
Brief Announcement: RaceTM – Detecting Data Races
Using Transactional Memory

Shantanu Gupta
Dept. of Electrical Eng. and Computer Science

University of Michigan, Ann Arbor, MI
shangupt@umich.edu

Florin Sultan, Srihari Cadambi,
Franjo Ivančić, Martin Roetteler

NEC Laboratories America
Princeton, NJ

{sultan, cadambi, ivancic,
mroetteler}@nec-labs.com

ABSTRACT
Widespread emergence of multicore processors will spur de-
velopment of parallel applications, exposing programmers
to more hardware concurrency. Dependable multithreaded
software will have to rely on the ability to dynamically de-
tect data races, which are non-deterministic and notoriously
hard to reproduce symptoms of synchronization bugs. In
this paper, we propose RaceTM, a novel approach that ex-
ploits transactional memory support to detect data races.
We introduce the concept of lightweight debug transactions
that exploit the conflict detection mechanisms of transac-
tional memory systems to perform data race detection. De-
bug transactions differ from regular transactions in that they
do not need to be rolled back, and therefore require no ver-
sioning or checkpointing support. Debug transactions do not
overlap with a regular transaction, thus providing a trans-
parent mechanism to leverage existing transactional memory
support for data race detection.

Categories and Subject Descriptors: D.1.3 [Software]:
Programming Techniques, Concurrent Programming; D.2.5
[Software]: Software Engineering, Testing and Debugging

General Terms: Design, Reliability

Keywords: Transactional memory, Data race detection,
Software dependability, Multicore, Parallel Programming

1. INTRODUCTION
Due to a variety of factors including production costs, re-

liability and power consumption, the computing industry
is shifting to multicore processing. Increased system per-
formance will have to be achieved mostly through higher
numbers of cores per processor rather than the traditional
approach of performance gains from clock speed increases. It
is generally understood that the only way to continue perfor-
mance improvements is by leveraging parallel programming
in software development.

Copyright is held by the author/owner(s).
SPAA’08, June 14–16, 2008, Munich, Germany.
ACM 978-1-59593-973-9/08/06.

Writing correct parallel programs, however, is significantly
harder than writing correct sequential programs. An insidi-
ous problem with parallel programs is data races. Data races
occur when two threads of a program access a common mem-
ory location without synchronization and at least one of the
accesses is a write. Some data races cause no change in the
program output, but others produce incorrect results. Data
races often indicate programming errors, and are hard to
reproduce primarily due to their non-deterministic nature.
For this reason, automatic data race detection is acknowl-
edged to be a difficult problem that has become extremely
important in the light of ubiquitous parallel programming.

Data race detection methods can be classified as either
static or dynamic. Static race detection tools analyze differ-
ent thread interleavings to detect possible data races. How-
ever, these techniques are either not scalable or too conser-
vative, and sometimes compromise scalability for false posi-
tives. For example, it may not be feasible to check all pos-
sible thread interleavings in a reasonable amount of time.
Hence, a static analyzer may make a conservative guess,
which results in data races being reported when none exist.
Similarly, the absence of a lock protecting a shared variable
does not necessarily imply a data race. Such false positives
are an annoyance and may actually hamper productivity by
causing the programmer to re-examine and attempt to de-
bug portions of the code where no data races exist.

On the other hand, in dynamic race detection mechanisms
based on locksets [7] or happened-before [3], information
about the history of an actual program execution is stored
and analyzed at runtime. Such methods are faster but are
restricted to discovering only data races exhibited by (or
close to) a particular execution. Thus, coverage of all data
races in the program is not guaranteed when using dynamic
race detection.

This paper proposes RaceTM, a system that leverages
transactional memory in order to perform efficient dynamic
data race detection. Under transactional memory, a pro-
gram is written in terms of atomic transactions that are
speculatively executed. Two transactions are in conflict with
one another when at least one of them writes to a memory
location that has been accessed by the other. We observe
the similarity between transactional conflicts and data races,
and leverage it for data race detection.

Additional hardware is not strictly necessary to support
transactional memory, but software TM systems are esti-
mated to be slower when compared to using fine-grained



locks. Hence hardware-assisted TM systems [1, 2], where
specialized hardware performs conflict detection and roll-
back, have been proposed. As an indication of the benefits
of TM systems, Sun Microsystems has included support for
transactional memory in its Rock processor [8].

RaceTM, by design, is not constrained to any particu-
lar implementation of the transactional memory system and
is amenable to both software as well as hardware versions.
However, given the fact that hardware transactional mem-
ory is likely to exist in future parallel microprocessors, the
deployment of RaceTM in hardware presents itself as an at-
tractive opportunity.

