Z f ( s ) +  ,~ 2(T, u), by (17), 
sES  u £ U  

= Z f d x )  • 
x E X  

Suppose Gz to have an f2-factor F2. Let /-/1 be the spanning subgraph of 
G1 defined by the edges of F2 with at least one end in S or T, together with the edges 
of Ga having both ends in T. Then/ /1  is anf~-prefactor of G1 based on the Gl-triple 
(S, T, V(GO-(SUT)), as we may see by applying 5.1 to G.,. The components of 
V(GO-(SUT) in G1, as in G2, are the single-edge connected subgraphs defined 
by the edges of the form a(C). Using (33) we deduce that the edges of/-/1 define in 
G an f-prefactor H based on B. 

In the remaining case we deduce from 2.2 that there exist $1~ X and Tx~ Y 
such that, in terms of G2, 

(34) 2($1, 7"1)- Z fz(s)+ • {val (G2, t)--fz(t)} > O. 
s E S  l t E T  1 

Putting this in terms of Gt we have 

(35) 2(Sx, TO- ~ fl(s)+ z~ {val (G1, t)-f~(t)} > O. 
sES  t t ~ T  l 

By (35) the G~-triple (St, Tx, U0, where UI=V(GO-(SxUTO, is an f•- 
barrier of Gt. But by 4.3 arty vertex of U' occurring in Sx cart be transferred to 
U1 without diminishing the deficiency of the Ga-triple. By 4.4, any vertex of U" 
occurring in 7"1 can likewise be transferred to U~. We cart therefore assert that Ga 
has an A-barrier Z I=(P ,  Q, R0 such that PC_- S and Q ~  T. Let Z=(P, Q, R) be 
the G-triple with the same first and second members as Zx. 

There is a 1--1 correspondence q~ relating the components K of R in G to 
the components q~(K) of Rt in Gt. The rule is that K is obtained from q~(K) by 
replacing the edges of the form a(C) in it, each deleted with its two ends, by the 
corresponding subgraphs C of G. We note that the sum of the numbers fx(x) in 
q~(K) has the same parity as the sum of the numbers f(x) in K, by (33). It follows 
that q~ preserves parity, taken with respect to Z and f in G, and with respect to Zt  
and fl in Gt. Accordingly h(Z,f)=h(Zl,fa) and therefore 6(Z,f)=g(Z~,fa)>O. 
So Z is an f-barrier of G with the required properties. 

This completes the proof. II 
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6. The general case 

We can now state and prove the f -Fac tor  Theorem, as follows. 

6.1. Let f be a vertex-function of a graph G. Then G has an f-factor or an f-barrier, 
but not both. 

Proof. In view of 5.3 it suffices to prove that G has anf i fac tor  or an f-barrier.  
I f  possible choose G and f so that G has no f-factor and no f-barrier,  so that 

the number of  edges of  G has the least value ~ consistent with this condition, and 
so that the number/~ of vertices has the least value consistent with these conditions. 

Suppose first that c~=0. Then f ( x ) = 0  at each vertex x, by 3.3. But then G 
is its own f-factor, and we have a contradiction. 

I f  A is any edge of G the graph Gjt has no f-factor. For  any such f-factor  
would be an f-factor  of  G. So, by the choice of  G, Gjt has an./-barrier. We deduce 
f rom 5.4 that there is a G-triple B=(S, 7", U) such that  6 ( B , f ) = 0 ,  and such that  
S and T are not both null. Choose such a B so that I uI has the least possible value. 
By 5.5 G has anf -prefac tor  H based on B. 

For each component  C of  U in G we define a vertex-function f c  as follows. 

(36) fc(c) = f ( c ) - v a l  (H, c), 
for each c in V(C). 

Referring to 5.2 and the definition of even and odd components we find that  
f c  is even-summing on C. By 5.2 and (25) div ( fc,  c) is zero at every vertex c of  
C if C is even, and at every vertex but one if C is odd. The exceptional vertex in 
the odd case is the end of e(C) in C. There div ( fc ,  c ) =  1. We note that, in all cases, 

(37) div (fc) -<- 1. 