Although TM is gaining popularity as a programming
model, not all the code of a program can be covered by trans-
actions. First, I/O and certain system calls are irreversible
and cannot be executed speculatively and rolled-back later.
Second, converting code fragments with large memory foot-
prints into transactions not only affects performance, but
may overrun the limited resources of the underlying TM
system [4]. Third, legacy code using locks will likely transi-
tion to TM by replacing lock-protected critical sections with
transactions [1,5,6]. This will leave large sections of the code
exposed to potential data races.

In this paper, we introduce the concept of lightweight de-
bug transactions that span non-transactional code and ex-
ploit the conflict detection mechanisms of a TM system to
detect data races. A programmer or compiler can use simple
primitives to manipulate (start/stop, pause/resume) debug
transactions during execution. Data races occurring within
regular transactions are serialized by the TM system, but
those occurring outside transaction boundaries remain un-
detected. As a solution, RaceTM covers unprotected regions
of code with debug transactions and uses the existing TM
conflict detection mechanism to detect such races.

Debug transactions differ from regular transactions in that
they do not need to be rolled-back, and hence need no ver-
sioning and checkpointing support. Further, unlike regular
transactions, debug transactions do not change program se-
mantics as they do not enforce atomicity. This enables their
use in sections of code not covered by transactions or where
it is impossible or difficult to use TM. The concept of debug
transactions does not depend on the implementation of the
underlying TM system (hardware or software), and is inde-
pendent of the type of TM conflict detection and versioning
scheme (lazy or eager). The next section presents some de-
tails of the RaceTM technique, showing how the concept
introduced here can be effectively employed for data race
detection.

2. RACETM
An instance of a data race is shown in Figure 1(a), where

the memory location referenced by variable X is subject to
a data race. Typically, synchronization primitives, such as
locks, are used to prevent data races (Figure 1(b)).

In transactional memory systems, locked critical regions
are converted into transactions (Figure 1(c)) to indicate that
the memory accesses within those regions must be performed
atomically and in isolation. Transactions partition code into
two categories, one that is covered by transactions and the
other that is not. We denote the portions of code covered
by user-specified transactions as TX, and portions not cov-
ered by transactions as NoTX. TX sections of the code
are protected by the semantics of transactional memory. In

other words, accesses to shared memory locations within
transactions do not lead to data races. This is a result of
conflict detection (and subsequent rollback). However, any
code outside transactions remains vulnerable to data races.
Thus, improper deployment of transactions, in the same way
as with locks, can cause programming errors leading to data
races. Figure 2(a) illustrates this condition where the vari-
able Y is undergoing a data race.

The key insight of RaceTM is to use transactional memory
conflict detection capability to detect data races, such as the
one for variable Y in Figure 2(a), that are caused by shared
memory accesses in the NoTX portion of the code. Such
races can occur due to programmer mistakes, but they are
semantically no different from the ones encountered while
missing locks in the code. As a solution, we propose the
deployment of debug transactions (DTX) that can span re-
gions of code outside regular transactions. Debug trans-
actions behave the same as transactions except that they
do not support rollback, which in regular transactions in-
curs most of the overhead since it requires state checkpoint-
ing and version management. Debug transactions are thus
lightweight transactions capable of performing conflict detec-
tion on memory accesses. With DTXs in place, the entire
code can be covered by the transactional memory conflict
detection mechanisms, and any potential bug in accessing
shared memory can be reported. RaceTM provides control
primitives for starting/stopping and for pausing/resuming a
DTX. Figure 2(b) shows a code sample that employs DTXs
(specified by calls to primitives prefixed by dtx) in the re-
gions of code left out by regular transactions, and therefore
makes it possible to detect the conflict and data race on
variable Y.

The presence of synchronization primitives such as locks
and barriers, of which a TM system is not aware, may in-
terfere with debug transactions. For example, locks are ex-
pected to still be used in transactional memory programs to
serialize accesses to I/O devices (since I/O operations cannot
be rolled back or replayed). Similarly, legacy code in the OS
and runtime libraries may also use locks. A DTX can still
cover code that uses these primitives, but at the expense
of flagging false data races and requiring additional post-
processing to filter them out. To avoid false race reports
from such sources, RaceTM provides support for DTXs to
be temporarily paused across lock-protected regions of code,
barriers, as well as, conservatively, for system and library
calls that use lock-based synchronization.

Barriers are used in the code as a point where all pro-
gram threads synchronize. Consequently, no data race can
occur for memory accesses across barriers. In order to make
DTXs cognizant of barrier semantics, and avoid signaling
races for conflicting accesses separated by barriers, we reset
the state of all DTXs at program barriers. Conflict detec-
tion for transactional memory systems relies on maintain-
ing a list of memory locations accessed either in hardware
or software. Resetting a DTX means that this list of past
memory accesses is cleared for all threads when they reach
a barrier.