Assume that C has an fc-barr ier  Bc=(Sc,  Tc, Uc), for a particular C. Let 
B~=(S1, 7"1, [I1) be the augmentation of B by B c. By 3.2 we have 

(38) 6(Bc,fc) >-- 2. 
It  follows from (17) and the connection of C that Sc and T c are not both null. 
Accordingly 

(39) lUll < [UI. 

Applying (37) and (38) to (27), and remembering that f i ( B , f ) = 0 ,  we find 
that ,:5(Bl,f)>-_O. Hence, by our hypothesis, ~ ( B l , f ) = 0 .  But because of (39) this 
contradicts the choice of  B. 

We deduce that no C has anfc-barr ier .  But each C has fewer vertices than G. 
Hence, by the choice of  G and f ,  there exists an fc - fac tor  F c for each component  
C of U. But then the edges of H and the graphs Fc,  taken together, define an f-factor  
of  G, by (36). Thus our initial assumption that  G and f can be chosen so that G has 
no f-factor and no f-barrier  is false. The theorem follows. II 

Let us now consider some specializations. A necessary and sufficient con- 
dition for the existence of a 1-factor appears in [8]. In order to state it we need the 
following definition. I f  Sc= V(G) then we write h(S) for the number of  components 
of  V ( G ) - S  in G with an odd number of vertices. The " l -Fac to r  Theorem" is as 
follows. 



92 W . T .  TUTTB 

6.2. G is without a 1-factor i f  and only if  there is a subset S of V(G) such that 

(40) ISI < h(S). 
Proof. We apply 6.1 to the case in which f is the unit vertex-function. Using 4.4 
we find that G is without a l-factor if and only if it has an f-barrier of  the form 
B=(S,  O, V(G)-S) ,  that is if and only if there is a subset S of V(G) sat- 
isfying (40). I 

The most famous of  graph-factor theorems, Petersen's Theorem, runs as 
follows. 

6.3. Let G be a cub& graph, either without isthmuses or having all its isthmuses in a 
single arc. Then G has a 1-factor. 

Proof. Suppose G to have no 1-factor. Then by 6.2 there exists S~= V(G) satisfying 
(40). Since the number of vertices of  a cubic graph is even Isl and h(S) have the 
same parity. Hence 
(41) ISI ~-- h ( S ) - 2 .  

Of the h(S) components of V(G) -  S with an odd number of  vertices let there be 
p joined to S by a single edge, and q joined to S by 3 or more. (The number &jo in-  
ing edges of  such a component must be odd.) Then 

(42) 3IS] -~ 2(S, V ( G ) - S )  >= p+3q. 

Since h(S)=p+q it follows from (41) and (42) that p is at least 3. Accordingly G 
has three isthmuses not lying on a single arc. | 

There is an interesting application of the f-Factor  Theorem in a proof  of the 
Erd6s--GaUai Theorem on graphic sequence [1]. 

Let P=(f~,f2 . . . . .  fp) be a non-increasing sequence of  p non-negative integers 
f~, such that the f~ sum to an even number 2q. We say that P is strictly graphic 
if there is a graph G, without loops or multiple joins, whose p vertices can be enu- 
merated as Vl, vz, ..., vp so that val (G, vi)=fi for each suffix i. The Erd6s--Gallai  
Theorem gives a necessary and sufficient condition for P to be strictly graphic. 

Let K~ be a complete p-graph, with vertices vl, v~ . . . . .  vp. L e t f  be the vertex- 
function on Kp such that f(vi)=f, for each i. Evidently P is strictly graphic if and 
only if Kp has an f-factor. So, by 6.1 P fails to be strictly graphic if and only if Kp 
has an f-barrier B=(S, T, U). 