With the addition of DTXs, RaceTM partitions the code
into three categories: TX, DTX and NoTX. The response
of a RaceTM system that monitors conflicts between these
sections of the code is summarized in Table 1. The behavior
is different from that of a conventional transactional mem-
ory system only when one of the participating sections is a



Thread 1 Thread 2 Thread 1 Thread 2 Thread 1 Thread 2

myvar = X

X = newval

myvar = X

X = newval

myvar = X

X = newval

unlock

lock

unlock

lock

(c)(b)(a)

tx_begin

tx_end

tx_begin

tx_end

Figure 1: (a) Data race on variable X. (b) Critical section involving X protected by a lock. (c) Critical section
involving X protected by a transaction.

Thread 2Thread 1 Thread 2Thread 1

Y = 12

X = newval

result = Y

myvar = X

Y = 12

X = newval

result = Y

myvar = X
tx_begin

tx_end

tx_begin

tx_end

dtx_pause
tx_begin

tx_end
dtx_resume

dtx_pause
tx_begin

tx_end
dtx_resume

(b)(a)

dtx_begin dtx_begin

dtx_end dtx_end

Figure 2: (a) Code accessing X protected by trans-
action, but the code accessing Y vulnerable to a data
race, (b) Code accessing X protected by transaction.
Code accessing Y vulnerable to data race which will
be detected by the debug transaction.

DTX. The strong isolation1 property of transactional mem-
ory guarantees that interactions of a TX region with DTX
and NoTX do not lead to data races. However, to help
with debugging transactional programs, RaceTM can easily
flag the conflicts between TX and DTX sections. Discover-
ing such conflicts can be of crucial importance, for example
when the underlying transactional memory implementation
does not support strong isolation. Finally, the conflict be-
tween two NoTX sections of code cannot be captured be-
cause no record of memory accesses is maintained for those
regions.

Section 1 Section 2 System response
TX TX Rollback one of them
TX NoTX -

NoTX NoTX -
TX DTX Report potential bug

DTX DTX Report data race
DTX NoTX Report data race

Table 1: System responses to memory access con-
flicts between two sections of code of a multi-
threaded program

Between eager and lazy detection-based TM systems, RaceTM
is better suited to the former. Eager detection flags the

1Strong isolation implies that transactional memory accesses
are isolated from concurrent nontransactional accesses.

memory access conflicts as and when they occur in the pro-
gram execution. This is a more efficient model for reporting
data races than lazy detection, which enumerates all con-
flicts when a transaction ends. For instance, detecting a
race eagerly can allow the program to be stopped immedi-
ately and avoid any side effects of the race.

3. CONCLUSIONS
We have described RaceTM, a dynamic data race detec-

tion technique that exploits support for transactional mem-
ory likely to be present in future chip-level multiprocessors.
We have proposed the concept of lightweight debug transac-
tions that uses the conflict detection mechanism of a (hard-
ware or software) transactional memory system to perform
data race detection.

4. REFERENCES
[1] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson,

and S. Lie. Unbounded Transactional Memory. In Proc. 11th
Symposium on High-Performance Computer Architecture,
2005.

[2] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D.
Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis,
and K. Olukotun. Transactional Memory Coherence and
Consistency. In Proc. 31st International Symposium on
Computer Architecture, Jun 2004.

[3] L. Lamport. Time, Clocks, and the Ordering of Events in a
Distributed System. Comm. ACM, 21(7):558–565, 1978.

[4] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes
— A Comprehensive Study on Real World Concurrency Bug
Characteristics. In Proc. 13th Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), March 2008.

[5] H. E. Ramadan, C. J. Rossbach, D. E. Porter, O. S. Hofmann,
A. Bhandari, and E. Witchel. TxLinux: Using and Managing
Transactional Memory in an Operating System. 2007.

[6] C. J. Rossbach, D. E. Porter, O. S. Hofmann, H. E. Ramadan,
A. Bhandari, and E. Witchel. MetaTM/TxLinux:
Transactional Memory For An Operating System. 2007.

[7] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A Dynamic Data Race Detector for
Multithreaded Programs. ACM Trans. Comput. Syst.,
15(4):391–411, 1997.

[8] M. Tremblay and S. Chaudhry. A Third-Generation 65nm
16-Core 32-Thread Plus 32-Scout-Thread CMT SPARC
Processor. In Proceedings of the 2008 IEEE International
Solid State Circuits Conference. IEEE, 2008.