The theory simplifies in this case since U has at most one component in G. 
Hence h ( B , f ) = 0  or 1. Moreover f is even-summing on Kp and therefore 6(B,f)  
is even, by 3.2. We can therefore assert that P fails to be strictly graphic if and only 
if there is a Kp-triple B =  (S, T, U) such that 

(43) 2(S, T ) -  Y~ f ( s ) -  Z f ' ( t )  > O. 
5ES t E T  

Some improvements on (43) are possible. For  example we can arrange that 
if t is in Tthenf( t )  >- ITI + [U[, for otherwise we could transfer t to U without dimin- 
ishing the left side of  (43). Considering possible transfers from U to T we see that 
we can then arrange that if u is in U then f(u)<]Tl+lU]. By transfers between 
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S and U we can further arrange thatf(s)~_lT] if s is in S, and thatf(u)>lT] if u 
is in U. 

These arrangements having been made we observe that T now consists of  the 
vertices with suffixes from 1 to r, where r= lTI .  We have moreover 2(S, T ) =  
r (p - r - ]UI )  and f ' ( t ) = p - 1 - f ( t ) .  We can now assert that P fails to be strictly 
graphic if and only if there is a non-negative integer r, not exceeding p, such that 

r p 

(44) Z f ~ > r ( r - 1 ) +  ~ min(r,  f0 .  
i = 1  i = t + l  

This is the condition given by Erd6s and Gallai. 

7. Variations 

Let G be a graph. Let f and g be vertex-functions of G such that 

(45) val (G, x) >-f(x) >- g(x) _~ 0, 

for each vertex x of G. We define a (g,f)-subgraph of  G as a spanning subgraph 
H such that 
(46) f(x) >= val (H, x) ~ g (x) 

for each x in V(G). Thus an f-factor of  G is an (f , f )-subgraph.  
Graph-factor duality carries over into the theory of  (g,f)-subgraphs. For  

if H is any (g,f)-subgraph of  G then the remaining edges of  G define an ( f ' ,  g')- 
subgraph. However we shall not emphasize this aspect of the theory in the pre- 
sent Section. 

Let H be a (g,f)-subgraph of G. We define its shortcoming M(H,f )  with 
respect to f as follows. 

(47) M(H, f )  = Z { f ( x ) - v a l  (H, x)}. 
xEv(OD 

This number measures the amount by which H fails to be an f-factor. We note that 

(48) M(H, f )  = Z (G, f )  (mod 2). 

Most published extensions and generalizations of the f-Factor  Theorem are 
theorems about (g,f)-subgraphs. Often they derive fairly easily from the following 
theorem 7.1. Yet this theorem is not a true generalization of the f-Factor  Theorem 
but a simple deduction from it. 

We need one more definition. Let B=(S, T, U) be any G-triple. Then we 
define ho(B,f, g) as the number of components C of U in G such that C is odd with 
respect to B and f ,  and such thatf(c)=g(c) for each vertex e of C. 

7.1. Let f and g be vertex-functions of G satisfying (45). Let M and q be non-negative 
integers, M having the parity of ~ (G, f) .  Then either G has a (g, f)-subgraph H such that 

(49) M - 2 q  ~_ M(H,f)  ~_ M 
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or it has a G-triple B=(  S, T, U) satisfying one of the following conditions (i), (ii) 
and (iii). But it cannot have both. 

(i) ~ (/7, f )  > M, 

(ii) 6(B, g) > ~ { f ( x ) - g ( x ) } - M + 2 q ,  
x ~ V(G) 

(iii) ho(B, f, g)-- Z f ( s ) - -  Y~ g ' ( t )+2(S ,  T) > 0. 
sES tET  

Proof. We construct a graph K from G as follows. We introduce one new vertex k. 
I f  x is in V(G) we join k to x by exactlyf(x)-g(x)  new edges. Finally we attach q 
new loops to k. Next we define a vertex-functionJ~ of  K. We p u t f ~ ( k ) = M  and write 
f~(x) = f (x )  for each x in V(G). We note that f~ is even-summing on K, by (48). It 
is easily verified that G has a (g,f)-subgraph H satisfying (49) if and only if K has 
an f~-factor. 

By 6.1 either G has such an H or there is a K-triple Z =  (P, Q, R) such that 

(50) 6(Z, fO > 0 (but not both). 

With such a Z there are three possibilities: k is in P, Q or R. Conditions 
(i), (ii) and (iii) are obtained by stating (50) in terms of  G for each of these. 

To deal with the first possibility we consider any G-triple B=(S, T, U) and 
the K-triple Z=(P, Q, R), with k in P, such that S = P - { k } ,  T=Q and U=R. We 
note that Ind (G, U) and Ind (K, R) are identical, and that J(B,f, C)=J(Z, fl, C) 
for each component C of  Ind (G, U) by (14). Hence, by (17), 

(Z, fO = h (B, f )  - Z f ( s ) -  1~'I 
sES 

-- Z { f ' ( t )+ ( f ( t ) - g ( t ) ) }+  2(S, T) 
tET  

-- Z ( f ( t ) - -  g(t)) 
tET  

= 6 ( B , f ) - M .  

We deduce that there is a Z with k in P and satisfying (50) if and only if there is a 
B satisfying Condition (i). 

Next we consider any G-triple B=(S, T, U) and the K-triple Z=(P,  Q, R), 
with k in Q, such that S-=-P, T = Q - { k }  and U=R. Again the graphs Ind (G, U) 
and Ind(K,  R) are identical, but now J(Z, fa, C)=J(B,f ,  C)+Z( f (c ) -g(e ) )  for 
each component C, the sum being over the vertices e of C. Hence, by (17) 

6 (Z, fO = h (B, g) - Z f(s) 
sES 

-z (s'(t) +(s(t)-  g(t)))-( (S(x)- g(x))- M + 2q} 

+2(S ,  T ) +  Z ( f ( s ) - g ( s ) )  
sES 

= h(B, g) -- ~ g(s) -- ~ g'(t)+2(S, T )  
sES tET  

-- ~ ( f ( x ) -g (x ) ) - -2q+M.  
xEV(G) 
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Accordingly there is a Z with k in Q and satisfying (50) if and only if there is a B 
satisfying Condition (ii). 

Finally we consider any G-triple B=(S, T, U) and the K-triple Z=(P, Q, R), 
with k in R, such that S=P, T=Q and U=R-{k} .  The components of Ind (G, U) 
for which f and g agree at each vertex persist as components of Ind (K, R), and 
J(Z,f~, C) is equal to J(B,f, C) for each of them. But the other components of  
Ind (G, U) all unite with k to form a single component D of Ind (K, R). Put d = 0  
or 1 according as D is even or odd with respect to Z andf~. By (17) we have 

6(Z, f~) = d + ho(B, f, g ) -  Z f(s) 
sES  

- Z r). 
tel/" 

Now 6(Z,f~) is necessarily even, by 3.2. It  therefore follows from the above result 
that there is a Z with k in R and satisfying (50) if and only if there is a B satisfying 
Condition (iii). This completes the proof  of  7.1. | 

We go on to consider some specializations of  7.1. One possibility is to take 
M and q so large, with 2q~=M, as to impose no restrictions on M(H,f)  other than 

(51) 0 ~-- M(H, f )  ~_ ~ (f(x)--g(x)), 
x E v(6") 

which is required by (46) and (47). With sufficiently large M and q Conditions (i) 
and (ii) of 7.1 become impossible. Thus we deduce the following result, called Lov~isz' 
Theorem, from 7.1. [5]. 

7.2. Let f and g be vertex-functions of G satisfying (45). Then G has either a (g,f)- 
subgraph or a G-triple B=(S, T, U) satisfying Condition (iii) of 7.1, but not both. | 

M. Las Vergnas [4] has made an interesting observation on the special case 
of  Lovfisz' Theorem in which g(x) is 0 or 1 for each x. Essentially he finds that if 
G has no (g,f)-subgraph then B can be chosen so as to satisfy the following con- 
dition: each vertex t of T satisfies g ( t ) =  1 and is incident in G only with edges join- 
ing it to S. 

We can prove this by a careful study of the circumstances in which a vertex 
can be transferred from T to U or from U to S without diminishing the expression 
on the left of  the inequality of Condition (iii). 

Given B = ( S ,  T, U) satisfying (iii) we write Q for the set of all components 
C of  U in G such that C is odd with respect to B and fi  and such that f and g agree 
at every vertex of C. 

Take first a vertex t of  T. Let e( t )  be the number of  members of Q joined 
to t. If  t is transferred to U the expression on the left of the inequality of (iii) increases 
by not less than 

val (G, t)--g(t)-2(S,  t)-a(t) .  

By making transfers from T to U we arrange that each remaining vertex t of  T 
corresponds to a negative value of the above expression. This means that g ( t ) = l ,  
that each edge incident with t joins it either to S or to a member C of Q, and that 
no two edges of G join t to the same member of Q. 
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Let us now suppose that some edge E joins t to a vertex u of some C in Q. 
I f f (u)=g(u)=O it is permissible to transfer u to S. For the possible decrease of  1 
in ho(B,f, g) is offset by the increase in 2(S, T). If  f (u)=g(u)=l  the transfer is 
still permissible, since it does not now diminish ho(B,f, g). This is because the sum 
of the numbers 

f ( x )+ 2(r, x) 

over all the remaining vertices x of C is still odd. 
When no more transfers from T to U or from U to S can be made without 

diminishing the expression of the left of the inequality of Condition (iii) it follows 
from the preceding observations that B satisfies Las Vergnas' condition. 

We now specialize 7.1 to the case in which q = 0  and g ( x ) = 0  for each x. 
We take M to be an integer satisfying the following condition (52) and having the 
parity of 2(G, f ) .  
(52) 0 <= M <= ~(G,f).  

If  Condition (ii) of  7.1 holds we can transfer each vertex of  T to U by 4.4. 
The transfer is also possible when Condition (iii) holds, as we have seen in our 
discussion of Las Vergnas' Theorem. So when B=(S,  T, U) satisfies (ii) or (iii) 
we can assume that T is null. But then h(B, g), ho(B,f, g) and 2(S, T) are all zero 
and the stated inequalities are impossible. Accordingly we have the following theorem. 

7.3. Let f and g be vertex-funetions of  G satisfying (45), g(x) being zero for each x. 
Let M be an integer satisfying (52) and having the parity of  T.(G,f). Then G has either 
a (g,f)-subgraph H such that M ( H , f ) = M  or a G-triple B satisfying Condition (i) 
of  7.1, but not both. II 

The special ease of 7.3 in which f is the unit vertex-function is of  special 
interest. We can then suppose B of  the form (S, 0, V(G)-  S), by 4.4. Condition (i) 
is then equivalent to the assertion that 

(53) M+ISI  < h(S). 

Here we have Berge's generalization of the 1-Factor Theorem. 
We now take note of  a variation on graph-factor theory using edge-capacities. 

We suppose given a vertex-function f of G. To each edge E of G we assign a non- 
negative integer c(E) called its capacity. A solution o f f  in G, with respect to the 
capacities, is a function p assigning to each edge E a non-negative integer p(E) 
not exceeding c(E), and having the following property: for each vertex x of  G the 
sum of the numbers p(E) assigned to the incident edges, loops being counted twice, 
is f(x). J. Edmonds has pointed out to the author that such solutions can be found 
by algorithmic methods. Here we are concerned only to relate their theory to that 
of  f-factors. 

Let us construct from G a graph K as follows. We replace each edge E by 
c(E) distinct edges with the same two ends. Evidently f has a solution in G, with 
respect to the given capacities, if and only if K has an f-factor. The theory off-factors 
is thus easily modified so as to deal with solutions o f f .  Essentially we have only to 
interpret the symbol 2(S, T) as the sum of the capacities of  the edges joining S to 
T rather than as the number of such edges. 
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